Genetic Editing and Pharmacogenetics in Current And Future Therapy Of Neurocognitive Disorders

Page: [238 - 258] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Dementia is an important issue in western societies, and in the following years, this problem will also rise in the developing regions, such as Africa and Asia. The most common types of dementia in adults are Alzheimer’s Disease (AD), Dementia with Lewy Bodies (DLB), Frontotemporal Dementia (FTD) and Vascular Dementia (VaD), of which, AD accounts for more than half of the cases.

The most prominent symptom of AD is cognitive impairment, currently treated with four drugs: Donepezil, rivastigmine, and galantamine, enhancing cholinergic transmission; as well as memantine, protecting neurons against glutamate excitotoxicity. Despite ongoing efforts, no new drugs in the treatment of AD have been registered for the last ten years, thus multiple studies have been conducted on genetic factors affecting the efficacy of antidementia pharmacotherapy. The researchers investigate the effects of variants in multiple genes, such as ABCB1, ACE, CHAT, CHRNA7, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP3A7, NR1I2, NR1I3, POR, PPAR, RXR, SLC22A1/2/5, SLC47A1, UGT1A6, UGT1A9 and UGT2B7, associated with numerous pathways: the development of pathological proteins, formation and metabolism of acetylcholine, transport, metabolism and excretion of antidementia drugs and transcription factors regulating the expression of genes responsible for metabolism and transport of drugs. The most promising results have been demonstrated for APOE E4, dementia risk variant, BCHE-K, reduced butyrylcholinesterase activity variant, and CYP2D6 UM, ultrarapid hepatic metabolism. Further studies investigate the possibilities of the development of emerging drugs or genetic editing by CRISPR/Cas9 for causative treatment.

In conclusion, the pharmacogenetic studies on dementia diseases may improve the efficacy of pharmacotherapy in some patients with beneficial genetic variants, at the same time, identifying the carriers of unfavorable alleles, the potential group of novel approaches to the treatment and prevention of dementia.

Keywords: Genetics, pharmacogenetics, CRISPR/Cas9, Alzheimer’s disease, frontotemporal dementia, dementia with Lewy bodies, vascular dementia.

[1]
Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 1995; 8(6): 429-31.
[http://dx.doi.org/10.1002/ca.980080612] [PMID: 8713166]
[2]
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986; 83(13): 4913-7.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[3]
Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W. Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 2016; 13(9): 952-63.
[http://dx.doi.org/10.2174/1567205013666160314150501] [PMID: 26971934]
[4]
Collin F, Cheignon C, Hureau C. Oxidative stress as a biomarker for Alzheimer’s disease. Biomarkers Med 2018; 12(3): 201-3.
[PMID: 29436240]
[5]
Brickell KL, Steinbart EJ, Rumbaugh M, et al. Early-onset Alzheimer disease in families with late-onset Alzheimer disease: a potential important subtype of familial Alzheimer disease. Arch Neurol 2006; 63(9): 1307-11.
[http://dx.doi.org/10.1001/archneur.63.9.1307] [PMID: 16966510]
[6]
Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995; 375(6534): 754-60.
[http://dx.doi.org/10.1038/375754a0] [PMID: 7596406]
[7]
Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995; 269(5226): 973-7.
[http://dx.doi.org/10.1126/science.7638622] [PMID: 7638622]
[8]
Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 1999; 398(6727): 513-7.
[http://dx.doi.org/10.1038/19077] [PMID: 10206644]
[9]
Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim Biophys Acta BBA - Mol Basis Dis 2014; 1842(8): 1219-31.
[10]
Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003; 329(1-2): 23-38.
[http://dx.doi.org/10.1016/S0009-8981(03)00003-2] [PMID: 12589963]
[11]
Wang X, Wang W, Li L, Perry G, Lee H, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta BBA - Mol Basis Dis 2014; 1842(8): 1240-7.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015]
[12]
García-Blanco A, Baquero M, Vento M, Gil E, Bataller L, Cháfer-Pericás C. Potential oxidative stress biomarkers of mild cognitive impairment due to Alzheimer disease. J Neurol Sci 2017; 373: 295-302.
[http://dx.doi.org/10.1016/j.jns.2017.01.020] [PMID: 28131209]
[13]
Zabel M, Nackenoff A, Kirsch WM, Harrison FE, Perry G, Schrag M. Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes activities in Alzheimer’s disease brain: A meta-analysis in human pathological specimens. Free Radic Biol Med 2018; 115: 351-60.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.016] [PMID: 29253591]
[14]
Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016; 15(7): 673-84.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[15]
Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Bürkle A, Caiafa P. Reconfiguration of DNA methylation in aging. Mech Ageing Dev 2015; 151: 60-70.
[http://dx.doi.org/10.1016/j.mad.2015.02.002] [PMID: 25708826]
[16]
Wagner W, Fernandez-Rebollo E, Frobel J. DNA-methylation changes in replicative senescence and aging: two sides of the same coin? Epigenomics 2016; 8(1): 1-3.
[http://dx.doi.org/10.2217/epi.15.100] [PMID: 26698108]
[17]
Stoccoro A, Coppedè F. Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegener Dis Manag 2018; 8(3): 181-93.
[http://dx.doi.org/10.2217/nmt-2018-0004] [PMID: 29888987]
[18]
Narayan PJ, Lill C, Faull R, Curtis MA, Dragunow M. Increased acetyl and total histone levels in post-mortem Alzheimer’s disease brain. Neurobiol Dis 2015; 74: 281-94.
[http://dx.doi.org/10.1016/j.nbd.2014.11.023] [PMID: 25484284]
[19]
Irizar H, Goñi J, Alzualde A, et al. Age gene expression and coexpression progressive signatures in peripheral blood leukocytes. Exp Gerontol 2015; 72: 50-6.
[http://dx.doi.org/10.1016/j.exger.2015.09.003] [PMID: 26362218]
[20]
Gjoneska E, Pfenning AR, Mathys H, et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 2015; 518(7539): 365-9.
[http://dx.doi.org/10.1038/nature14252] [PMID: 25693568]
[21]
Sanz A, Stefanatos RKA. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 2008; 1(1): 10-21.
[http://dx.doi.org/10.2174/1874609810801010010] [PMID: 20021368]
[22]
Prendecki M, Florczak-Wyspianska J, Kowalska M, Lianeri M, Kozubski W, Dorszewska J. Normal aging and dementia.Update on dementia. Rijeka: InTech 2016; 251-72.
[http://dx.doi.org/10.5772/64203]
[23]
Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of A β accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 2006; 15(9): 1437-49.
[http://dx.doi.org/10.1093/hmg/ddl066] [PMID: 16551656]
[24]
Jicha GA, Lane E, Vincent I, Otvos L Jr, Hoffmann R, Davies P. A conformation- and phosphorylation-dependent antibody recognizing the paired helical filaments of Alzheimer’s disease. J Neurochem 1997; 69(5): 2087-95.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69052087.x] [PMID: 9349554]
[25]
Iqbal K. del C, Alonso A, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta BBA - Mol Basis Dis 2005; 1739(2-3): 198-210.
[26]
Talantova M, Sanz-Blasco S, Zhang X, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA 2013; 110(27): E2518-27.
[http://dx.doi.org/10.1073/pnas.1306832110] [PMID: 23776240]
[27]
Musardo S, Marcello E. Synaptic dysfunction in Alzheimer’s disease: From the role of amyloid β-peptide to the α-secretase ADAM10. Eur J Pharmacol 2017; 817: 30-7.
[http://dx.doi.org/10.1016/j.ejphar.2017.06.018] [PMID: 28625569]
[28]
Zhou F, Wang D. The associations between the MAPT polymorphisms and Alzheimer’s disease risk: a meta-analysis. Oncotarget 2017; 8(26): 43506-20.
[http://dx.doi.org/10.18632/oncotarget.16490] [PMID: 28415654]
[29]
Feulner TM, Laws SM, Friedrich P, et al. Examination of the current top candidate genes for AD in a genome-wide association study. Mol Psychiatry 2010; 15(7): 756-66.
[http://dx.doi.org/10.1038/mp.2008.141] [PMID: 19125160]
[30]
Chang CW, Hsu WC, Pittman A, Wu YR, Hardy J, Fung HC. Structural study of the microtubule-associated protein tau locus of Alzheimer’s disease in Taiwan. Biomed J 2014; 37(3): 127-32.
[PMID: 24923570]
[31]
Laws SM, Friedrich P, Diehl-Schmid J, et al. Fine mapping of the MAPT locus using quantitative trait analysis identifies possible causal variants in Alzheimer’s disease. Mol Psychiatry 2007; 12(5): 510-7.
[http://dx.doi.org/10.1038/sj.mp.4001935] [PMID: 17179995]
[32]
Kauwe JSK, Cruchaga C, Mayo K, et al. Variation in MAPT is associated with cerebrospinal fluid tau levels in the presence of amyloid-beta deposition. Proc Natl Acad Sci USA 2008; 105(23): 8050-4.
[http://dx.doi.org/10.1073/pnas.0801227105] [PMID: 18541914]
[33]
Allen M, Kachadoorian M, Quicksall Z, et al. Association of MAPT haplotypes with Alzheimer’s disease risk and MAPT brain gene expression levels. Alzheimers Res Ther 2014; 6(4): 39.
[http://dx.doi.org/10.1186/alzrt268] [PMID: 25324900]
[34]
Coppola G, Chinnathambi S, Lee JJ, et al. Alzheimer’s Disease Genetics Consortium.Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer’s diseases. Hum Mol Genet 2012; 21(15): 3500-12.
[http://dx.doi.org/10.1093/hmg/dds161] [PMID: 22556362]
[35]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[36]
Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005; 120(4): 545-55.
[http://dx.doi.org/10.1016/j.cell.2005.02.008] [PMID: 15734686]
[37]
Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science 2006; 314(5800): 777-81.
[http://dx.doi.org/10.1126/science.1132814] [PMID: 17082447]
[38]
Price DL, Tanzi RE, Borchelt DR, Sisodia SS. Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 1998; 32(1): 461-93.
[http://dx.doi.org/10.1146/annurev.genet.32.1.461] [PMID: 9928488]
[39]
Lippa CF, Nee LE, Mori H, St George-Hyslop P. Abeta-42 deposition precedes other changes in PS-1 Alzheimer’s disease. Lancet 1998; 352(9134): 1117-8.
[http://dx.doi.org/10.1016/S0140-6736(05)79757-9] [PMID: 9798591]
[40]
Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 2006; 26(35): 9057-68.
[http://dx.doi.org/10.1523/JNEUROSCI.1469-06.2006] [PMID: 16943564]
[41]
Pajares M, Jiménez-Moreno N, Dias IHK, et al. Redox control of protein degradation. Redox Biol 2015; 6: 409-20.
[http://dx.doi.org/10.1016/j.redox.2015.07.003] [PMID: 26381917]
[42]
Ganguly G, Chakrabarti S, Chatterjee U, Saso L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des Devel Ther 2017; 11: 797-810.
[http://dx.doi.org/10.2147/DDDT.S130514] [PMID: 28352155]
[43]
Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J. Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 2006; 26(27): 7212-21.
[http://dx.doi.org/10.1523/JNEUROSCI.1450-06.2006] [PMID: 16822978]
[44]
Zheng H, Koo EH. The amyloid precursor protein: beyond amyloid. Mol Neurodegener 2006; 1: 5.
[http://dx.doi.org/10.1186/1750-1326-1-5] [PMID: 16930452]
[45]
Wang Q, Jia J, Qin W, et al. A novel AβPP M722K mutation affects amyloid-β secretion and tau phosphorylation and may cause early-onset familial Alzheimer’s disease in Chinese individuals. Benussi L, redaktor. J Alzheimers Dis 2015; 47(1): 157-65.
[http://dx.doi.org/10.3233/JAD-143231] [PMID: 26402764]
[46]
Rocchi A, Pellegrini S, Siciliano G, Murri L. Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull 2003; 61(1): 1-24.
[http://dx.doi.org/10.1016/S0361-9230(03)00067-4] [PMID: 12788204]
[47]
Suzuki N, Cheung TT, Cai XD, et al. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 1994; 264(5163): 1336-40.
[http://dx.doi.org/10.1126/science.8191290] [PMID: 8191290]
[48]
El Kadmiri N, Zaid N, Hachem A, et al. Novel mutations in the amyloid precursor protein gene within Moroccan patients with Alzheimer’s disease. J Mol Neurosci 2014; 53(2): 189-95.
[http://dx.doi.org/10.1007/s12031-014-0278-7] [PMID: 24627227]
[49]
Mullan M, Crawford F, Axelman K, et al. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat Genet 1992; 1(5): 345-7.
[http://dx.doi.org/10.1038/ng0892-345] [PMID: 1302033]
[50]
Maloney JA, Bainbridge T, Gustafson A, et al. Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J Biol Chem 2014; 289(45): 30990-1000.
[http://dx.doi.org/10.1074/jbc.M114.589069] [PMID: 25253696]
[51]
Colciaghi F, Marcello E, Borroni B, et al. Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer disease. Neurology 2004; 62(3): 498-501.
[http://dx.doi.org/10.1212/01.WNL.0000106953.49802.9C] [PMID: 14872043]
[52]
Lundgren JL, Ahmed S, Schedin-Weiss S, et al. ADAM10 and BACE1 are localized to synaptic vesicles. J Neurochem 2015; 135(3): 606-15.
[http://dx.doi.org/10.1111/jnc.13287] [PMID: 26296617]
[53]
Lammich S, Kojro E, Postina R, et al. Constitutive and regulated alpha-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci USA 1999; 96(7): 3922-7.
[http://dx.doi.org/10.1073/pnas.96.7.3922] [PMID: 10097139]
[54]
Peron R, Vatanabe IP, Manzine PR, Camins A, Cominetti MR. Alpha-secretase ADAM10 regulation: Insights into Alzheimer’s disease treatment. Pharmaceuticals (Basel) 2018; 11(1): 12.
[http://dx.doi.org/10.3390/ph11010012] [PMID: 29382156]
[55]
Postina R, Schroeder A, Dewachter I, et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004; 113(10): 1456-64.
[http://dx.doi.org/10.1172/JCI20864] [PMID: 15146243]
[56]
Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha -secretase ADAM 10. Proc Natl Acad Sci USA 2001; 98(10): 5815-20.
[http://dx.doi.org/10.1073/pnas.081612998] [PMID: 11309494]
[57]
Kim M, Suh J, Romano D, et al. Potential late-onset Alzheimer’s disease-associated mutations in the ADAM10 gene attenuate α-secretase activity. Hum Mol Genet 2009; 18(20): 3987-96.
[http://dx.doi.org/10.1093/hmg/ddp323] [PMID: 19608551]
[58]
Song J-H, Yu J-T, Liu M, Yan C-Z, Tan L. Genetic association between ADAM10 gene polymorphism and Alzheimer’s disease in a Northern Han Chinese population. Brain Res 2011; 1421: 78-81.
[http://dx.doi.org/10.1016/j.brainres.2011.09.008] [PMID: 21959176]
[59]
Suh J, Choi SH, Romano DM, et al. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Neuron 2013; 80(2): 385-401.
[http://dx.doi.org/10.1016/j.neuron.2013.08.035] [PMID: 24055016]
[60]
Cai G, Atzmon G, Naj AC, et al. Evidence against a role for rare ADAM10 mutations in sporadic Alzheimer disease. Neurobiol Aging 2012; 33(2): 416-417.e3.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.003] [PMID: 20381196]
[61]
Stockley JH, O’Neill C. The proteins BACE1 and BACE2 and β-secretase activity in normal and Alzheimer’s disease brain. Biochem Soc Trans 2007; 35(Pt 3): 574-6.
[http://dx.doi.org/10.1042/BST0350574] [PMID: 17511655]
[62]
Yan R, Munzner JB, Shuck ME, Bienkowski MJ. BACE2 functions as an alternative α-secretase in cells. J Biol Chem 2001; 276(36): 34019-27.
[http://dx.doi.org/10.1074/jbc.M105583200] [PMID: 11423558]
[63]
Vassar R. BACE1: the β-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 2004; 23(1-2): 105-14.
[http://dx.doi.org/10.1385/JMN:23:1-2:105] [PMID: 15126696]
[64]
Charlwood J, Dingwall C, Matico R, et al. Characterization of the glycosylation profiles of Alzheimer’s β -secretase protein Asp-2 expressed in a variety of cell lines. J Biol Chem 2001; 276(20): 16739-48.
[http://dx.doi.org/10.1074/jbc.M009361200] [PMID: 11278492]
[65]
Bennett BD, Babu-Khan S, Loeloff R, et al. Expression analysis of BACE2 in brain and peripheral tissues. J Biol Chem 2000; 275(27): 20647-51.
[http://dx.doi.org/10.1074/jbc.M002688200] [PMID: 10749877]
[66]
Nyarko JNK, Quartey MO, Pennington PR, et al. Profiles of β-amyloid peptides and key secretases in brain autopsy samples differ with sex and APOE ε4 status: Impact for risk and progression of Alzheimer disease. Neuroscience 2018; 373: 20-36.
[http://dx.doi.org/10.1016/j.neuroscience.2018.01.005] [PMID: 29331531]
[67]
Nowotny P, Kwon JM, Chakraverty S, Nowotny V, Morris JC, Goate AM. Association studies using novel polymorphisms in BACE1 and BACE2. Neuroreport 2001; 12(9): 1799-802.
[http://dx.doi.org/10.1097/00001756-200107030-00008] [PMID: 11435901]
[68]
Gold G, Blouin J-L, Herrmann FR, et al. Specific BACE1 genotypes provide additional risk for late-onset Alzheimer disease in APOE ε 4 carriers. Am J Med Genet B Neuropsychiatr Genet 2003; 119B(1): 44-7.
[http://dx.doi.org/10.1002/ajmg.b.10010] [PMID: 12707937]
[69]
Jo SA, Ahn K, Kim E, et al. Association of BACE1 gene polymorphism with Alzheimer’s disease in Asian populations: meta-analysis including Korean samples. Dement Geriatr Cogn Disord 2008; 25(2): 165-9.
[http://dx.doi.org/10.1159/000112918] [PMID: 18182766]
[70]
Yu M, Liu Y, Shen J, Lv D, Zhang J. Meta-analysis of BACE1 gene rs638405 polymorphism and the risk of Alzheimer’s disease in Caucasion and Asian population. Neurosci Lett 2016; 616: 189-96.
[http://dx.doi.org/10.1016/j.neulet.2016.01.059] [PMID: 26828303]
[71]
Shi J, Zhang S, Tang M, et al. The 1239G/C polymorphism in exon 5 of BACE1 gene may be associated with sporadic Alzheimer’s disease in Chinese Hans. Am J Med Genet B Neuropsychiatr Genet 2004; 124B(1): 54-7.
[http://dx.doi.org/10.1002/ajmg.b.20087] [PMID: 14681914]
[72]
Mok KY, Jones EL, Hanney M, et al. Polymorphisms in BACE2 may affect the age of onset Alzheimer’s dementia in Down syndrome. Neurobiol Aging 2014; 35(6): 1513.e1-5.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.12.022] [PMID: 24462566]
[73]
Myllykangas L, Wavrant-De Vrièze F, Polvikoski T, et al. Chromosome 21 BACE2 haplotype associates with Alzheimer’s disease: a two-stage study. J Neurol Sci 2005; 236(1-2): 17-24.
[http://dx.doi.org/10.1016/j.jns.2005.04.008] [PMID: 16023140]
[74]
Yu Y, Jia J. Lack of association between the polymorphisms of β-site APP-cleaving enzyme 2 (BACE2) 5′-flanking region and sporadic Alzheimer’s disease. Brain Res 2009; 1257: 10-5.
[http://dx.doi.org/10.1016/j.brainres.2008.12.024] [PMID: 19124009]
[75]
Area-Gomez E, de Groof AJC, Boldogh I, et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol 2009; 175(5): 1810-6.
[http://dx.doi.org/10.2353/ajpath.2009.090219] [PMID: 19834068]
[76]
Vance JE. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim Biophys Acta 2014; 1841(4): 595-609.
[http://dx.doi.org/10.1016/j.bbalip.2013.11.014] [PMID: 24316057]
[77]
Hedskog L, Pinho CM, Filadi R, et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci USA 2013; 110(19): 7916-21.
[http://dx.doi.org/10.1073/pnas.1300677110] [PMID: 23620518]
[78]
Schon EA, Area-Gomez E. Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci 2013; 55: 26-36.
[http://dx.doi.org/10.1016/j.mcn.2012.07.011] [PMID: 22922446]
[79]
Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S. Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 1997; 89(4): 629-39.
[http://dx.doi.org/10.1016/S0092-8674(00)80244-5] [PMID: 9160754]
[80]
Giri M, Zhang M, Lü Y. Genes associated with Alzheimer’s disease: an overview and current status. Clin Interv Aging 2016; 11: 665-81.
[http://dx.doi.org/10.2147/CIA.S105769] [PMID: 27274215]
[81]
Guo J, Wei J, Liao S, Wang L, Jiang H, Tang B. A novel presenilin 1 mutation (Ser169del) in a Chinese family with early-onset Alzheimer’s disease. Neurosci Lett 2010; 468(1): 34-7.
[http://dx.doi.org/10.1016/j.neulet.2009.10.055] [PMID: 19853643]
[82]
Joshi A, Ringman JM, Lee AS, Juarez KO, Mendez MF. Comparison of clinical characteristics between familial and non-familial early onset Alzheimer’s disease. J Neurol 2012; 259(10): 2182-8.
[http://dx.doi.org/10.1007/s00415-012-6481-y] [PMID: 22460587]
[83]
Cruchaga C, Haller G, Chakraverty S, et al. NIA-LOAD/NCRAD Family Study Consortium.Rare variants in APP, PSEN1 and PSEN2 increase risk for AD in late-onset Alzheimer’s disease families. PLoS One 2012; 7(2) e31039
[http://dx.doi.org/10.1371/journal.pone.0031039] [PMID: 22312439]
[84]
Berezovska O, Lleo A, Herl LD, et al. Familial Alzheimer’s disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J Neurosci 2005; 25(11): 3009-17.
[http://dx.doi.org/10.1523/JNEUROSCI.0364-05.2005] [PMID: 15772361]
[85]
Cai Y, An SS, Kim S. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin Interv Aging 2015; 10: 1163-72.
[PMID: 26203236]
[86]
Walker ES, Martinez M, Brunkan AL, Goate A. Presenilin 2 familial Alzheimer’s disease mutations result in partial loss of function and dramatic changes in Abeta 42/40 ratios. J Neurochem 2005; 92(2): 294-301.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02858.x] [PMID: 15663477]
[87]
Zatti G, Burgo A, Giacomello M, et al. Presenilin mutations linked to familial Alzheimer’s disease reduce endoplasmic reticulum and Golgi apparatus calcium levels. Cell Calcium 2006; 39(6): 539-50.
[http://dx.doi.org/10.1016/j.ceca.2006.03.002] [PMID: 16620965]
[88]
Li D, Parks SB, Kushner JD, et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am J Hum Genet 2006; 79(6): 1030-9.
[http://dx.doi.org/10.1086/509900] [PMID: 17186461]
[89]
Chávez-Gutiérrez L, De Strooper B. Probing γ-secretase-substrate interactions at the single amino acid residue level. EMBO J 2016; 35(15): 1597-9.
[http://dx.doi.org/10.15252/embj.201694978] [PMID: 27370209]
[90]
Luo WJ, Wang H, Li H, et al. PEN-2 and APH-1 coordinately regulate proteolytic processing of presenilin 1. J Biol Chem 2003; 278(10): 7850-4.
[http://dx.doi.org/10.1074/jbc.C200648200] [PMID: 12522139]
[91]
Swerdlow RH, Khan SMAA. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 2004; 63(1): 8-20.
[http://dx.doi.org/10.1016/j.mehy.2003.12.045] [PMID: 15193340]
[92]
Bunn CL, Wallace DC, Eisenstadt JM. Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells. Proc Natl Acad Sci USA 1974; 71(5): 1681-5.
[http://dx.doi.org/10.1073/pnas.71.5.1681] [PMID: 4525288]
[93]
Khan SM, Cassarino DS, Abramova NN, et al. Alzheimer’s disease cybrids replicate beta-amyloid abnormalities through cell death pathways. Ann Neurol 2000; 48(2): 148-55.
[http://dx.doi.org/10.1002/1531-8249(200008)48] [PMID: 10939564]
[94]
Silva DF, Selfridge JE, Lu J, et al. Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines. Hum Mol Genet 2013; 22(19): 3931-46.
[http://dx.doi.org/10.1093/hmg/ddt247] [PMID: 23740939]
[95]
Swerdlow RH, Koppel S, Weidling I, Hayley C, Ji Y, Wilkins HM. Mitochondria, cybrids, aging, and Alzheimer’s disease. Prog Mol Biol Transl Sci 2017; 146: 259-302.
[http://dx.doi.org/10.1016/bs.pmbts.2016.12.017] [PMID: 28253988]
[96]
Faizi M, Seydi E, Abarghuyi S, Salimi A, Nasoohi S, Pourahmad J. A search for mitochondrial damage in Alzheimer’s disease using isolated rat brain mitochondria. Iran J Pharm Res 2016; 15: 185-95.
[PMID: 28228816]
[97]
Praticò D, Uryu K, Leight S, Trojanoswki JQ, Lee VM. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001; 21(12): 4183-7.
[http://dx.doi.org/10.1523/JNEUROSCI.21-12-04183.2001] [PMID: 11404403]
[98]
Reddy PH. Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J Neurochem 2006; 96(1): 1-13.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03530.x] [PMID: 16305625]
[99]
Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci USA 2010; 107(43): 18670-5.
[http://dx.doi.org/10.1073/pnas.1006586107] [PMID: 20937894]
[100]
Pavlov PF, Wiehager B, Sakai J, et al. Mitochondrial γ-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J 2011; 25(1): 78-88.
[http://dx.doi.org/10.1096/fj.10-157230] [PMID: 20833873]
[101]
Mamada N, Tanokashira D, Ishii K, Tamaoka A, Araki W. Mitochondria are devoid of amyloid β-protein (Aβ)-producing secretases: Evidence for unlikely occurrence within mitochondria of Aβ generation from amyloid precursor protein. Biochem Biophys Res Commun 2017; 486(2): 321-8.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.035] [PMID: 28302486]
[102]
Paschen SA, Neupert W. Protein import into mitochondria. IUBMB Life 2001; 52(3-5): 101-12.
[http://dx.doi.org/10.1080/15216540152845894] [PMID: 11798021]
[103]
Tanzi RE, Moir RD, Wagner SL. Clearance of Alzheimer’s Aβpeptide. Neuron 2004; 43(5): 605-8.
[PMID: 15339642]
[104]
Model K, Meisinger C, Prinz T, et al. Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat Struct Biol 2001; 8(4): 361-70.
[http://dx.doi.org/10.1038/86253] [PMID: 11276259]
[105]
Melin J, Schulz C, Wrobel L, et al. Presequence recognition by the tom40 channel contributes to precursor translocation into the mitochondrial matrix. Mol Cell Biol 2014; 34(18): 3473-85.
[http://dx.doi.org/10.1128/MCB.00433-14] [PMID: 25002531]
[106]
Hansson Petersen CA, Alikhani N, Behbahani H, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA 2008; 105(35): 13145-50.
[http://dx.doi.org/10.1073/pnas.0806192105] [PMID: 18757748]
[107]
Devi L, Anandatheerthavarada HK. Mitochondrial trafficking of APP and alpha synuclein: Relevance to mitochondrial dysfunction in Alzheimer’s and Parkinson’s diseases. Biochim Biophys Acta BBA - Mol Basis Dis 2010; 1802(1): 11-9.
[108]
Zeitlow K, Charlambous L, Ng I, Gagrani S, Mihovilovic M, Luo S, et al. The biological foundation of the genetic association of TOMM40 with late-onset Alzheimer’s disease. Biochim Biophys Acta BBA - Mol Basis Dis 2017; 1863(11): 2973-86.
[http://dx.doi.org/10.1016/j.bbadis.2017.07.031]
[109]
Roses AD, Lutz MW, Amrine-Madsen H, et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J 2010; 10(5): 375-84.
[http://dx.doi.org/10.1038/tpj.2009.69] [PMID: 20029386]
[110]
Lutz MW, Crenshaw DG, Saunders AM, Roses AD. Genetic variation at a single locus and age of onset for Alzheimer’s disease. Alzheimers Dement 2010; 6(2): 125-31.
[http://dx.doi.org/10.1016/j.jalz.2010.01.011] [PMID: 20298972]
[111]
Payton A, Sindrewicz P, Pessoa V, et al. A TOMM40 poly-T variant modulates gene expression and is associated with vocabulary ability and decline in nonpathologic aging. Neurobiol Aging 2016; 39: 217.e1-7.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.11.017] [PMID: 26742953]
[112]
Linnertz C, Saunders AM, Lutz MW, et al. Characterization of the poly-T variant in the TOMM40 gene in diverse populations. PLoS One 2012; 7(2) e30994
[http://dx.doi.org/10.1371/journal.pone.0030994] [PMID: 22359560]
[113]
Omoumi A, Fok A, Greenwood T, Sadovnick AD, Feldman HH, Hsiung G-YR. Evaluation of late-onset Alzheimer disease genetic susceptibility risks in a Canadian population. Neurobiol Aging 2014; 35(4): 936.e5-936.e12.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.025] [PMID: 24176626]
[114]
Deane R, Wu Z, Sagare A, et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 2004; 43(3): 333-44.
[http://dx.doi.org/10.1016/j.neuron.2004.07.017] [PMID: 15294142]
[115]
Herz J. LRP: a bright beacon at the blood-brain barrier. J Clin Invest 2003; 112(10): 1483-5.
[http://dx.doi.org/10.1172/JCI20337] [PMID: 14617749]
[116]
Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 2000; 106(12): 1489-99.
[http://dx.doi.org/10.1172/JCI10498] [PMID: 11120756]
[117]
Lendon CL, Talbot CJ, Craddock NJ, et al. Genetic association studies between dementia of the Alzheimer’s type and three receptors for apolipoprotein E in a Caucasian population. Neurosci Lett 1997; 222(3): 187-90.
[http://dx.doi.org/10.1016/S0304-3940(97)13381-X] [PMID: 9148246]
[118]
Lambert JC, Chartier-Harlin MC, Cottel D, et al. Is the LDL receptor-related protein involved in Alzheimer’s disease? Neurogenetics 1999; 2(2): 109-13.
[http://dx.doi.org/10.1007/s100480050061] [PMID: 10369887]
[119]
Kang DE, Saitoh T, Chen X, et al. Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer’s disease. Neurology 1997; 49(1): 56-61.
[http://dx.doi.org/10.1212/WNL.49.1.56] [PMID: 9222170]
[120]
Hollenbach E, Ackermann S, Hyman BT, Rebeck GW. Confirmation of an association between a polymorphism in exon 3 of the low-density lipoprotein receptor-related protein gene and Alzheimer’s disease. Neurology 1998; 50(6): 1905-7.
[http://dx.doi.org/10.1212/WNL.50.6.1905] [PMID: 9633759]
[121]
Kamboh MI, Ferrell RE, DeKosky ST. Genetic association studies between Alzheimer’s disease and two polymorphisms in the low density lipoprotein receptor-related protein gene. Neurosci Lett 1998; 244(2): 65-8.
[http://dx.doi.org/10.1016/S0304-3940(98)00141-4] [PMID: 9572586]
[122]
Yuan Q, Wang F, Xue S, Jia J. Association of polymorphisms in the LRP1 and A2M genes with Alzheimer’s disease in the northern Chinese Han population. J Clin Neurosci 2013; 20(2): 253-6.
[http://dx.doi.org/10.1016/j.jocn.2012.01.052] [PMID: 23186781]
[123]
Verpillat P, Bouley S, Campion D, et al. Use of haplotype information to test involvement of the LRP gene in Alzheimer’s disease in the French population. Eur J Hum Genet 2001; 9(6): 464-8.
[http://dx.doi.org/10.1038/sj.ejhg.5200644] [PMID: 11436129]
[124]
Liu C-C, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 2013; 9(2): 106-18.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[125]
Miyata M, Smith JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and β-amyloid peptides. Nat Genet 1996; 14(1): 55-61.
[http://dx.doi.org/10.1038/ng0996-55] [PMID: 8782820]
[126]
Payami H, Zareparsi S, Montee KR, et al. Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. Am J Hum Genet 1996; 58(4): 803-11.
[PMID: 8644745]
[127]
Schmidt C, Gerlach N, Schmitz M, et al. Baseline CSF/serum-ratio of apolipoprotein E and rate of differential decline in Alzheimer’s disease. J Alzheimers Dis 2015; 48(1): 189-96.
[http://dx.doi.org/10.3233/JAD-150286] [PMID: 26401939]
[128]
Genin E, Hannequin D, Wallon D, et al. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 2011; 16(9): 903-7.
[http://dx.doi.org/10.1038/mp.2011.52] [PMID: 21556001]
[129]
Gibson GE, Haroutunian V, Zhang H, et al. Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype. Ann Neurol 2000; 48(3): 297-303.
[http://dx.doi.org/10.1002/1531-8249(200009)48:3<297:AID-ANA3>3.0.CO;2-Z] [PMID: 10976635]
[130]
Valla J, Yaari R, Wolf AB, et al. Reduced posterior cingulate mitochondrial activity in expired young adult carriers of the APOE ε4 allele, the major late-onset Alzheimer’s susceptibility gene. J Alzheimers Dis 2010; 22(1): 307-13.
[http://dx.doi.org/10.3233/JAD-2010-100129] [PMID: 20847408]
[131]
Conejero-Goldberg C, Hyde TM, Chen S, et al. Molecular signatures in post-mortem brain tissue of younger individuals at high risk for Alzheimer’s disease as based on APOE genotype. Mol Psychiatry 2011; 16(8): 836-47.
[http://dx.doi.org/10.1038/mp.2010.57] [PMID: 20479757]
[132]
Nakamura T, Watanabe A, Fujino T, Hosono T, Michikawa M. Apolipoprotein E4 (1-272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells. Mol Neurodegener 2009; 4(1): 35.
[http://dx.doi.org/10.1186/1750-1326-4-35] [PMID: 19695092]
[133]
Setién-Suero E, Suárez-Pinilla M, Suárez-Pinilla P, Crespo-Facorro B, Ayesa-Arriola R. Homocysteine and cognition: A systematic review of 111 studies. Neurosci Biobehav Rev 2016; 69: 280-98.
[http://dx.doi.org/10.1016/j.neubiorev.2016.08.014] [PMID: 27531233]
[134]
Morrison LD, Smith DD, Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem 1996; 67(3): 1328-31.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67031328.x] [PMID: 8752143]
[135]
McCully KS. Homocysteine, vitamins, and vascular disease prevention. Am J Clin Nutr 2007; 86(5): 1563S-8S.
[http://dx.doi.org/10.1093/ajcn/86.5.1563S] [PMID: 17991676]
[136]
Dorszewska J, Florczak J, Rozycka A, et al. Oxidative DNA damage and level of thiols as related to polymorphisms of MTHFR, MTR, MTHFD1 in Alzheimer’s and Parkinson’s diseases. Acta Neurobiol Exp (Warsz) 2007; 67(2): 113-29.
[PMID: 17691219]
[137]
Ho PI, Ortiz D, Rogers E, Shea TB. Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res 2002; 70(5): 694-702.
[http://dx.doi.org/10.1002/jnr.10416] [PMID: 12424737]
[138]
Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 2005; 28(1): 195-204.
[http://dx.doi.org/10.1016/j.mcn.2004.09.007] [PMID: 15607954]
[139]
Spence JD. Homocysteine-lowering therapy: a role in stroke prevention? Lancet Neurol 2007; 6(9): 830-8.
[http://dx.doi.org/10.1016/S1474-4422(07)70219-3] [PMID: 17706567]
[140]
Stanger O, Fowler B, Piertzik K, et al. Homocysteine, folate and vitamin B12 in neuropsychiatric diseases: review and treatment recommendations. Expert Rev Neurother 2009; 9(9): 1393-412.
[http://dx.doi.org/10.1586/ern.09.75] [PMID: 19769453]
[141]
Mansouri L, Fekih-Mrissa N, Klai S, Mansour M, Gritli N, Mrissa R. Association of methylenetetrahydrofolate reductase polymorphisms with susceptibility to Alzheimer’s disease. Clin Neurol Neurosurg 2013; 115(9): 1693-6.
[http://dx.doi.org/10.1016/j.clineuro.2013.03.015] [PMID: 23659764]
[142]
Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10(1): 111-3.
[http://dx.doi.org/10.1038/ng0595-111] [PMID: 7647779]
[143]
Hua Y, Zhao H, Kong Y, Ye M. Association between the MTHFR gene and Alzheimer’s disease: a meta-analysis. Int J Neurosci 2011; 121(8): 462-71.
[http://dx.doi.org/10.3109/00207454.2011.578778] [PMID: 21663380]
[144]
Kwok T, Lee J, Law CB, et al. A randomized placebo controlled trial of homocysteine lowering to reduce cognitive decline in older demented people. Clin Nutr 2011; 30(3): 297-302.
[http://dx.doi.org/10.1016/j.clnu.2010.12.004] [PMID: 21216507]
[145]
Köbe T, Witte AV, Schnelle A, et al. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. Neuroimage 2016; 131: 226-38.
[http://dx.doi.org/10.1016/j.neuroimage.2015.09.050] [PMID: 26433119]
[146]
Kharrazi H, Vaisi-Raygani A, Rahimi Z, Tavilani H, Aminian M, Pourmotabbed T. Association between enzymatic and non-enzymatic antioxidant defense mechanism with apolipoprotein E genotypes in Alzheimer disease. Clin Biochem 2008; 41(12): 932-6.
[http://dx.doi.org/10.1016/j.clinbiochem.2008.05.001] [PMID: 18505684]
[147]
Ahmadinejad F, Geir Møller S, Hashemzadeh-Chaleshtori M, Bidkhori G, Jami M-S. Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants 2017; 6(3): 51.
[http://dx.doi.org/10.3390/antiox6030051] [PMID: 28698499]
[148]
Salech F, Ponce DP, SanMartín CD, et al. PARP-1 and p53 regulate the increased susceptibility to oxidative death of lymphocytes from MCI and AD patients. Front Aging Neurosci 2017; 9: 310.
[http://dx.doi.org/10.3389/fnagi.2017.00310] [PMID: 29051731]
[149]
Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 2009; 11(11): 2685-700.
[http://dx.doi.org/10.1089/ars.2009.2695] [PMID: 19558212]
[150]
Ribas V, García-Ruiz C, Fernández-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014; 5: 151.
[http://dx.doi.org/10.3389/fphar.2014.00151] [PMID: 25024695]
[151]
Manyevitch R, Protas M, Scarpiello S, et al. Evaluation of metabolic and synaptic dysfunction hypotheses of Alzheimer’s disease (ad): A meta-analysis of CSF markers. Curr Alzheimer Res 2018; 15(2): 164-81.
[http://dx.doi.org/10.2174/1567205014666170921122458] [PMID: 28933272]
[152]
Vida C, Martinez de Toda I, Garrido A, Carro E, Molina JA, De la Fuente M. Impairment of several immune functions and redox state in blood cells of Alzheimer’s disease patients. Relevant role of neutrophils in oxidative stress. Front Immunol 2018; 8: 1974.
[http://dx.doi.org/10.3389/fimmu.2017.01974] [PMID: 29375582]
[153]
Maher P. Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: Implications for age-related neurodegenerative diseases. Free Radic Biol Med luty 2018; 115: 92-104.
[154]
Borgstahl GEO, Parge HE, Hickey MJ, Beyer WF Jr, Hallewell RA, Tainer JA. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell 1992; 71(1): 107-18.
[http://dx.doi.org/10.1016/0092-8674(92)90270-M] [PMID: 1394426]
[155]
Zemlan FP, Thienhaus OJ, Bosmann HB. Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical filament formation. Brain Res 1989; 476(1): 160-2.
[http://dx.doi.org/10.1016/0006-8993(89)91550-3] [PMID: 2521568]
[156]
Massaad CA, Pautler RG, Klann E. Mitochondrial superoxide: a key player in Alzheimer’s disease. Aging (Albany NY) 2009; 1(9): 758-61.
[http://dx.doi.org/10.18632/aging.100088] [PMID: 20157564]
[157]
Kida Y, Goligorsky MS. Sirtuins, cell senescence, and vascular aging. Can J Cardiol 2016; 32(5): 634-41.
[http://dx.doi.org/10.1016/j.cjca.2015.11.022] [PMID: 26948035]
[158]
Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev 2016; 155: 10-21.
[http://dx.doi.org/10.1016/j.mad.2016.02.003] [PMID: 26923269]
[159]
Morgan AR, Turic D, Jehu L, et al. Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 2007; 144B(6): 762-70.
[http://dx.doi.org/10.1002/ajmg.b.30509] [PMID: 17373700]
[160]
Kilic U, Gok O, Erenberk U, et al. A remarkable age-related increase in SIRT1 protein expression against oxidative stress in elderly: SIRT1 gene variants and longevity in human. PLoS One 2015; 10(3) E0117954
[http://dx.doi.org/10.1371/journal.pone.0117954] [PMID: 25785999]
[161]
Helisalmi S, Vepsäläinen S, Hiltunen M, et al. Genetic study between SIRT1, PPARD, PGC-1α genes and Alzheimer’s disease. J Neurol 2008; 255(5): 668-73.
[http://dx.doi.org/10.1007/s00415-008-0774-1] [PMID: 18438697]
[162]
Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA 2002; 99(21): 13653-8.
[http://dx.doi.org/10.1073/pnas.222538099] [PMID: 12374852]
[163]
Kim H-S, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010; 17(1): 41-52.
[http://dx.doi.org/10.1016/j.ccr.2009.11.023] [PMID: 20129246]
[164]
Lee J, Kim Y, Liu T, et al. SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease. Aging Cell 2018; 17(1) E12679
[http://dx.doi.org/10.1111/acel.12679] [PMID: 29130578]
[165]
Yang SS, Zhang R, Wang G, Zhang YF. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer’s disease. Transl Neurodegener 2017; 6: 19.
[http://dx.doi.org/10.1186/s40035-017-0089-1] [PMID: 28702178]
[166]
Kerridge C, Belyaev ND, Nalivaeva NN, Turner AJ. The Aβ-clearance protein transthyretin, like neprilysin, is epigenetically regulated by the amyloid precursor protein intracellular domain. J Neurochem 2014; 130(3): 419-31.
[http://dx.doi.org/10.1111/jnc.12680] [PMID: 24528201]
[167]
Green KN, Steffan JS, Martinez-Coria H, et al. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci 2008; 28(45): 11500-10.
[http://dx.doi.org/10.1523/JNEUROSCI.3203-08.2008] [PMID: 18987186]
[168]
Mecocci P, MacGarvey U, Kaufman AE, et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 1993; 34(4): 609-16.
[http://dx.doi.org/10.1002/ana.410340416] [PMID: 8215249]
[169]
Dorszewska J, Kempisty B, Jaroszewska-Kolecka J, et al. Expression and polymorphisms of gene 8-oxoguanine glycosylase 1 and the level of oxidative DNA damage in peripheral blood lymphocytes of patients with Alzheimer’s disease. DNA Cell Biol 2009; 28(11): 579-88.
[http://dx.doi.org/10.1089/dna.2009.0926] [PMID: 19630534]
[170]
Simpson JE, Ince PG, Matthews FE, et al. MRC Cognitive Function and Ageing Neuropathology Study Group.A neuronal DNA damage response is detected at the earliest stages of Alzheimer’s neuropathology and correlates with cognitive impairment in the Medical Research Council’s Cognitive Function and Ageing Study ageing brain cohort. Neuropathol Appl Neurobiol 2015; 41(4): 483-96.
[http://dx.doi.org/10.1111/nan.12202] [PMID: 25443110]
[171]
Wezyk M, Zekanowski C. Role of BRCA1 in neuronal death in Alzheimer’s disease. ACS Chem Neurosci 2018; 9(5): 870-2.
[http://dx.doi.org/10.1021/acschemneuro.8b00149] [PMID: 29634233]
[172]
Folch J, Junyent F, Verdaguer E, et al. Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox Res 2012; 22(3): 195-207.
[http://dx.doi.org/10.1007/s12640-011-9277-4] [PMID: 21965004]
[173]
Counts SE, Mufson EJ. Regulator of cell cycle (RGCC) expression during the progression of Alzheimer’s disease. Cell Transplant 2017; 26(4): 693-702.
[http://dx.doi.org/10.3727/096368916X694184] [PMID: 27938491]
[174]
Lakin ND, Jackson SP. Regulation of p53 in response to DNA damage. Oncogene 1999; 18(53): 7644-55.
[http://dx.doi.org/10.1038/sj.onc.1203015] [PMID: 10618704]
[175]
Beckerman R, Prives C. Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2010; 2(8) a000935
[http://dx.doi.org/10.1101/cshperspect.a000935] [PMID: 20679336]
[176]
Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 2003; 23(23): 8576-85.
[http://dx.doi.org/10.1128/MCB.23.23.8576-8585.2003] [PMID: 14612402]
[177]
Checler F, Alves da Costa C. p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2014; 142(1): 99-113.
[http://dx.doi.org/10.1016/j.pharmthera.2013.11.009] [PMID: 24287312]
[178]
Lai KSP, Liu CS, Rau A, et al. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry 2017; 88(10): 876-82.
[http://dx.doi.org/10.1136/jnnp-2017-316201] [PMID: 28794151]
[179]
Uberti D, Lanni C, Racchi M, Govoni S, Memo M. Conformationally altered p53: a putative peripheral marker for Alzheimer’s disease. Neurodegener Dis 2008; 5(3-4): 209-11.
[http://dx.doi.org/10.1159/000113704] [PMID: 18322392]
[180]
Dorszewska J, Oczkowska A, Suwalska M, et al. Mutations in the exon 7 of Trp53 gene and the level of p53 protein in double transgenic mouse model of Alzheimer’s disease. Folia Neuropathol 2014; 52(1): 30-40.
[http://dx.doi.org/10.5114/fn.2014.41742] [PMID: 24729341]
[181]
Ohyagi Y, Asahara H, Chui D-H, et al. Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J 2005; 19(2): 255-7.
[http://dx.doi.org/10.1096/fj.04-2637fje] [PMID: 15548589]
[182]
Rosenmann H, Meiner Z, Kahana E, et al. An association study of the codon 72 polymorphism in the pro-apoptotic gene p53 and Alzheimer’s disease. Neurosci Lett 2003; 340(1): 29-32.
[http://dx.doi.org/10.1016/S0304-3940(03)00049-1] [PMID: 12648751]
[183]
Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T. Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 1997; 232(2): 418-21.
[http://dx.doi.org/10.1006/bbrc.1997.6301] [PMID: 9125193]
[184]
Hooper C, Meimaridou E, Tavassoli M, Melino G, Lovestone S, Killick R. p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci Lett 2007; 418(1): 34-7.
[http://dx.doi.org/10.1016/j.neulet.2007.03.026] [PMID: 17399897]
[185]
Alves da Costa C, Sunyach C, Pardossi-Piquard R, et al. Presenilin-dependent gamma-secretase-mediated control of p53-associated cell death in Alzheimer’s disease. J Neurosci 2006; 26(23): 6377-85.
[http://dx.doi.org/10.1523/JNEUROSCI.0651-06.2006] [PMID: 16763046]
[186]
Dorszewska J, Różycka A, Oczkowska A, et al. Mutations of TP53 gene and oxidative stress in Alzheimer’s disease patients. Adv Alzheimer Dis 2014; 03(01): 24-32.
[http://dx.doi.org/10.4236/aad.2014.31004]
[187]
Dorszewska J, Florczak J, Rózycka A, Jaroszewska-Kolecka J, Trzeciak WH, Kozubski W. Polymorphisms of the CHRNA4 gene encoding the α4 subunit of nicotinic acetylcholine receptor as related to the oxidative DNA damage and the level of apoptotic proteins in lymphocytes of the patients with Alzheimer’s disease. DNA Cell Biol 2005; 24(12): 786-94.
[http://dx.doi.org/10.1089/dna.2005.24.786] [PMID: 16332175]
[188]
Furihata C. An active alternative splicing isoform of human mitochondrial 8-oxoguanine DNA glycosylase (OGG1). Genes Environ 2015; 37: 21.
[http://dx.doi.org/10.1186/s41021-015-0021-9] [PMID: 27350816]
[189]
Dezor M, Dorszewska J, Florczak J, et al. Expression of 8-oxoguanine DNA glycosylase 1 (OGG1) and the level of p53 and TNF-αlpha proteins in peripheral lymphocytes of patients with Alzheimer’s disease. Folia Neuropathol 2011; 49(2): 123-31.
[PMID: 21845541]
[190]
Sliwinska A, Kwiatkowski D, Czarny P, et al. The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1) - A potential diagnostic biomarkers of Alzheimer’s disease. J Neurol Sci 2016; 368: 155-9.
[http://dx.doi.org/10.1016/j.jns.2016.07.008] [PMID: 27538622]
[191]
Iida T, Furuta A, Nishioka K, Nakabeppu Y, Iwaki T. Expression of 8-oxoguanine DNA glycosylase is reduced and associated with neurofibrillary tangles in Alzheimer’s disease brain. Acta Neuropathol 2002; 103(1): 20-5.
[http://dx.doi.org/10.1007/s004010100418] [PMID: 11837743]