Neuromodulation of Memory Formation and Extinction

Page: [319 - 326] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Memory retrieval is mediated by discharges of acetylcholine, glutamate, gammaaminobutyric acid, norepinephrine, and serotonin/5-hydroxytryptamine circuits. These projections and memory interact through engram circuits, neurobiological traces of memory. Increased excitability in engram circuits of the medial prefrontal cortex and hippocampus results in remote and recent memory retrievals, respectively. However, due to degenerated neurotransmitter projections, the excitability state of engram circuits is decreased in the patient with dementia; and thus, acquired- memory cannot be retrieved by natural cues. Here, we suggest that artificial neuropharmacological stimulations of the acquired-memory with an excitation potential higher than a natural cue can excite engram circuits in the medial prefrontal cortex, which results in the retrieval of lost memories in dementia. The neuropharmacological foundations of engram cell-mediated memory retrieval strategy in severe dementia, in line with this has also been explained. We particularly highlighted the close interactions between periaqueductal gray, locus coeruleus, raphe nuclei, and medial prefrontal cortex and basolateral amygdala as treatment targets for memory loss. Furthermore, the engram circuits projecting raphe nuclei, locus coeruleus, and pontomesencephalic tegmentum complex could be significant targets of memory editing and memory formation in the absence of experience, and a well-defined study of the neural events underlying the interaction of brain stem and memory will be relevant for such developments. We anticipate our perspective to be a starting point for more sophisticated in vivo models for neuropharmacological modulations of memory retrieval in Alzheimer’s dementia.

Keywords: Memory formation, memory retrieval, memory extinction, neuropharmacology, serotonin, norepinephrine.

[1]
Khachaturian ZS, Khachaturian AS. The paradox of research on dementia-Alzheimer’s disease. J Prev Alzheimers Dis 2016; 3(4): 189-91.
[PMID: 29199320]
[2]
Mashour GA, Frank L, Batthyany A, et al. Paradoxical lucidity: A potential paradigm shift for the neurobiology and treatment of severe dementias. Alzheimers Dement 2019; 15(8): 1107-14.
[http://dx.doi.org/10.1016/j.jalz.2019.04.002] [PMID: 31229433]
[3]
Tulving E, Pearlstone Z. Availability versus accessibility of information in memory for words. J Verbal Learn 1966; 5: 381-91.
[http://dx.doi.org/10.1016/S0022-5371(66)80048-8]
[4]
Tulving E. Ecphoric processes in episodic memory. Philos Trans R Soc 1983; 302: 361-70.
[5]
Tulving E. Elements of Episodic Memory. Oxford University Press: UK, 1983.
[6]
Semon R. Die Mneme. W.: Engelmann 1904.
[7]
Josselyn SA, Köhler S, Frankland PW. Heroes of the Engram. J Neurosci 2017; 37(18): 4647-57.
[http://dx.doi.org/10.1523/JNEUROSCI.0056-17.2017] [PMID: 28469009]
[8]
Eich E. Mood as a mediator of place dependent memory. J Exp Psychol Gen 1995; 124(3): 293-308.
[http://dx.doi.org/10.1037/0096-3445.124.3.293] [PMID: 7673863]
[9]
Godden DR, Baddeley ADD. Context-dependent memory in two natural environments: On land and underwater. Br J Psychol 1975; 66: 325-31.
[http://dx.doi.org/10.1111/j.2044-8295.1975.tb01468.x]
[10]
Smith SM, Vela E. Environmental context-dependent memory: A review and meta-analysis. Psychon Bull Rev 2001; 8(2): 203-20.
[http://dx.doi.org/10.3758/BF03196157] [PMID: 11495110]
[11]
Frankland PW, Josselyn SA, Köhler S. The neurobiological foundation of memory retrieval. Nat Neurosci 2019; 22(10): 1576-85.
[http://dx.doi.org/10.1038/s41593-019-0493-1] [PMID: 31551594]
[12]
Danker JF, Tompary A, Davachi L. Trial-by-trial hippocampal encoding activation predicts the fidelity of cortical reinstatement during subsequent retrieval. Cereb Cortex 2017; 27(7): 3515-24.
[PMID: 27288317]
[13]
Staresina BP, Cooper E, Henson RN. Reversible information flow across the medial temporal lobe: The hippocampus links cortical modules during memory retrieval. J Neurosci 2013; 33(35): 14184-92.
[http://dx.doi.org/10.1523/JNEUROSCI.1987-13.2013] [PMID: 23986252]
[14]
Guzowski JF, McNaughton BL, Barnes CA, Worley PF. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 1999; 2(12): 1120-4.
[http://dx.doi.org/10.1038/16046] [PMID: 10570490]
[15]
Reijmers LG, Perkins BL, Matsuo N, Mayford M. Localization of a stable neural correlate of associative memory. Science 2007; 317(5842): 1230-3.
[http://dx.doi.org/10.1126/science.1143839] [PMID: 17761885]
[16]
Orsini CA, Yan C, Maren S. Ensemble coding of context-dependent fear memory in the amygdala. Front Behav Neurosci 2013; 7(199): 199.
[http://dx.doi.org/10.3389/fnbeh.2013.00199] [PMID: 24379767]
[17]
Staudigl T, Vollmar C, Noachtar S, Hanslmayr S. Temporal-pattern similarity analysis reveals the beneficial and detrimental effects of context reinstatement on human memory. J Neurosci 2015; 35(13): 5373-84.
[http://dx.doi.org/10.1523/JNEUROSCI.4198-14.2015] [PMID: 25834061]
[18]
Roy DS, Muralidhar S, Smith LM, Tonegawa S. Silent memory engrams as the basis for retrograde amnesia. Proc Natl Acad Sci USA 2017; 114(46): E9972-9.
[http://dx.doi.org/10.1073/pnas.1714248114] [PMID: 29078397]
[19]
Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science 2015; 348(6238): 1007-13.
[http://dx.doi.org/10.1126/science.aaa5542] [PMID: 26023136]
[20]
McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 1995; 102(3): 419-57.
[http://dx.doi.org/10.1037/0033-295X.102.3.419] [PMID: 7624455]
[21]
Norman KA, O’Reilly RC. Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychol Rev 2003; 110(4): 611-46.
[http://dx.doi.org/10.1037/0033-295X.110.4.611] [PMID: 14599236]
[22]
Squire LR, Alvarez P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol 1995; 5(2): 169-77.
[http://dx.doi.org/10.1016/0959-4388(95)80023-9] [PMID: 7620304]
[23]
Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 2014; 84(2): 347-54.
[http://dx.doi.org/10.1016/j.neuron.2014.09.037] [PMID: 25308331]
[24]
Wheeler AL, Teixeira CM, Wang AH, et al. Identification of a functional connectome for long-term fear memory in mice. PLOS Comput Biol 2013; 9(1): e1002853
[http://dx.doi.org/10.1371/journal.pcbi.1002853] [PMID: 23300432]
[25]
Everitt BJ, Robbins TW. Central cholinergic systems and cognition. Annu Rev Psychol 1997; 48: 649-84.
[http://dx.doi.org/10.1146/annurev.psych.48.1.649] [PMID: 9046571]
[26]
Likhtik E, Johansen JP. Neuromodulation in circuits of aversive emotional learning. Nat Neurosci 2019; 22(10): 1586-97.
[http://dx.doi.org/10.1038/s41593-019-0503-3] [PMID: 31551602]
[27]
Aitta-Aho T, Hay YA, Phillips BU, Saksida LM, Bussey TJ, Paulsen O, et al. Basal forebrain and brainstem cholinergic neurons differentially impact amygdala circuits and learning-related behavior. Curr Biol 2018; 28(16): 2557-69.e4.
[http://dx.doi.org/10.1016/j.cub.2018.06.064]
[28]
Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 2014; 34(13): 4708-27.
[http://dx.doi.org/10.1523/JNEUROSCI.2617-13.2014] [PMID: 24672016]
[29]
Cissé Y, Toossi H, Ishibashi M, et al. Discharge and role of acetylcholine pontomesencephalic neurons in cortical activity and sleep-wake states examined by optogenetics and juxtacellular recording in mice. Eneuro 2018; 5(4) : 0270-18.2018.
[30]
Mesulam MM, Mufson EJ, Wainer BH, Levey AI. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 1983; 10(4): 1185-201.
[http://dx.doi.org/10.1016/0306-4522(83)90108-2] [PMID: 6320048]
[31]
Wu H, Williams J, Nathans J. Complete morphologies of basal forebrain cholinergic neurons in the mouse. eLife 2014 2014.: : 3e02444
[http://dx.doi.org/10.7554/eLife.02444] [PMID: 24894464]
[32]
Gritti I, Henny P, Galloni F, Mainville L, Mariotti M, Jones BE. Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters. Neuroscience 2006; 143(4): 1051-64.
[http://dx.doi.org/10.1016/j.neuroscience.2006.09.024] [PMID: 17084984]
[33]
Gielow MR, Zaborszky L. The input-output relationship of the cholinergic basal forebrain. Cell Rep 2017; 18(7): 1817-30.
[http://dx.doi.org/10.1016/j.celrep.2017.01.060] [PMID: 28199851]
[34]
Zelikowsky M, Hersman S, Chawla MK, Barnes CA, Fanselow MS. Neuronal ensembles in amygdala, hippocampus, and prefrontal cortex track differential components of contextual fear. J Neurosci 2014; 34(25): 8462-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3624-13.2014] [PMID: 24948801]
[35]
Easton A, Fitchett AE, Eacott MJ, Baxter MG. Medial septal cholinergic neurons are necessary for context-place memory but not episodic-like memory. Hippocampus 2011; 21(9): 1021-7.
[PMID: 20842629]
[36]
Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother 2018; 106: 553-65.
[http://dx.doi.org/10.1016/j.biopha.2018.06.147] [PMID: 29990843]
[37]
Jiang L, Kundu S, Lederman JD, et al. Cholinergic signaling controls conditioned fear behaviors and enhances plasticity of cortical-amygdala circuits. Neuron 2016; 90(5): 1057-70.
[http://dx.doi.org/10.1016/j.neuron.2016.04.028] [PMID: 27161525]
[38]
Gale GD, Anagnostaras SG, Fanselow MS. Cholinergic modulation of pavlovian fear conditioning: effects of intrahippocampal scopolamine infusion. Hippocampus 2001; 11(4): 371-6.
[http://dx.doi.org/10.1002/hipo.1051] [PMID: 11530841]
[39]
Knox D, Keller SM. Cholinergic neuronal lesions in the medial septum and vertical limb of the diagonal bands of Broca induce contextual fear memory generalization and impair acquisition of fear extinction. Hippocampus 2016; 26(6): 718-26.
[http://dx.doi.org/10.1002/hipo.22553] [PMID: 26606423]
[40]
Boskovic Z, Milne MR, Qian L, et al. Cholinergic basal forebrain neurons regulate fear extinction consolidation through p75 neurotrophin receptor signaling. Transl Psychiatry 2018; 8(1): 199.
[http://dx.doi.org/10.1038/s41398-018-0248-x] [PMID: 30242146]
[41]
Xu M, Chung S, Zhang S, et al. Basal forebrain circuit for sleep-wake control. Nat Neurosci 2015; 18(11): 1641-7.
[http://dx.doi.org/10.1038/nn.4143] [PMID: 26457552]
[42]
Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 1988; 336(6195): 170-3.
[http://dx.doi.org/10.1038/336170a0] [PMID: 3185735]
[43]
Parikh V, Kozak R, Martinez V, Sarter M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 2007; 56(1): 141-54.
[http://dx.doi.org/10.1016/j.neuron.2007.08.025] [PMID: 17920021]
[44]
Gorka AX, Knodt AR, Hariri AR. Basal forebrain moderates the magnitude of task-dependent amygdala functional connectivity. Soc Cogn Affect Neurosci 2015; 10(4): 501-7.
[http://dx.doi.org/10.1093/scan/nsu080] [PMID: 24847112]
[45]
Room P, Postema F, Korf J. Divergent axon collaterals of rat locu Demonstration by a fluorescent double labeling technique. Brain Res 1981; 221(2): 219-30.
[http://dx.doi.org/10.1016/0006-8993(81)90773-3] [PMID: 7284768]
[46]
Schwarz LA, Miyamichi K, Gao XJ, et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature 2015; 524(7563): 88-92.
[http://dx.doi.org/10.1038/nature14600] [PMID: 26131933]
[47]
Bush DE, Caparosa EM, Gekker A, Ledoux J. Beta-adrenergic receptors in the lateral nucleus of the amygdala contribute to the acquisition but not the consolidation of auditory fear conditioning. Front Behav Neurosci 2010; 4: 154.
[http://dx.doi.org/10.3389/fnbeh.2010.00154] [PMID: 21152344]
[48]
Schiff HC, Johansen JP, Hou M, et al. β-Adrenergic receptors regulate the acquisition and consolidation phases of aversive memory formation through distinct, temporally regulated signaling pathways. Neuropsychopharmacology 2017; 42(4): 895-903.
[http://dx.doi.org/10.1038/npp.2016.238] [PMID: 27762270]
[49]
Tully K, Li Y, Tsvetkov E, Bolshakov VY. Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc Natl Acad Sci USA 2007; 104(35): 14146-50.
[http://dx.doi.org/10.1073/pnas.0704621104] [PMID: 17709755]
[50]
Roozendaal B, Hui GK, Hui IR, Berlau DJ, McGaugh JL, Weinberger NM. Basolateral amygdala noradrenergic activity mediates corticosterone-induced enhancement of auditory fear conditioning. Neurobiol Learn Mem 2006; 86(3): 249-55.
[http://dx.doi.org/10.1016/j.nlm.2006.03.003] [PMID: 16630730]
[51]
Robertson SD, Plummer NW, de Marchena J, Jensen P. Developmental origins of central norepinephrine neuron diversity. Nat Neurosci 2013; 16(8): 1016-23.
[http://dx.doi.org/10.1038/nn.3458] [PMID: 23852112]
[52]
McCall JG, Siuda ER, Bhatti DL, et al. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife 2017.: 2017: 6e18247.
[53]
Soya S, Takahashi TM, McHugh TJ, et al. Orexin modulates behavioral fear expression through the locus coeruleus. Nat Commun 2017; 8(1): 1606.
[http://dx.doi.org/10.1038/s41467-017-01782-z] [PMID: 29151577]
[54]
Uematsu A, Tan BZ, Ycu EA, et al. Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nat Neurosci 2017; 20(11): 1602-11.
[http://dx.doi.org/10.1038/nn.4642] [PMID: 28920933]
[55]
Clayton EC, Williams CL. Adrenergic activation of the nucleus tractus solitarius potentiates amygdala norepinephrine release and enhances retention performance in emotionally arousing and spatial memory tasks. Behav Brain Res 2000; 112(1-2): 151-8.
[http://dx.doi.org/10.1016/S0166-4328(00)00178-9] [PMID: 10862946]
[56]
Giustino TF, Seemann JR, Acca GM, Goode TD, Fitzgerald PJ, Maren S. β-Adrenoceptor blockade in the basolateral amygdala, but not the medial prefrontal cortex, rescues the immediate extinction deficit. Neuropsychopharmacology 2017; 42(13): 2537-44.
[http://dx.doi.org/10.1038/npp.2017.89] [PMID: 28462941]
[57]
Lucas EK, Wu W-C, Roman-Ortiz C, Clem RL. Prazosin during fear conditioning facilitates subsequent extinction in male C57Bl/6N mice. Psychopharmacology (Berl) 2019; 236(1): 273-9.
[http://dx.doi.org/10.1007/s00213-018-5001-x] [PMID: 30112577]
[58]
Dębiec J, Ledoux JE. Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 2004; 129(2): 267-72.
[http://dx.doi.org/10.1016/j.neuroscience.2004.08.018] [PMID: 15501585]
[59]
Faber ES, Delaney AJ, Power JM, Sedlak PL, Crane JW, Sah P. Modulation of SK channel trafficking by beta adrenoceptors enhances excitatory synaptic transmission and plasticity in the amygdala. J Neurosci 2008; 28(43): 10803-13.
[http://dx.doi.org/10.1523/JNEUROSCI.1796-08.2008] [PMID: 18945888]
[60]
Yiu AP, Mercaldo V, Yan C, et al. Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 2014; 83(3): 722-35.
[http://dx.doi.org/10.1016/j.neuron.2014.07.017] [PMID: 25102562]
[61]
Mueller D, Porter JT, Quirk GJ. Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. J Neurosci 2008; 28(2): 369-75.
[http://dx.doi.org/10.1523/JNEUROSCI.3248-07.2008] [PMID: 18184779]
[62]
Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 2009; 10(6): 410-22.
[http://dx.doi.org/10.1038/nrn2648] [PMID: 19455173]
[63]
Giustino TF, Fitzgerald PJ, Ressler RL, Maren S. Locus coeruleus toggles reciprocal prefrontal firing to reinstate fear. Proc Natl Acad Sci USA 2019; 116(17): 8570-5.
[http://dx.doi.org/10.1073/pnas.1814278116] [PMID: 30971490]
[64]
Neves RM, van Keulen S, Yang M, Logothetis NK, Eschenko O. Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex. J Neurophysiol 2018; 119(3): 904-20.
[http://dx.doi.org/10.1152/jn.00552.2017] [PMID: 29093170]
[65]
Pezze MA, Feldon J. Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 2004; 74(5): 301-20.
[http://dx.doi.org/10.1016/j.pneurobio.2004.09.004] [PMID: 15582224]
[66]
Bissière S, Humeau Y, Lüthi A. Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat Neurosci 2003; 6(6): 587-92.
[http://dx.doi.org/10.1038/nn1058] [PMID: 12740581]
[67]
Kröner S, Rosenkranz JA, Grace AA, Barrionuevo G. Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 2005; 93(3): 1598-610.
[http://dx.doi.org/10.1152/jn.00843.2004] [PMID: 15537813]
[68]
Chang CH, Grace AA. Dopaminergic modulation of lateral amygdala neuronal activity: differential D1 and D2 receptor effects on thalamic and cortical afferent inputs. Int J Neuropsychopharmacol 2015; 18(8): pyv015
[http://dx.doi.org/10.1093/ijnp/pyv015] [PMID: 25716776]
[69]
Watabe-Uchida M, Eshel N, Uchida N. Neural circuitry of reward prediction error. Annu Rev Neurosci 2017; 40: 373-94.
[http://dx.doi.org/10.1146/annurev-neuro-072116-031109] [PMID: 28441114]
[70]
Fadok JP, Dickerson TM, Palmiter RD. Dopamine is necessary for cue-dependent fear conditioning. J Neurosci 2009; 29(36): 11089-97.
[http://dx.doi.org/10.1523/JNEUROSCI.1616-09.2009] [PMID: 19741115]
[71]
Jo YS, Heymann G, Zweifel LS. Dopamine neurons reflect the uncertainty in fear generalization. Neuron 2018; 100(4): 916-25.e3.
[http://dx.doi.org/10.1016/j.neuron.2018.09.028]
[72]
Groessl F, Munsch T, Meis S, et al. Dorsal tegmental dopamine neurons gate associative learning of fear. Nat Neurosci 2018; 21(7): 952-62.
[http://dx.doi.org/10.1038/s41593-018-0174-5] [PMID: 29950668]
[73]
Broussard JI, Yang K, Levine AT, et al. Dopamine regulates aversive contextual learning and associated in vivo synaptic plasticity in the hippocampus. Cell Rep 2016; 14(8): 1930-9.
[http://dx.doi.org/10.1016/j.celrep.2016.01.070] [PMID: 26904943]
[74]
Takeuchi T, Duszkiewicz AJ, Sonneborn A, et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 2016; 537(7620): 357-62.
[http://dx.doi.org/10.1038/nature19325] [PMID: 27602521]
[75]
Badrinarayan A, Wescott SA, Vander Weele CM, et al. Aversive stimuli differentially modulate real-time dopamine transmission dynamics within the nucleus accumbens core and shell. J Neurosci 2012; 32(45): 15779-90.
[http://dx.doi.org/10.1523/JNEUROSCI.3557-12.2012] [PMID: 23136417]
[76]
Tian J, Uchida N. Habenula lesions reveal that multiple mechanisms underlie dopamine prediction errors. Neuron 2015; 87(6): 1304-16.
[http://dx.doi.org/10.1016/j.neuron.2015.08.028] [PMID: 26365765]
[77]
de Jong JW, Afjei SA, Dorocic IP, et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 2019; 101(1): 133-51.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.11.005]
[78]
Luo R, Uematsu A, Weitemier A, et al. A dopaminergic switch for fear to safety transitions. Nat Commun 2018; 9(1): 2483.
[http://dx.doi.org/10.1038/s41467-018-04784-7] [PMID: 29950562]
[79]
Abraham AD, Neve KA, Lattal KM. Activation of D1/5 dopamine receptors: a common mechanism for enhancing extinction of fear and reward-seeking behaviors. Neuropsychopharmacology 2016; 41(8): 2072-81.
[http://dx.doi.org/10.1038/npp.2016.5] [PMID: 26763483]
[80]
Bostancıklıoğlu M. Optogenetic stimulation of serotonin nuclei retrieve the lost memory in Alzheimer’s disease. J Cell Physiol 2020; 235(2): 836-47.
[PMID: 31332785]
[81]
Sattar Y, Adnan M, Bachu R, Patel N, Shrestha S. Neuropharmacology of Alzheimer’s disease and dementia. Pharmacotherapy 106: 553-65.
[82]
Kandimalla R, Reddy PH. Therapeutics of neurotransmitters in Alzheimer’s disease. J Alzheimers Dis 2017; 57(4): 1049-69.
[http://dx.doi.org/10.3233/JAD-161118] [PMID: 28211810]