In silico and in vitro Studies of Imidazolium Ionic Liquids as Effective Antibacterial Agents against Multidrug Resistant Escherichia coli Strains

Page: [130 - 144] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Escherichia coli especially its multiresistant strains as the common foodborne pathogens cause bloodstream infections, nosocomial pneumonia, infections of the skin and soft tissues. Therefore, the search for new effective biologically active compounds has been rapidly increasing in recent few decades. In this paper, we describe Quantitative Structure-Activity Relationships (QSAR) studies, molecular docking and in vitro antibacterial activity evaluation of a series of imidazolium-based Ionic Liquids (ILs) against E. coli spp.

Methods: M2D fragment-based, classification and regression QSAR models were created using machine learning methods and types of descriptors via the OCHEM server. Biological testing of a series of synthesized imidazolium ILs with predicted activity was performed by the disc diffusion method. The most typical structures of symmetric and asymmetric ILs with high anti-E. coli activity (1e, 1h) were docked into the active site of Enoyl-Acyl Carrier Protein Reductase (ENR) in E. coli.

Results: Symmetric imidazolium ILs with C8 alkyl chain length demonstrated the highest antibacterial activity in comparison to the high antibacterial potential of asymmetric ILs with C12 alkyl chain length against drug-sensitive and drug-resistant E. coli strains including hemolytic E. coli. It should be noted that symmetric ILs with C6 or C9 alkyl chain length have a slightly lower activity against certain E. coli strains. The key role in the binding of compounds (1e, 1h) in the E. coli ENR active site is associated with the NAD molecule and the amino acid residue Tyr146.

Conclusion: The highly active symmetric and asymmetric imidazolium ILs can be considered as promising drug-candidates effective against E. coli spp. pathogens including multidrug-resistant strains.

Keywords: Imidazolium ionic liquids, QSAR modeling, antibacterial activity, Escherichia coli, molecular docking, enoyl-acyl carrier protein reductase.

Graphical Abstract

[1]
Allocati, N.; Masulli, M.; Alexeyev, M.F.; Di Ilio, C. Escherichia coli in Europe: An overview. Int. J. Environ. Res. Public Health, 2013, 10(12), 6235-6254.
[http://dx.doi.org/10.3390/ijerph10126235] [PMID: 24287850]
[2]
WHO. E. coli., 2018 7 February; https://www.who.int/news-room/fact-sheets/detail/e-coli [Accessed February 2019].
[3]
Dubreuil, J.D. The whole Shebang: The gastrointestinal tract, Escherichia coli enterotoxins and secretion. Curr. Issues Mol. Biol., 2012, 14(2), 71-82.
[PMID: 22368232]
[4]
Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol., 2004, 2(2), 123-140.
[http://dx.doi.org/10.1038/nrmicro818] [PMID: 15040260]
[5]
Kim, K.S. Current concepts on the pathogenesis of Escherichia coli meningitis: Implications for therapy and prevention. Curr. Opin. Infect. Dis., 2012, 25(3), 273-278.
[http://dx.doi.org/10.1097/QCO.0b013e3283521eb0] [PMID: 22395761]
[6]
Köhler, C.D.; Dobrindt, U. What defines extraintestinal pathogenic Escherichia coli Int. J. Med. Microbiol., 2011, 301(8), 642-647.
[http://dx.doi.org/10.1016/j.ijmm.2011.09.006] [PMID: 21982038]
[7]
CTV. Ca News Staff. 10 pathogens that cause the most health problems., 2010 15 December; Available at https://www.ctvnews.ca/10-pathogens-that-cause-the-most-health-problems-1.585593 [Accessed February 2019].
[8]
WHO. WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health, 2014. 30 April; https://www.who.int/mediacentre/news/releases/2014/amr-report/en/ [Accessed February 2019].
[9]
WHO. High levels of antibiotic resistance found worldwide, new data shows, 2018. 29 January; https://www.who.int/mediacentre/news/releases/2018/antibiotic-resistance-found/en/ [Accessed February 2019].
[10]
Mollica, A.; Macedonio, G.; Stefanucci, A.; Costante, R.; Carradori, S.; Cataldi, V.; Di Giulio, M.; Cellini, L.; Silvestri, R.; Giordano, C.; Scipioni, A.; Morosetti, S.; Punzi, P.; Mirzaie, S. Arginine- and lysine-rich peptides: synthesis, characterization and antimicrobial activity. Lett. Drug Des. Discov., 2018, 15(3), 220-.
[http://dx.doi.org/10.2174/1570180814666170213161341]
[11]
Abdelhameed, R.M.; El-Sayed, H.A.; El-Shahat, M.; El-Sayed, A.A.; Darwesh, O.M. Novel triazolothiadiazole and triazolothiadiazine derivatives containing pyridine moiety: design, synthesis, bactericidal and fungicidal activities. Curr. Bioact. Compd., 2018, 14(2), 169-179.
[http://dx.doi.org/10.2174/1573407213666170127095158]
[12]
Sood, S.; Bala, R.; Kumar, V.; Singh, N.; Singh, K. Iodine mediated synthesis of thiabendazole derivatives and their antimicrobial evaluation. Curr. Bioact. Compd., 2018, 14(3)
[http://dx.doi.org/10.2174/1573407213666170407160418]
[13]
Mollica, A.; Stefanucci, A.; Feliciani, F.; Lucente, G.; Pinnen, F. Synthesis of (S)-5,6-dibromo-tryptophan derivatives as building blocks for peptide chemistry. Tetrahedron Lett., 2011, 52(20), 2583-2585.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.041]
[14]
Busetti, A.; Crawford, D.E.; Martyn Earle, J.; Gilea, M.A.; Gilmore, B.F.; Gorman, S.P.; Laverty, G.; Lowry, A.F.; McLaughlin, M.; Seddon, K.R. Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chem., 2010, 12, 420-425.
[http://dx.doi.org/10.1039/b919872e]
[15]
Venkata Nancharaiah, Y.; Reddy, G.K.K.; Lalithamanasa, P.; Venugopalan, V.P. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Biofouling, 2012, 28(10), 1141-1149.
[http://dx.doi.org/10.1080/08927014.2012.736966] [PMID: 23092364]
[16]
He, B.; Ou, G.; Zhou, C.; Wang, M.; Chen, S. Antimicrobial ionic liquids with fumarate anion. J. Chem., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/473153]
[17]
Raucci, M.G.; Fasolino, I.; Pastore, S.G.; Soriente, A.; Capeletti, L.B.; Dessuy, M.B.; Giannini, C.; Schrekker, H.S.; Ambrosio, L. Antimicrobial imidazolium ionic liquids for the development of minimal invasive calcium phosphate-based bionanocomposites. ACS Appl. Mater. Interfaces, 2018, 10(49), 42766-42776.
[http://dx.doi.org/10.1021/acsami.8b12696] [PMID: 30456941]
[18]
Ocakoglu, K.; Tasli, H.; Limoncu, M.H.; Lambrecht, F.Y. Synthesis and antimicrobial activity of imidazolium salts. Trends Cancer Res Chemother., 2018, 1.
[http://dx.doi.org/10.15761/TCRC.1000103]
[19]
Giernoth, R. Ionic liquids with a twist: new routes to liquid salts. Angew. Chem. Int. Ed. Engl., 2010, 49(33), 5608-5609.
[http://dx.doi.org/10.1002/anie.201002393] [PMID: 20602397]
[20]
Dróżdż, P.; Pyrzynska, K. Screening of ionic liquids for extraction of flavonoids from heather. Nat. Prod. Res., 2019, 33(1), 148-151.
[http://dx.doi.org/10.1080/14786419.2018.1437441] [PMID: 29451029]
[21]
Reinhardt, A.; Thomas, I.; Schmauck, J.; Giernoth, R.; Schulze, A.; Neundorf, I. Electron beam immobilization of novel antimicrobial, short peptide motifs leads to membrane surfaces with promising antibacterial properties. J. Funct. Biomater., 2018, 9(1), 21.
[http://dx.doi.org/10.3390/jfb9010021] [PMID: 29495523]
[22]
Gilmore, B.F.; Andrews, G.P.; Borberly, G.; Earle, M.J.; Gilea, M.A.; Gorman, S.P.; Lowry, A.F.; McLaughlin, M.; Seddon, K.R. Enhanced antimicrobial activities of 1- alkyl-3-methyl imidazolium ionic liquids based on silver or copper containing anions. New J. Chem., 2013, 37, 873-876.
[http://dx.doi.org/10.1039/c3nj40759d]
[23]
Abbaszadegan, A.; Gholami, A.; Abbaszadegan, S.; Aleyasin, Z.S.; Ghahramani, Y.; Dorostkar, S.; Hemmateenejad, B.; Ghasemi, Y.; Sharghi, H. The effects of different ionic liquid coatings and the length of alkyl chain on antimicrobial and cytotoxic properties of silver nanoparticles. Iran. Endod. J., 2017, 12(4), 481-487.
[http://dx.doi.org/10.22037/iej.v12i4.17905] [PMID: 29225645]
[24]
Schrekker, H.S.; Donato, R.K.; Fuentefria, A.M.; Bergamo, V.; Oliveira, L.F.; Machado, M.M. Imidazolium salts as antifungal agents: Activity against emerging yeast pathogens, without human leukocyte toxicity. MedChemComm, 2013, 4, 1457-1460.
[http://dx.doi.org/10.1039/c3md00222e]
[25]
Iwai, N.; Nakayama, K.; Kitazume, T. Antibacterial activities of imidazolium, pyrrolidinium and piperidinium salts. Bioorg. Med. Chem. Lett., 2011, 21(6), 1728-1730.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.081] [PMID: 21324694]
[26]
Hodyna, D.; Kovalishyn, V.; Semenyuta, I.; Blagodatnyi, V.; Rogalsky, S.; Metelytsia, L. Imidazolium ionic liquids as effective antiseptics and disinfectants against drug resistant S. aureus: In silico and in vitro studies. Comput. Biol. Chem., 2018, 73, 127-138.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.01.012] [PMID: 29494924]
[27]
Hodyna, D.; Kovalishyn, V.; Rogalsky, S.; Blagodatnyi, V.; Petko, K.; Metelytsia, L. Antibacterial activity of imidazolium-based ionic liquids investigated by qsar modeling and experimental studies. Chem. Biol. Drug Des., 2016, 88(3), 422-433.
[http://dx.doi.org/10.1111/cbdd.12770] [PMID: 27086199]
[28]
Hodyna, D.; Kovalishyn, V.; Rogalsky, S.; Blagodatnyi, V.; Metelytsia, L. Imidazolium ionic liquids as potential anti-candida inhibitors: QSAR modeling and experimental studies. Curr. Drug Discov. Technol., 2016, 13(2), 109-119.
[http://dx.doi.org/10.2174/1570163813666160510122201] [PMID: 27160290]
[29]
Yee, L.C.; Wei, Y.C. Current modeling methods used in QSAR/QSPR. In: Statistical Modelling Molecular Descriptors QSAR/QSPR, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. 2012, 2, 1-31.
[http://dx.doi.org/10.1002/9783527645121.]
[30]
Beheshti, A.; Pourbasheer, E.; Nekoei, M.; Vahdani, S. QSAR modeling of antimalarial activity of urea derivatives using genetic algorithm–multiple linear regressions. J. Saudi Chem. Soc., 2016, 20(3), 282-290.
[http://dx.doi.org/10.1016/j.jscs.2012.07.019]
[31]
Liu, P.; Long, W. Current mathematical methods used in QSAR/QSPR studies. Int. J. Mol. Sci., 2009, 10(5), 1978-1998.
[http://dx.doi.org/10.3390/ijms10051978] [PMID: 19564933]
[32]
Ghanem, O.B.; Mutalib, M.I.; El-Harbawi, M.; Gonfa, G.; Kait, C.F.; Alitheen, N.B.; Leveque, J.M. Effect of imidazolium-based ionic liquids on bacterial growth inhibition investigated via experimental and QSAR modelling studies. J. Hazard. Mater., 2015, 297, 198-206.
[http://dx.doi.org/10.1016/j.jhazmat.2015.04.082] [PMID: 25965417]
[33]
Ghanem, O.B.; Shah, S.N.; Lévêque, J-M.; Mutalib, M.I.A.; El-Harbawi, M.; Khan, A.S.; Alnarabiji, M.S.; Al-Absi, H.R.H.; Ullah, Z. Study of the antimicrobial activity of cyclic cation-based ionic liquids via experimental and group contribution QSAR model. Chemosphere, 2018, 195, 21-28.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.018] [PMID: 29248749]
[34]
Peric, B.; Sierra, J.; Martí, E.; Cruañas, R.; Garau, M.A. Quantitative Structure-Activity Relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids. Ecotoxicol. Environ. Saf., 2015, 115, 257-262.
[http://dx.doi.org/10.1016/j.ecoenv.2015.02.027] [PMID: 25728357]
[35]
Online Chemical Database. Available at https://ochem.eu January 2019
[36]
Carson, L.; Chau, P.K.W.; Earle, M.J.; Gilea, M.A.; Gilmore, B.F.; Gorman, S.P.; McCann, M.T.; Seddon, K.R. Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem., 2009, 11, 492-497.
[http://dx.doi.org/10.1039/b821842k]
[37]
Demberelnyamba, D.; Kim, K.S.; Choi, S.; Park, S.Y.; Lee, H.; Kim, C.J.; Yoo, I.D. Synthesis and antimicrobial properties of imidazolium and pyrrolidinonium salts. Bioorg. Med. Chem., 2004, 12(5), 853-857.
[http://dx.doi.org/10.1016/j.bmc.2004.01.003] [PMID: 14980596]
[38]
Cornellas, A.; Perez, L.; Comelles, F.; Ribosa, I.; Manresa, A.; Garcia, M.T. Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J. Colloid Interface Sci., 2011, 355(1), 164-171.
[http://dx.doi.org/10.1016/j.jcis.2010.11.063] [PMID: 21186035]
[39]
Pernak, J.; Rogoza, J.; Mirska, I. Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides. Eur. J. Med. Chem., 2001, 36(4), 313-320.
[http://dx.doi.org/10.1016/S0223-5234(01)01226-0] [PMID: 11461756]
[40]
Hossain, M.I.; El-Harbawi, M.; Alitheen, N.B.; Noaman, Y.A.; Lévêque, J.M.; Yin, C.Y. Synthesis and anti-microbial potencies of 1-(2-hydroxyethyl)-3-alkylimidazolium chloride ionic liquids: microbial viabilities at different ionic liquids concentrations. Ecotoxicol. Environ. Saf., 2013, 87, 65-69.
[http://dx.doi.org/10.1016/j.ecoenv.2012.09.020] [PMID: 23107478]
[41]
Rosteb, F.; Stefanik, D.; Seifert, H.; Giernoth, R. Bionic Liquids: Imidazolium-based ionic liquids with antimicrobial activity. Z. Naturforsch., 2013, 68, 1123-1128.
[http://dx.doi.org/10.5560/znb.2013-3150]
[42]
Borowiecki, P.; Milner-Krawczyk, M.; Brzeziska, D.; Wielechowska, M.; Plenkiewicz, J. Antimicrobial activity of imidazolium and triazolium chiral ionic liquids. Eur. J. Org. Chem., 2013, 4, 712-720.
[http://dx.doi.org/10.1002/ejoc.201201245]
[43]
Messali, M.; Aouad, M.R.; El-Sayed, W.S.; Ali, A.A-S.; Ben Hadda, T.; Hammouti, B. New eco-friendly 1-alkyl-3-(4-phenoxybutyl) imidazolium-based ionic liquids derivatives: A green ultrasound-assisted synthesis, characterization, antibacterial activity and POM analyses. Molecules, 2014, 19(8), 11741-11759.
[http://dx.doi.org/10.3390/molecules190811741] [PMID: 25153856]
[44]
Garcia, M.T.; Ribosa, I.; Perez, L.; Manresa, A.; Comelles, F. Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium- and pyridinium-based ionic liquids in aqueous solution. Langmuir, 2013, 29(8), 2536-2545.
[http://dx.doi.org/10.1021/la304752e] [PMID: 23360222]
[45]
Luczak, J.; Junqnickel, C.; Laska, I.; Stolte, S.; Hupka, J. Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem., 2010, 12, 539-601.
[http://dx.doi.org/10.1039/b921805j]
[46]
Pernak, J.; Sobaszkiewicz, K.; Mirska, I. Anti-microbial activities of ionic liquids. Green Chem., 2003, 5, 52-56.
[http://dx.doi.org/10.1039/b207543c]
[47]
Myint, K.Z.; Xie, X-Q. Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. Int. J. Mol. Sci., 2010, 11(10), 3846-3866.
[http://dx.doi.org/10.3390/ijms11103846] [PMID: 21152304]
[48]
[49]
Kandemirli, F.; Shvets, N.; Kovalishyn, V.; Dimoglo, A. Combined electronic-topological and neural networks study of some hydroxysemicarbazides as potential antitumor agents. J. Mol. Graph. Model., 2006, 25(1), 30-36.
[http://dx.doi.org/10.1016/j.jmgm.2005.10.011] [PMID: 16310387]
[51]
Mahobia, N.K.; Patel, R.D.; Sheikh, N.W.; Singh, S.K.; Mishra, A.; Dhardubey, R. Validation method used in quantitative structure activity relationship. Der Pharma Chem., 2010, 2, 260-271.
[52]
Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; Todeschini, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gasteiger, J.; Schwab, C.; Baskin, I.I.; Palyulin, V.A.; Radchenko, E.V.; Welsh, W.J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-de-Sousa, J.; Zhang, Q.Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachenko, V.; Tetko, I.V. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des., 2011, 25(6), 533-554.
[http://dx.doi.org/10.1007/s10822-011-9440-2] [PMID: 21660515]
[53]
OCHEM user's manual. Methodology. Created by Iurii Sushko, last modified by Robert Koerner on Jan 15, 2014. Available at: http://docs.ochem.eu/display/MAN/Methodology
[54]
Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493] [PMID: 5325707]
[55]
Aliouche, L.; Larguet, H.; Amrani, A.; Leon, F.; Brouard, I.; Benayache, S.; Zama, D.; Meraihi, Z.; Benayache, F. Isolation, antioxidant and antimicrobial activities of ecdysteroids from Serratula cichoracea. Curr. Bioact. Compd., 2018, 14(1), 60-66.
[http://dx.doi.org/10.2174/1573407214666171211154922]
[56]
Heerding, D.A.; Chan, G.; DeWolf, W.E.; Fosberry, A.P.; Janson, C.A.; Jaworski, D.D.; McManus, E.; Miller, W.H.; Moore, T.D.; Payne, D.J.; Qiu, X.; Rittenhouse, S.F.; Slater-Radosti, C.; Smith, W.; Takata, D.T.; Vaidya, K.S.; Yuan, C.C.; Huffman, W.F. 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI). Bioorg. Med. Chem. Lett., 2001, 11(16), 2061-2065.
[http://dx.doi.org/10.1016/S0960-894X(01)00404-8] [PMID: 11514139]
[57]
Seefeld, M.A.; Miller, W.H.; Newlander, K.A.; Burgess, W.J.; Payne, D.J.; Rittenhouse, S.F.; Moore, T.D.; DeWolf, W.E., Jr; Keller, P.M.; Qiu, X.; Janson, C.A.; Vaidya, K.; Fosberry, A.P.; Smyth, M.G.; Jaworski, D.D.; Slater-Radosti, C.; Huffman, W.F. Inhibitors of bacterial enoyl acyl carrier protein reductase (FabI): 2,9-disubstituted 1,2,3,4-tetrahydropyrido[3,4-b]indoles as potential antibacterial agents. Bioorg. Med. Chem. Lett., 2001, 11(17), 2241-2244.
[http://dx.doi.org/10.1016/S0960-894X(01)00405-X] [PMID: 11527706]
[58]
Nicola, G.; Smith, C.A.; Lucumi, E.; Kuo, M.R.; Karagyozov, L.; Fidock, D.A.; Sacchettini, J.C.; Abagyan, R. Discovery of novel inhibitors targeting enoyl-acyl carrier protein reductase in Plasmodium falciparum by structure-based virtual screening. Biochem. Biophys. Res. Commun., 2007, 358(3), 686-691.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.113] [PMID: 17509532]
[59]
Massengo-Tiassé, R.P.; Cronan, J.E. Diversity in enoyl-acyl carrier protein reductases. Cell. Mol. Life Sci., 2009, 66(9), 1507-1517.
[http://dx.doi.org/10.1007/s00018-009-8704-7] [PMID: 19151923]
[60]
Sanner, M.F. Python: a programming language for software integration and development. J. Mol. Graph. Model., 1999, 17(1), 57-61.
[PMID: 10660911]
[61]
Semenyuta, I.; Kovalishyn, V.; Tanchuk, V.; Pilyo, S.; Zyabrev, V.; Blagodatnyy, V.; Trokhimenko, O.; Brovarets, V.; Metelytsia, L. 1,3-Oxazole derivatives as potential anticancer agents: Computer modeling and experimental study. Comput. Biol. Chem., 2016, 65, 8-15.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.09.012] [PMID: 27684433]
[62]
Kachaeva, M.V.; Hodyna, D.M.; Semenyuta, I.V.; Pilyo, S.G.; Prokopenko, V.M.; Kovalishyn, V.V.; Metelytsia, L.O.; Brovarets, V.S. Design, synthesis and evaluation of novel sulfonamides as potential anticancer agents. Comput. Biol. Chem., 2018, 74, 294-303.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.04.006] [PMID: 29698921]
[63]
http://www.rcsb.org/structure/1I2Z [Accessed September 2018].
[64]
Dassault Systèmes, B.I.O.V.I.A. Discovery Studio, 2.5.5; Dassault Systèmes: San Diego, 2019.
[65]
Kovalishyn, V.; Poda, G. Efficient variable selection batch pruning algorithm for artificial neural networks. Int. Lab. Sys., 2015, 149, 10-16.
[http://dx.doi.org/10.1016/j.chemolab.2015.10.005]
[66]
A Free Cheminformatics Program for Data Visualization and Analysis., http://www.openmolecules.org/datawarrior/ [Accessed September 2018].