Melatonin Receptor as a Drug Target for Neuroprotection

Page: [150 - 164] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Melatonin, a neurohormone secreted from the pineal gland, circulates throughout the body and then mediates several physiological functions. The pharmacological effects of melatonin can be mediated through its direct antioxidant activity and receptor-dependent signaling.

Objective: This article will mainly review receptor-dependent signaling. Human melatonin receptors include melatonin receptor type 1 (MT1) and melatonin receptor type 2 (MT2), which are widely distributed throughout the brain.

Result: Several lines of evidence have revealed the involvement of the melatonergic system in different neurodegenerative diseases. Alzheimer’s disease pathology negatively affects the melatonergic system. Melatonin effectively inhibits β-amyloid (Aβ) synthesis and fibril formation. These effects are reversed by pharmacological melatonin receptor blockade. Reductions in MT1 and MT2 expression in the amygdala and substantia nigra pars compacta have been reported in Parkinson’s disease patients. The protective roles of melatonin against ischemic insults via its receptors have also been demonstrated. Melatonin has been reported to enhance neurogenesis through MT2 activation in cerebral ischemic/reperfusion mice. The neurogenic effects of melatonin on mesenchymal stem cells are particularly mediated through MT2.

Conclusion: Understanding the roles of melatonin receptors in neuroprotection against diseases may lead to the development of specific analogs with specificity and potency greater than those of the original compound. These successfully developed compounds may serve as candidate preventive and disease-modifying agents in the future.

Keywords: Melatonin receptor, alzheimer's disease, parkinson's disease, neurodegeneration, neurogenesis, ischemic brain injury.

Graphical Abstract

[1]
Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell. Mol. Life Sci., 2017, 74(21), 3863-3881.
[http://dx.doi.org/10.1007/s00018-017-2609-7] [PMID: 28864909]
[2]
Tan, D.X.; Manchester, L.C.; Liu, X.; Rosales-Corral, S.A.; Acuna-Castroviejo, D.; Reiter, R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res., 2013, 54(2), 127-138.
[http://dx.doi.org/10.1111/jpi.12026] [PMID: 23137057]
[3]
Dubocovich, M.L. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med., 2007, 8(Suppl. 3), 34-42.
[http://dx.doi.org/10.1016/j.sleep.2007.10.007] [PMID: 18032103]
[4]
Claustrat, B.; Brun, J.; Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev., 2005, 9(1), 11-24.
[http://dx.doi.org/10.1016/j.smrv.2004.08.001] [PMID: 15649735]
[5]
Karasek, M.; Winczyk, K. Melatonin in humans. J. Physiol. Pharmacol., 2006, 57(Suppl. 5), 19-39.
[PMID: 17218758]
[6]
Hardeland, R.; Poeggeler, B. Melatonin and synthetic melatonergic agonists: actions and metabolism in the central nervous system. Cent. Nerv. Syst. Agents Med. Chem., 2012, 12(3), 189-216.
[http://dx.doi.org/10.2174/187152412802430129] [PMID: 22640220]
[7]
Grivas, T.B. Age variations of melatonin level and its hormesis; implications for AIS and osteoporosis. Scoliosis, 2009, 4(Suppl. 2), O8-O8.
[http://dx.doi.org/10.1186/1748-7161-4-S2-O8]
[8]
Bubenik, G.A.; Konturek, S.J. Melatonin and aging: prospects for human treatment. J. Physiol. Pharmacol., 2011, 62(1), 13-19.
[PMID: 21451205]
[9]
Campos Costa, I.; Nogueira Carvalho, H.; Fernandes, L. Aging, circadian rhythms and depressive disorders: a review. Am. J. Neurodegener. Dis., 2013, 2(4), 228-246.
[PMID: 24319642]
[10]
Cardinali, D.P. Melatonin: Clinical Perspectives in Neurodegeneration. Front. Endocrinol. (Lausanne), 2019, 10, 480.
[http://dx.doi.org/10.3389/fendo.2019.00480] [PMID: 31379746]
[11]
Jockers, R.; Delagrange, P.; Dubocovich, M.L.; Markus, R.P.; Renault, N.; Tosini, G.; Cecon, E.; Zlotos, D.P. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol., 2016, 173(18), 2702-2725.
[http://dx.doi.org/10.1111/bph.13536] [PMID: 27314810]
[12]
Levoye, A.; Dam, J.; Ayoub, M.A.; Guillaume, J.L.; Couturier, C.; Delagrange, P.; Jockers, R. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J., 2006, 25(13), 3012-3023.
[http://dx.doi.org/10.1038/sj.emboj.7601193] [PMID: 16778767]
[13]
Ng, K.Y.; Leong, M.K.; Liang, H.; Paxinos, G. Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct. Funct., 2017, 222(7), 2921-2939.
[http://dx.doi.org/10.1007/s00429-017-1439-6] [PMID: 28478550]
[14]
Dubocovich, M.L.; Delagrange, P.; Krause, D.N.; Sugden, D.; Cardinali, D.P.; Olcese, J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol. Rev., 2010, 62(3), 343-380.
[http://dx.doi.org/10.1124/pr.110.002832] [PMID: 20605968]
[15]
Hardeland, R.; Cardinali, D.P.; Srinivasan, V.; Spence, D.W.; Brown, G.M.; Pandi-Perumal, S.R. Melatonin--a pleiotropic, orchestrating regulator molecule. Prog. Neurobiol., 2011, 93(3), 350-384.
[http://dx.doi.org/10.1016/j.pneurobio.2010.12.004] [PMID: 21193011]
[16]
Ayoub, M.A.; Levoye, A.; Delagrange, P.; Jockers, R. Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol. Pharmacol., 2004, 66(2), 312-321.
[http://dx.doi.org/10.1124/mol.104.000398] [PMID: 15266022]
[17]
Liu, J.; Clough, S.J.; Hutchinson, A.J.; Adamah-Biassi, E.B.; Popovska-Gorevski, M.; Dubocovich, M.L. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu. Rev. Pharmacol. Toxicol., 2016, 56, 361-383.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124742] [PMID: 26514204]
[18]
Dubocovich, M.L.; Masana, M.I.; Iacob, S.; Sauri, D.M. Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn Schmiedebergs Arch. Pharmacol., 1997, 355(3), 365-375.
[http://dx.doi.org/10.1007/PL00004956] [PMID: 9089668]
[19]
Roth, T.; Stubbs, C.; Walsh, J.K. Ramelteon (TAK-375), a selective MT1/MT2-receptor agonist, reduces latency to persistent sleep in a model of transient insomnia related to a novel sleep environment. Sleep, 2005, 28(3), 303-307.
[PMID: 16173650]
[20]
Stahl, S.M. Mechanism of action of tasimelteon in non-24 sleep-wake syndrome: treatment for a circadian rhythm disorder in blind patients. CNS Spectr., 2014, 19(6), 475-478.
[http://dx.doi.org/10.1017/S1092852914000637] [PMID: 25422900]
[21]
de Bodinat, C.; Guardiola-Lemaitre, B.; Mocaër, E.; Renard, P.; Muñoz, C.; Millan, M.J. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat. Rev. Drug Discov., 2010, 9(8), 628-642.
[http://dx.doi.org/10.1038/nrd3140] [PMID: 20577266]
[22]
Kamal, M.; Gbahou, F.; Guillaume, J.L.; Daulat, A.M.; Benleulmi-Chaachoua, A.; Luka, M.; Chen, P.; Kalbasi Anaraki, D.; Baroncini, M.; Mannoury la Cour, C.; Millan, M.J.; Prevot, V.; Delagrange, P.; Jockers, R. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J. Biol. Chem., 2015, 290(18), 11537-11546.
[http://dx.doi.org/10.1074/jbc.M114.559542] [PMID: 25770211]
[23]
Cecon, E.; Oishi, A.; Jockers, R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol., 2018, 175(16), 3263-3280.
[http://dx.doi.org/10.1111/bph.13950] [PMID: 28707298]
[24]
Legros, C.; Devavry, S.; Caignard, S.; Tessier, C.; Delagrange, P.; Ouvry, C.; Boutin, J.A.; Nosjean, O. Melatonin MT₁ and MT₂ receptors display different molecular pharmacologies only in the G-protein coupled state. Br. J. Pharmacol., 2014, 171(1), 186-201.
[http://dx.doi.org/10.1111/bph.12457] [PMID: 24117008]
[25]
Pinato, L.; da Silveira Cruz-Machado, S.; Franco, D.G.; Campos, L.M.; Cecon, E.; Fernandes, P.A.; Bittencourt, J.C.; Markus, R.P. Selective protection of the cerebellum against intracerebroventricular LPS is mediated by local melatonin synthesis. Brain Struct. Funct., 2015, 220(2), 827-840.
[http://dx.doi.org/10.1007/s00429-013-0686-4] [PMID: 24363121]
[26]
Liu, Y.; Ni, C.; Li, Z.; Yang, N.; Zhou, Y.; Rong, X.; Qian, M.; Chui, D.; Guo, X. Prophylactic Melatonin Attenuates Isoflurane-Induced Cognitive Impairment in Aged Rats through Hippocampal Melatonin Receptor 2 - cAMP Response Element Binding Signalling. Basic Clin. Pharmacol. Toxicol., 2017, 120(3), 219-226.
[http://dx.doi.org/10.1111/bcpt.12652] [PMID: 27515785]
[27]
Tang, H.; Ma, M.; Wu, Y.; Deng, M.F.; Hu, F.; Almansoub, H.A.M.M.; Huang, H.Z.; Wang, D.Q.; Zhou, L.T.; Wei, N.; Man, H.; Lu, Y.; Liu, D.; Zhu, L.Q. Activation of MT2 receptor ameliorates dendritic abnormalities in Alzheimer’s disease via C/EBPα/miR-125b pathway. Aging Cell, 2019, 18(2), e12902.
[http://dx.doi.org/10.1111/acel.12902] [PMID: 30706990]
[28]
Buendia, I.; Gómez-Rangel, V.; González-Lafuente, L.; Parada, E.; León, R.; Gameiro, I.; Michalska, P.; Laudon, M.; Egea, J.; López, M.G. Neuroprotective mechanism of the novel melatonin derivative Neu-P11 in brain ischemia related models. Neuropharmacology, 2015, 99, 187-195.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.014] [PMID: 26188145]
[29]
Choudhury, A.; Singh, S.; Palit, G.; Shukla, S.; Ganguly, S. Administration of N-acetylserotonin and melatonin alleviate chronic ketamine-induced behavioural phenotype accompanying BDNF-independent and dependent converging cytoprotective mechanisms in the hippocampus. Behav. Brain Res., 2016, 297, 204-212.
[http://dx.doi.org/10.1016/j.bbr.2015.10.027] [PMID: 26475510]
[30]
Shah, F.A.; Liu, G.; Al Kury, L.T.; Zeb, A.; Abbas, M.; Li, T.; Yang, X.; Liu, F.; Jiang, Y.; Li, S.; Koh, P.O. Melatonin Protects MCAO-Induced Neuronal Loss via NR2A Mediated Prosurvival Pathways. Front. Pharmacol., 2019, 10, 297.
[http://dx.doi.org/10.3389/fphar.2019.00297] [PMID: 31024297]
[31]
Kong, P.J.; Byun, J.S.; Lim, S.Y.; Lee, J.J.; Hong, S.J.; Kwon, K.J.; Kim, S.S. Melatonin Induces Akt Phosphorylation through Melatonin Receptor- and PI3K-Dependent Pathways in Primary Astrocytes. Korean J. Physiol. Pharmacol., 2008, 12(2), 37-41.
[http://dx.doi.org/10.4196/kjpp.2008.12.2.37] [PMID: 20157392]
[32]
Shin, E.J.; Chung, Y.H.; Le, H.L.; Jeong, J.H.; Dang, D.K.; Nam, Y.; Wie, M.B.; Nah, S.Y.; Nabeshima, Y.; Nabeshima, T.; Kim, H.C. Melatonin attenuates memory impairment induced by Klotho gene deficiency via interactive signaling between MT2 receptor, ERK, and Nrf2-related antioxidant potential. Int. J. Neuropsychopharmacol., 2014, 18(6), pyu105.
[PMID: 25550330]
[33]
Buendia, I.; Egea, J.; Parada, E.; Navarro, E.; León, R.; Rodríguez-Franco, M.I.; López, M.G. The melatonin-N,N-dibenzyl(N-methyl)amine hybrid ITH91/IQM157 affords neuroprotection in an in vitro Alzheimer’s model via hemo-oxygenase-1 induction. ACS Chem. Neurosci., 2015, 6(2), 288-296.
[http://dx.doi.org/10.1021/cn5002073] [PMID: 25393881]
[34]
Mayo, J.C.; Sainz, R.M.; Antoli, I.; Herrera, F.; Martin, V.; Rodriguez, C. Melatonin regulation of antioxidant enzyme gene expression. Cell. Mol. Life Sci., 2002, 59(10), 1706-1713.
[http://dx.doi.org/10.1007/PL00012498] [PMID: 12475181]
[35]
Kotler, M.; Rodríguez, C.; Sáinz, R.M.; Antolín, I.; Menéndez-Peláez, A. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J. Pineal Res., 1998, 24(2), 83-89.
[http://dx.doi.org/10.1111/j.1600-079X.1998.tb00371.x] [PMID: 9510432]
[36]
Rodriguez, C.; Mayo, J.C.; Sainz, R.M.; Antolín, I.; Herrera, F.; Martín, V.; Reiter, R.J. Regulation of antioxidant enzymes: a significant role for melatonin. J. Pineal Res., 2004, 36(1), 1-9.
[http://dx.doi.org/10.1046/j.1600-079X.2003.00092.x] [PMID: 14675124]
[37]
Lu, M.C.; Ji, J.A.; Jiang, Z.Y.; You, Q.D. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update. Med. Res. Rev., 2016, 36(5), 924-963.
[http://dx.doi.org/10.1002/med.21396] [PMID: 27192495]
[38]
Ahmadi, Z.; Ashrafizadeh, M. Melatonin as a potential modulator of Nrf2. Fundam. Clin. Pharmacol., 2019.
[PMID: 3128305]
[39]
Chumboatong, W.; Thummayot, S.; Govitrapong, P.; Tocharus, C.; Jittiwat, J.; Tocharus, J. Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat. Neurochem. Int., 2017, 102, 114-122.
[http://dx.doi.org/10.1016/j.neuint.2016.12.011] [PMID: 28012846]
[40]
Wang, J.; Jiang, C.; Zhang, K.; Lan, X.; Chen, X.; Zang, W.; Wang, Z.; Guan, F.; Zhu, C.; Yang, X.; Lu, H.; Wang, J. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radic. Biol. Med., 2019, 131, 345-355.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.014] [PMID: 30553970]
[41]
Parada, E.; Buendia, I.; León, R.; Negredo, P.; Romero, A.; Cuadrado, A.; López, M.G.; Egea, J. Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J. Pineal Res., 2014, 56(2), 204-212.
[http://dx.doi.org/10.1111/jpi.12113] [PMID: 24350834]
[42]
Chen, X.; Xi, Z.; Liang, H.; Sun, Y.; Zhong, Z.; Wang, B.; Bian, L.; Sun, Q. Melatonin Prevents Mice Cortical Astrocytes From Hemin-Induced Toxicity Through Activating PKCα/Nrf2/HO-1 Signaling in vitro. Front. Neurosci., 2019, 13, 760.
[http://dx.doi.org/10.3389/fnins.2019.00760] [PMID: 31404262]
[43]
Osier, N.D.; Pham, L.; Pugh, B.J.; Puccio, A.; Ren, D.; Conley, Y.P.; Alexander, S.; Dixon, C.E. Brain injury results in lower levels of melatonin receptors subtypes MT1 and MT2. Neurosci. Lett., 2017, 650, 18-24.
[http://dx.doi.org/10.1016/j.neulet.2017.03.053] [PMID: 28377323]
[44]
Brunner, P.; Sözer-Topcular, N.; Jockers, R.; Ravid, R.; Angeloni, D.; Fraschini, F.; Eckert, A.; Müller-Spahn, F.; Savaskan, E. Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur. J. Histochem., 2006, 50(4), 311-316.
[PMID: 17213040]
[45]
Savaskan, E.; Ayoub, M.A.; Ravid, R.; Angeloni, D.; Fraschini, F.; Meier, F.; Eckert, A.; Müller-Spahn, F.; Jockers, R. Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J. Pineal Res., 2005, 38(1), 10-16.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00169.x] [PMID: 15617532]
[46]
Cecon, E.; Chen, M.; Marçola, M.; Fernandes, P.A.; Jockers, R.; Markus, R.P. Amyloid β peptide directly impairs pineal gland melatonin synthesis and melatonin receptor signaling through the ERK pathway. FASEB J., 2015, 29(6), 2566-2582.
[http://dx.doi.org/10.1096/fj.14-265678] [PMID: 25757565]
[47]
Adi, N.; Mash, D.C.; Ali, Y.; Singer, C.; Shehadeh, L.; Papapetropoulos, S. Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med. Sci. Monit., 2010, 16(2), BR61-BR67.
[PMID: 20110911]
[48]
Jenwitheesuk, A.; Boontem, P.; Wongchitrat, P.; Tocharus, J.; Mukda, S.; Govitrapong, P. Melatonin regulates the aging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway. EXCLI J., 2017, 16, 340-353.
[PMID: 28507478]
[49]
Wongchitrat, P.; Lansubsakul, N.; Kamsrijai, U.; Sae-Ung, K.; Mukda, S.; Govitrapong, P. Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem. Int., 2016, 100, 97-109.
[http://dx.doi.org/10.1016/j.neuint.2016.09.006] [PMID: 27620814]
[50]
Leeboonngam, T.; Pramong, R.; Sae-Ung, K.; Govitrapong, P.; Phansuwan-Pujito, P. Neuroprotective effects of melatonin on amphetamine-induced dopaminergic fiber degeneration in the hippocampus of postnatal rats. J. Pineal Res., 2018, 64(3)
[http://dx.doi.org/10.1111/jpi.12456] [PMID: 29149481]
[51]
Zhang, Y.; Cook, A.; Kim, J.; Baranov, S.V.; Jiang, J.; Smith, K.; Cormier, K.; Bennett, E.; Browser, R.P.; Day, A.L.; Carlisle, D.L.; Ferrante, R.J.; Wang, X.; Friedlander, R.M. Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis., 2013, 55, 26-35.
[http://dx.doi.org/10.1016/j.nbd.2013.03.008] [PMID: 23537713]
[52]
Wang, X.; Sirianni, A.; Pei, Z.; Cormier, K.; Smith, K.; Jiang, J.; Zhou, S.; Wang, H.; Zhao, R.; Yano, H.; Kim, J.E.; Li, W.; Kristal, B.S.; Ferrante, R.J.; Friedlander, R.M. The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J. Neurosci., 2011, 31(41), 14496-14507.
[http://dx.doi.org/10.1523/JNEUROSCI.3059-11.2011] [PMID: 21994366]
[53]
Lee, C.H.; Yoo, K.Y.; Choi, J.H.; Park, O.K.; Hwang, I.K.; Kwon, Y.G.; Kim, Y.M.; Won, M.H. Melatonin’s protective action against ischemic neuronal damage is associated with up-regulation of the MT2 melatonin receptor. J. Neurosci. Res., 2010, 88(12), 2630-2640.
[http://dx.doi.org/10.1002/jnr.22430] [PMID: 20544829]
[54]
Imbesi, M.; Uz, T.; Dzitoyeva, S.; Manev, H. Stimulatory effects of a melatonin receptor agonist, ramelteon, on BDNF in mouse cerebellar granule cells. Neurosci. Lett., 2008, 439(1), 34-36.
[http://dx.doi.org/10.1016/j.neulet.2008.04.099] [PMID: 18501512]
[55]
Imbesi, M.; Uz, T.; Manev, H. Role of melatonin receptors in the effects of melatonin on BDNF and neuroprotection in mouse cerebellar neurons. J. Neural Transm. (Vienna), 2008, 115(11), 1495-1499.
[http://dx.doi.org/10.1007/s00702-008-0066-z] [PMID: 18493705]
[56]
Chen, B.H.; Park, J.H.; Lee, T.K.; Song, M.; Kim, H.; Lee, J.C.; Kim, Y.M.; Lee, C.H.; Hwang, I.K.; Kang, I.J.; Yan, B.C.; Won, M.H.; Ahn, J.H. Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus. Chem. Biol. Interact., 2018, 285, 8-13.
[http://dx.doi.org/10.1016/j.cbi.2018.02.023] [PMID: 29476728]
[57]
Molteni, R.; Calabrese, F.; Pisoni, S.; Gabriel, C.; Mocaer, E.; Racagni, G.; Riva, M.A. Synergistic mechanisms in the modulation of the neurotrophin BDNF in the rat prefrontal cortex following acute agomelatine administration. World J. Biol. Psychiatry, 2010, 11(2), 148-153.
[http://dx.doi.org/10.3109/15622970903447659] [PMID: 20109111]
[58]
Lu, Y.; Ho, C.S.; McIntyre, R.S.; Wang, W.; Ho, R.C. Agomelatine-induced modulation of brain-derived neurotrophic factor (BDNF) in the rat hippocampus. Life Sci., 2018, 210, 177-184.
[http://dx.doi.org/10.1016/j.lfs.2018.09.003] [PMID: 30193943]
[59]
Ramírez-Rodríguez, G.; Klempin, F.; Babu, H.; Benítez-King, G.; Kempermann, G. Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology, 2009, 34(9), 2180-2191.
[http://dx.doi.org/10.1038/npp.2009.46] [PMID: 19421166]
[60]
Ortiz-López, L.; Pérez-Beltran, C.; Ramírez-Rodríguez, G. Chronic administration of a melatonin membrane receptor antagonist, luzindole, affects hippocampal neurogenesis without changes in hopelessness-like behavior in adult mice. Neuropharmacology, 2016, 103, 211-221.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.030] [PMID: 26686389]
[61]
Sotthibundhu, A.; Phansuwan-Pujito, P.; Govitrapong, P. Melatonin increases proliferation of cultured neural stem cells obtained from adult mouse subventricular zone. J. Pineal Res., 2010, 49(3), 291-300.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00794.x] [PMID: 20663047]
[62]
Sotthibundhu, A.; Ekthuwapranee, K.; Govitrapong, P. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone. EXCLI J., 2016, 15, 829-841.
[PMID: 28275319]
[63]
Fu, J.; Zhao, S.D.; Liu, H.J.; Yuan, Q.H.; Liu, S.M.; Zhang, Y.M.; Ling, E.A.; Hao, A.J. Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro. J. Pineal Res., 2011, 51(1), 104-112.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00867.x] [PMID: 21392094]
[64]
Tocharus, C.; Puriboriboon, Y.; Junmanee, T.; Tocharus, J.; Ekthuwapranee, K.; Govitrapong, P. Melatonin enhances adult rat hippocampal progenitor cell proliferation via ERK signaling pathway through melatonin receptor. Neuroscience, 2014, 275, 314-321.
[http://dx.doi.org/10.1016/j.neuroscience.2014.06.026] [PMID: 24956284]
[65]
López-Armas, G.; Flores-Soto, M.E.; Chaparro-Huerta, V.; Jave- Suarez, L.F.; Soto-Rodríguez, S.; Rusanova, I.; Acuña-Castroviejo, D.; González-Perez, O.; González-Castañeda, R.E. Prophylactic Role of Oral Melatonin Administration on Neurogenesis in Adult Balb/C Mice during REM Sleep Deprivation. Oxid. Med. Cell. Longev., 2016, 2016, 2136902.
[http://dx.doi.org/10.1155/2016/2136902] [PMID: 27579149]
[66]
Shu, T.; Fan, L.; Wu, T.; Liu, C.; He, L.; Pang, M.; Bu, Y.; Wang, X.; Wang, J.; Rong, L.; Liu, B. Melatonin promotes neuroprotection of induced pluripotent stem cells-derived neural stem cells subjected to H2O2-induced injury in vitro. Eur. J. Pharmacol., 2018, 825, 143-150.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.027] [PMID: 29462594]
[67]
Bai, C.; Li, X.; Gao, Y.; Yuan, Z.; Hu, P.; Wang, H.; Liu, C.; Guan, W.; Ma, Y. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells. J. Pineal Res., 2016, 61(2), 154-167.
[http://dx.doi.org/10.1111/jpi.12334] [PMID: 27090494]
[68]
Shu, T.; Wu, T.; Pang, M.; Liu, C.; Wang, X.; Wang, J.; Liu, B.; Rong, L. Effects and mechanisms of melatonin on neural differentiation of induced pluripotent stem cells. Biochem. Biophys. Res. Commun., 2016, 474(3), 566-571.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.108] [PMID: 27130826]
[69]
Wu, Y.H.; Swaab, D.F. Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer’s disease. Sleep Med., 2007, 8(6), 623-636.
[http://dx.doi.org/10.1016/j.sleep.2006.11.010] [PMID: 17383938]
[70]
Musiek, E.S.; Xiong, D.D.; Holtzman, D.M. Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp. Mol. Med., 2015, 47, e148.
[http://dx.doi.org/10.1038/emm.2014.121] [PMID: 25766617]
[71]
Wu, Y.H.; Swaab, D.F. The human pineal gland and melatonin in aging and Alzheimer’s disease. J. Pineal Res., 2005, 38(3), 145-152.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00196.x] [PMID: 15725334]
[72]
Ohashi, Y.; Okamoto, N.; Uchida, K.; Iyo, M.; Mori, N.; Morita, Y. Daily rhythm of serum melatonin levels and effect of light exposure in patients with dementia of the Alzheimer’s type. Biol. Psychiatry, 1999, 45(12), 1646-1652.
[http://dx.doi.org/10.1016/S0006-3223(98)00255-8] [PMID: 10376127]
[73]
Wu, Y.H.; Feenstra, M.G.; Zhou, J.N.; Liu, R.Y.; Toranõ, J.S.; Van Kan, H.J.; Fischer, D.F.; Ravid, R.; Swaab, D.F. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J. Clin. Endocrinol. Metab., 2003, 88(12), 5898-5906.
[http://dx.doi.org/10.1210/jc.2003-030833] [PMID: 14671188]
[74]
Kunz, D.; Schmitz, S.; Mahlberg, R.; Mohr, A.; Stöter, C.; Wolf, K.J.; Herrmann, W.M. A new concept for melatonin deficit: on pineal calcification and melatonin excretion. Neuropsychopharmacology, 1999, 21(6), 765-772.
[http://dx.doi.org/10.1016/S0893-133X(99)00069-X] [PMID: 10633482]
[75]
Mahlberg, R.; Walther, S.; Kalus, P.; Bohner, G.; Haedel, S.; Reischies, F.M.; Kühl, K.P.; Hellweg, R.; Kunz, D. Pineal calcification in Alzheimer’s disease: an in vivo study using computed tomography. Neurobiol. Aging, 2008, 29(2), 203-209.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.10.003] [PMID: 17097768]
[76]
Zhou, J.N.; Liu, R.Y.; Kamphorst, W.; Hofman, M.A.; Swaab, D.F. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J. Pineal Res., 2003, 35(2), 125-130.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00065.x] [PMID: 12887656]
[77]
Liu, R.Y.; Zhou, J.N.; van Heerikhuize, J.; Hofman, M.A.; Swaab, D.F. Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J. Clin. Endocrinol. Metab., 1999, 84(1), 323-327.
[PMID: 9920102]
[78]
Savaskan, E.; Jockers, R.; Ayoub, M.; Angeloni, D.; Fraschini, F.; Flammer, J.; Eckert, A.; Müller-Spahn, F.; Meyer, P. The MT2 melatonin receptor subtype is present in human retina and decreases in Alzheimer’s disease. Curr. Alzheimer Res., 2007, 4(1), 47-51.
[http://dx.doi.org/10.2174/156720507779939823] [PMID: 17316165]
[79]
Wu, Y.H.; Zhou, J.N.; Van Heerikhuize, J.; Jockers, R.; Swaab, D.F. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol. Aging, 2007, 28(8), 1239-1247.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.06.002] [PMID: 16837102]
[80]
Savaskan, E.; Olivieri, G.; Brydon, L.; Jockers, R.; Kräuchi, K.; Wirz-Justice, A.; Müller-Spahn, F. Cerebrovascular melatonin MT1-receptor alterations in patients with Alzheimer’s disease. Neurosci. Lett., 2001, 308(1), 9-12.
[http://dx.doi.org/10.1016/S0304-3940(01)01967-X] [PMID: 11445273]
[81]
Savaskan, E.; Olivieri, G.; Meier, F.; Brydon, L.; Jockers, R.; Ravid, R.; Wirz-Justice, A.; Müller-Spahn, F. Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer’s disease patients. J. Pineal Res., 2002, 32(1), 59-62.
[http://dx.doi.org/10.1034/j.1600-079x.2002.00841.x] [PMID: 11841602]
[82]
Park, S.J.; Chung, Y.H.; Lee, J.H.; Dang, D.K.; Nam, Y.; Jeong, J.H.; Kim, Y.S.; Nabeshima, T.; Shin, E.J.; Kim, H.C. Growth Hormone-Releaser Diet Attenuates Cognitive Dysfunction in Klotho Mutant Mice via Insulin-Like Growth Factor-1 Receptor Activation in a Genetic Aging Model. Endocrinol. Metab. (Seoul), 2014, 29(3), 336-348.
[http://dx.doi.org/10.3803/EnM.2014.29.3.336] [PMID: 25309793]
[83]
Nagai, T.; Yamada, K.; Kim, H.C.; Kim, Y.S.; Noda, Y.; Imura, A.; Nabeshima, Y.; Nabeshima, T. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J., 2003, 17(1), 50-52.
[http://dx.doi.org/10.1096/fj.02-0448fje] [PMID: 12475907]
[84]
Erickson, C.M.; Schultz, S.A.; Oh, J.M.; Darst, B.F.; Ma, Y.; Norton, D.; Betthauser, T.; Gallagher, C.L.; Carlsson, C.M.; Bendlin, B.B.; Asthana, S.; Hermann, B.P.; Sager, M.A.; Blennow, K.; Zetterberg, H.; Engelman, C.D.; Christian, B.T.; Johnson, S.C.; Dubal, D.B.; Okonkwo, O.C. KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD. Neurology, 2019, 92(16), e1878-e1889.
[http://dx.doi.org/10.1212/WNL.0000000000007323] [PMID: 30867273]
[85]
Wang, Z.; Zhang, Y.H.; Zhang, W.; Gao, H.L.; Zhong, M.L.; Huang, T.T.; Guo, R.F.; Liu, N.N.; Li, D.D.; Li, Y.; Wang, Z.Y.; Zhao, P. Copper chelators promote nonamyloidogenic processing of AβPP via MT1/2 /CREB-dependent signaling pathways in AβPP/PS1 transgenic mice. J. Pineal Res., 2018, 65(3), e12502.
[http://dx.doi.org/10.1111/jpi.12502] [PMID: 29710396]
[86]
Ilieva, K.; Tchekalarova, J.; Atanasova, D.; Kortenska, L.; Atanasova, M. Antidepressant agomelatine attenuates behavioral deficits and concomitant pathology observed in streptozotocin-induced model of Alzheimer’s disease in male rats. Horm. Behav., 2019, 107, 11-19.
[http://dx.doi.org/10.1016/j.yhbeh.2018.11.007] [PMID: 30452900]
[87]
Yao, K.; Zhao, Y.F.; Zu, H.B. Melatonin receptor stimulation by agomelatine prevents Aβ-induced tau phosphorylation and oxidative damage in PC12 cells. Drug Des. Devel. Ther., 2019, 13, 387-396.
[http://dx.doi.org/10.2147/DDDT.S182684] [PMID: 30718944]
[88]
Baño Otalora, B.; Popovic, N.; Gambini, J.; Popovic, M.; Viña, J.; Bonet-Costa, V.; Reiter, R.J.; Camello, P.J.; Rol, M.Á.; Madrid, J.A. Circadian system functionality, hippocampal oxidative stress, and spatial memory in the APPswe/PS1dE9 transgenic model of Alzheimer disease: effects of melatonin or ramelteon. Chronobiol. Int., 2012, 29(7), 822-834.
[http://dx.doi.org/10.3109/07420528.2012.699119] [PMID: 22823866]
[89]
He, P.; Ouyang, X.; Zhou, S.; Yin, W.; Tang, C.; Laudon, M.; Tian, S. A novel melatonin agonist Neu-P11 facilitates memory performance and improves cognitive impairment in a rat model of Alzheimer’ disease. Horm. Behav., 2013, 64(1), 1-7.
[http://dx.doi.org/10.1016/j.yhbeh.2013.04.009] [PMID: 23651610]
[90]
O’Neal-Moffitt, G.; Delic, V.; Bradshaw, P.C.; Olcese, J. Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPP(swe)/PS1 mice. Mol. Neurodegener., 2015, 10, 27.
[http://dx.doi.org/10.1186/s13024-015-0027-6] [PMID: 26159703]
[91]
Lombardo, S.; Maskos, U. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment. Neuropharmacology, 2015, 96(Pt B), 255-62.
[http://dx.doi.org/10.1016/j.neuropharm.2014.11.018]
[92]
Echeverria, V.; Yarkov, A.; Aliev, G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer’s disease. Prog. Neurobiol., 2016, 144, 142-157.
[http://dx.doi.org/10.1016/j.pneurobio.2016.01.002] [PMID: 26797042]
[93]
Markus, R.P.; Silva, C.L.; Franco, D.G.; Barbosa, E.M., Jr; Ferreira, Z.S. Is modulation of nicotinic acetylcholine receptors by melatonin relevant for therapy with cholinergic drugs? Pharmacol. Ther., 2010, 126(3), 251-262.
[http://dx.doi.org/10.1016/j.pharmthera.2010.02.009] [PMID: 20398699]
[94]
Romero, A.; Egea, J.; García, A.G.; López, M.G. Synergistic neuroprotective effect of combined low concentrations of galantamine and melatonin against oxidative stress in SH-SY5Y neuroblastoma cells. J. Pineal Res., 2010, 49(2), 141-148.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00778.x] [PMID: 20536682]
[95]
Jeong, J.K.; Park, S.Y. Melatonin regulates the autophagic flux via activation of alpha-7 nicotinic acetylcholine receptors. J. Pineal Res., 2015, 59(1), 24-37.
[http://dx.doi.org/10.1111/jpi.12235] [PMID: 25808024]
[96]
Feng, Z.; Chang, Y.; Cheng, Y.; Zhang, B.L.; Qu, Z.W.; Qin, C.; Zhang, J.T. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J. Pineal Res., 2004, 37(2), 129-136.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00144.x] [PMID: 15298672]
[97]
Bahna, S.G.; Sathiyapalan, A.; Foster, J.A.; Niles, L.P. Regional upregulation of hippocampal melatonin MT2 receptors by valproic acid: therapeutic implications for Alzheimer’s disease. Neurosci. Lett., 2014, 576, 84-87.
[http://dx.doi.org/10.1016/j.neulet.2014.05.056] [PMID: 24909617]
[98]
Bahna, S.G.; Niles, L.P. Epigenetic induction of melatonin MT1 receptors by valproate: Neurotherapeutic implications. Eur. Neuropsychopharmacol., 2017, 27(8), 828-832.
[http://dx.doi.org/10.1016/j.euroneuro.2017.06.002] [PMID: 28648552]
[99]
Chan, S.; Kantham, S.; Rao, V.M.; Palanivelu, M.K.; Pham, H.L.; Shaw, P.N.; McGeary, R.P.; Ross, B.P. Metal chelation, radical scavenging and inhibition of Aβ₄₂ fibrillation by food constituents in relation to Alzheimer’s disease. Food Chem., 2016, 199, 185-194.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.118] [PMID: 26775960]
[100]
Hegde, M.L.; Bharathi, P.; Suram, A.; Venugopal, C.; Jagannathan, R.; Poddar, P.; Srinivas, P.; Sambamurti, K.; Rao, K.J.; Scancar, J.; Messori, L.; Zecca, L.; Zatta, P. Challenges associated with metal chelation therapy in Alzheimer’s disease. J. Alzheimers Dis., 2009, 17(3), 457-468.
[http://dx.doi.org/10.3233/JAD-2009-1068] [PMID: 19363258]
[101]
He, H.; Dong, W.; Huang, F. Anti-amyloidogenic and anti-apoptotic role of melatonin in Alzheimer disease. Curr. Neuropharmacol., 2010, 8(3), 211-217.
[http://dx.doi.org/10.2174/157015910792246137] [PMID: 21358971]
[102]
Song, W.; Lahiri, D.K. Melatonin alters the metabolism of the beta-amyloid precursor protein in the neuroendocrine cell line PC12. J. Mol. Neurosci., 1997, 9(2), 75-92.
[http://dx.doi.org/10.1007/BF02736852] [PMID: 9407389]
[103]
Pappolla, M.; Bozner, P.; Soto, C.; Shao, H.; Robakis, N.K.; Zagorski, M.; Frangione, B.; Ghiso, J. Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J. Biol. Chem., 1998, 273(13), 7185-7188.
[http://dx.doi.org/10.1074/jbc.273.13.7185] [PMID: 9516407]
[104]
Matsubara, E.; Bryant-Thomas, T.; Pacheco Quinto, J.; Henry, T.L.; Poeggeler, B.; Herbert, D.; Cruz-Sanchez, F.; Chyan, Y.J.; Smith, M.A.; Perry, G.; Shoji, M.; Abe, K.; Leone, A.; Grundke-Ikbal, I.; Wilson, G.L.; Ghiso, J.; Williams, C.; Refolo, L.M.; Pappolla, M.A.; Chain, D.G.; Neria, E. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J. Neurochem., 2003, 85(5), 1101-1108.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01654.x] [PMID: 12753069]
[105]
Sulkava, S.; Muggalla, P.; Sulkava, R.; Ollila, H.M.; Peuralinna, T.; Myllykangas, L.; Kaivola, K.; Stone, D.J.; Traynor, B.J.; Renton, A.E.; Rivera, A.M.; Helisalmi, S.; Soininen, H.; Polvikoski, T.; Hiltunen, M.; Tienari, P.J.; Huttunen, H.J.; Paunio, T. Melatonin receptor type 1A gene linked to Alzheimer’s disease in old age. Sleep (Basel), 2018, 41(7)
[http://dx.doi.org/10.1093/sleep/zsy103] [PMID: 29982836]
[106]
Shukla, M.; Htoo, H.H.; Wintachai, P.; Hernandez, J.F.; Dubois, C.; Postina, R.; Xu, H.; Checler, F.; Smith, D.R.; Govitrapong, P.; Vincent, B. Melatonin stimulates the nonamyloidogenic processing of βAPP through the positive transcriptional regulation of ADAM10 and ADAM17. J. Pineal Res., 2015, 58(2), 151-165.
[http://dx.doi.org/10.1111/jpi.12200] [PMID: 25491598]
[107]
Panmanee, J.; Nopparat, C.; Chavanich, N.; Shukla, M.; Mukda, S.; Song, W.; Vincent, B.; Govitrapong, P. Melatonin regulates the transcription of βAPP-cleaving secretases mediated through melatonin receptors in human neuroblastoma SH-SY5Y cells. J. Pineal Res., 2015, 59(3), 308-320.
[http://dx.doi.org/10.1111/jpi.12260] [PMID: 26123100]
[108]
Chinchalongporn, V.; Shukla, M.; Govitrapong, P. Melatonin ameliorates Aβ42 -induced alteration of βAPP-processing secretases via the melatonin receptor through the Pin1/GSK3β/NF-κB pathway in SH-SY5Y cells. J. Pineal Res., 2018, 64(4), e12470.
[http://dx.doi.org/10.1111/jpi.12470] [PMID: 29352484]
[109]
Fertl, E.; Auff, E.; Doppelbauer, A.; Waldhauser, F. Circadian secretion pattern of melatonin in Parkinson’s disease. J. Neural Transm. Park. Dis. Dement. Sect., 1991, 3(1), 41-47.
[http://dx.doi.org/10.1007/BF02251135] [PMID: 2064730]
[110]
Fertl, E.; Auff, E.; Doppelbauer, A.; Waldhauser, F. Circadian secretion pattern of melatonin in de novo parkinsonian patients: evidence for phase-shifting properties of l-dopa. J. Neural Transm. Park. Dis. Dement. Sect., 1993, 5(3), 227-234.
[http://dx.doi.org/10.1007/BF02257677] [PMID: 8369102]
[111]
Bordet, R.; Devos, D.; Brique, S.; Touitou, Y.; Guieu, J.D.; Libersa, C.; Destée, A. Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin. Neuropharmacol., 2003, 26(2), 65-72.
[http://dx.doi.org/10.1097/00002826-200303000-00005] [PMID: 12671525]
[112]
Videnovic, A.; Noble, C.; Reid, K.J.; Peng, J.; Turek, F.W.; Marconi, A.; Rademaker, A.W.; Simuni, T.; Zadikoff, C.; Zee, P.C. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol., 2014, 71(4), 463-469.
[http://dx.doi.org/10.1001/jamaneurol.2013.6239] [PMID: 24566763]
[113]
Jackson-Lewis, V.; Blesa, J.; Przedborski, S. Animal models of Parkinson’s disease. Parkinsonism Relat. Disord., 2012, 18(Suppl. 1), S183-S185.
[http://dx.doi.org/10.1016/S1353-8020(11)70057-8] [PMID: 22166429]
[114]
Wongprayoon, P.; Govitrapong, P. Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line. Neurotoxicology, 2015, 50, 122-130.
[http://dx.doi.org/10.1016/j.neuro.2015.08.008] [PMID: 26283214]
[115]
Naskar, A.; Manivasagam, T.; Chakraborty, J.; Singh, R.; Thomas, B.; Dhanasekaran, M.; Mohanakumar, K.P. Melatonin synergizes with low doses of L-DOPA to improve dendritic spine density in the mouse striatum in experimental Parkinsonism. J. Pineal Res., 2013, 55(3), 304-312.
[http://dx.doi.org/10.1111/jpi.12076] [PMID: 23952687]
[116]
Chermenina, M.; Schouten, P.; Nevalainen, N.; Johansson, F.; Orädd, G.; Strömberg, I. GDNF is important for striatal organization and maintenance of dopamine neurons grown in the presence of the striatum. Neuroscience, 2014, 270, 1-11.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.008] [PMID: 24726488]
[117]
Armstrong, K.J.; Niles, L.P. Induction of GDNF mRNA expression by melatonin in rat C6 glioma cells. Neuroreport, 2002, 13(4), 473-475.
[http://dx.doi.org/10.1097/00001756-200203250-00023] [PMID: 11930164]
[118]
Niles, L.P.; Armstrong, K.J.; Rincón Castro, L.M.; Dao, C.V.; Sharma, R.; McMillan, C.R.; Doering, L.C.; Kirkham, D.L. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers. BMC Neurosci., 2004, 5, 41.
[http://dx.doi.org/10.1186/1471-2202-5-41] [PMID: 15511288]
[119]
Tang, Y.P.; Ma, Y.L.; Chao, C.C.; Chen, K.Y.; Lee, E.H. Enhanced glial cell line-derived neurotrophic factor mRNA expression upon (-)-deprenyl and melatonin treatments. J. Neurosci. Res., 1998, 53(5), 593-604.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19980901)53:5<593::AID-JNR9>3.0.CO;2-4] [PMID: 9726430]
[120]
Willis, G.L.; Armstrong, S.M. A therapeutic role for melatonin antagonism in experimental models of Parkinson’s disease. Physiol. Behav., 1999, 66(5), 785-795.
[http://dx.doi.org/10.1016/S0031-9384(99)00023-2] [PMID: 10405106]
[121]
Willis, G.L.; Robertson, A.D. Recovery of experimental Parkinson’s disease with the melatonin analogues ML-23 and S-20928 in a chronic, bilateral 6-OHDA model: a new mechanism involving antagonism of the melatonin receptor. Pharmacol. Biochem. Behav., 2004, 79(3), 413-429.
[http://dx.doi.org/10.1016/j.pbb.2004.08.011] [PMID: 15582013]
[122]
Willis, G.L.; Robertson, A.D. Recovery from experimental Parkinson’s disease in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride treated marmoset with the melatonin analogue ML-23. Pharmacol. Biochem. Behav., 2005, 80(1), 9-26.
[http://dx.doi.org/10.1016/j.pbb.2004.10.022] [PMID: 15652376]
[123]
Zisapel, N. Melatonin-dopamine interactions: from basic neurochemistry to a clinical setting. Cell. Mol. Neurobiol., 2001, 21(6), 605-616.
[http://dx.doi.org/10.1023/A:1015187601628] [PMID: 12043836]
[124]
Estrada Sánchez, A.M.; Mejía-Toiber, J.; Massieu, L. Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch. Med. Res., 2008, 39(3), 265-276.
[http://dx.doi.org/10.1016/j.arcmed.2007.11.011] [PMID: 18279698]
[125]
Busl, K.M.; Greer, D.M. Hypoxic-ischemic brain injury: pathophysiology, neuropathology and mechanisms. NeuroRehabilitation, 2010, 26(1), 5-13.
[http://dx.doi.org/10.3233/NRE-2010-0531] [PMID: 20130351]
[126]
Sinha, B.; Wu, Q.; Li, W.; Tu, Y.; Sirianni, A.C.; Chen, Y.; Jiang, J.; Zhang, X.; Chen, W.; Zhou, S.; Reiter, R.J.; Manning, S.M.; Patel, N.J.; Aziz-Sultan, A.M.; Inder, T.E.; Friedlander, R.M.; Fu, J.; Wang, X. Protection of melatonin in experimental models of newborn hypoxic-ischemic brain injury through MT1 receptor. J. Pineal Res., 2018, 64(1), 12443.
[http://dx.doi.org/10.1111/jpi.12443] [PMID: 28796402]
[127]
Suofu, Y.; Li, W.; Jean-Alphonse, F.G.; Jia, J.; Khattar, N.K.; Li, J.; Baranov, S.V.; Leronni, D.; Mihalik, A.C.; He, Y.; Cecon, E.; Wehbi, V.L.; Kim, J.; Heath, B.E.; Baranova, O.V.; Wang, X.; Gable, M.J.; Kretz, E.S.; Di Benedetto, G.; Lezon, T.R.; Ferrando, L.M.; Larkin, T.M.; Sullivan, M.; Yablonska, S.; Wang, J.; Minnigh, M.B.; Guillaumet, G.; Suzenet, F.; Richardson, R.M.; Poloyac, S.M.; Stolz, D.B.; Jockers, R.; Witt-Enderby, P.A.; Carlisle, D.L.; Vilardaga, J.P.; Friedlander, R.M. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA, 2017, 114(38), E7997-E8006.
[http://dx.doi.org/10.1073/pnas.1705768114] [PMID: 28874589]
[128]
Tsai, T.H.; Lin, C.J.; Chua, S.; Chung, S.Y.; Yang, C.H.; Tong, M.S.; Hang, C.L. Melatonin attenuated the brain damage and cognitive impairment partially through MT2 melatonin receptor in mice with chronic cerebral hypoperfusion. Oncotarget, 2017, 8(43), 74320-74330.
[http://dx.doi.org/10.18632/oncotarget.20382] [PMID: 29088788]
[129]
Gupta, S.; Singh, P.; Sharma, B.M.; Sharma, B. Neuroprotective Effects of Agomelatine and Vinpocetine Against Chronic Cerebral Hypoperfusion Induced Vascular Dementia. Curr. Neurovasc. Res., 2015, 12(3), 240-252.
[http://dx.doi.org/10.2174/1567202612666150603130235] [PMID: 26036976]
[130]
Gressens, P.; Schwendimann, L.; Husson, I.; Sarkozy, G.; Mocaer, E.; Vamecq, J.; Spedding, M. Agomelatine, a melatonin receptor agonist with 5-HT(2C) receptor antagonist properties, protects the developing murine white matter against excitotoxicity. Eur. J. Pharmacol., 2008, 588(1), 58-63.
[http://dx.doi.org/10.1016/j.ejphar.2008.04.016] [PMID: 18466899]
[131]
Husson, I.; Mesplès, B.; Bac, P.; Vamecq, J.; Evrard, P.; Gressens, P. Melatoninergic neuroprotection of the murine periventricular white matter against neonatal excitotoxic challenge. Ann. Neurol., 2002, 51(1), 82-92.
[http://dx.doi.org/10.1002/ana.10072] [PMID: 11782987]
[132]
Liu, Z.; Chopp, M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog. Neurobiol., 2016, 144, 103-120.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.008] [PMID: 26455456]
[133]
Barreto, G.E.; Sun, X.; Xu, L.; Giffard, R.G. Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One, 2011, 6(11), e27881.
[http://dx.doi.org/10.1371/journal.pone.0027881] [PMID: 22132159]
[134]
Pei, Z.; Cheung, R.T. Melatonin protects SHSY5Y neuronal cells but not cultured astrocytes from ischemia due to oxygen and glucose deprivation. J. Pineal Res., 2003, 34(3), 194-201.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00026.x] [PMID: 12614479]
[135]
Chern, C.M.; Liao, J.F.; Wang, Y.H.; Shen, Y.C. Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radic. Biol. Med., 2012, 52(9), 1634-1647.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.01.030] [PMID: 22330064]
[136]
Phonchai, R.; Phermthai, T.; Kitiyanant, N.; Suwanjang, W.; Kotchabhakdi, N.; Chetsawang, B. Potential effects and molecular mechanisms of melatonin on the dopaminergic neuronal differentiation of human amniotic fluid mesenchymal stem cells. Neurochem. Int., 2019, 124, 82-93.
[http://dx.doi.org/10.1016/j.neuint.2018.12.012] [PMID: 30593827]
[137]
Tang, Y.; Cai, B.; Yuan, F.; He, X.; Lin, X.; Wang, J.; Wang, Y.; Yang, G.Y. Melatonin Pretreatment Improves the Survival and Function of Transplanted Mesenchymal Stem Cells after Focal Cerebral Ischemia. Cell Transplant., 2014, 23(10), 1279-1291.
[http://dx.doi.org/10.3727/096368913X667510] [PMID: 23635511]
[138]
Mias, C.; Trouche, E.; Seguelas, M.H.; Calcagno, F.; Dignat-George, F.; Sabatier, F.; Piercecchi-Marti, M.D.; Daniel, L.; Bianchi, P.; Calise, D.; Bourin, P.; Parini, A.; Cussac, D. Ex vivo pretreatment with melatonin improves survival, proangiogenic/mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney. Stem Cells, 2008, 26(7), 1749-1757.
[http://dx.doi.org/10.1634/stemcells.2007-1000] [PMID: 18467662]
[139]
Kaneko, Y.; Hayashi, T.; Yu, S.; Tajiri, N.; Bae, E.C.; Solomita, M.A.; Chheda, S.H.; Weinbren, N.L.; Parolini, O.; Borlongan, C.V. Human amniotic epithelial cells express melatonin receptor MT1, but not melatonin receptor MT2: a new perspective to neuroprotection. J. Pineal Res., 2011, 50(3), 272-280.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00837.x] [PMID: 21269327]
[140]
Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol., 2018, 315(3), C343-C356.
[http://dx.doi.org/10.1152/ajpcell.00095.2018] [PMID: 29949404]
[141]
Song, J.; Kang, S.M.; Lee, W.T.; Park, K.A.; Lee, K.M.; Lee, J.E. The beneficial effect of melatonin in brain endothelial cells against oxygen-glucose deprivation followed by reperfusion-induced injury. Oxid. Med. Cell. Longev., 2014, 2014, 639531.
[http://dx.doi.org/10.1155/2014/639531] [PMID: 25126203]
[142]
Jumnongprakhon, P.; Govitrapong, P.; Tocharus, C.; Tocharus, J. Inhibitory effect of melatonin on cerebral endothelial cells dysfunction induced by methamphetamine via NADPH oxidase-2. Brain Res., 2016, 1650, 84-92.
[http://dx.doi.org/10.1016/j.brainres.2016.08.045] [PMID: 27590720]
[143]
Jumnongprakhon, P.; Sivasinprasasn, S.; Govitrapong, P.; Tocharus, C.; Tocharus, J. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells. Toxicol. In Vitro, 2017, 41, 42-48.
[http://dx.doi.org/10.1016/j.tiv.2017.02.010] [PMID: 28223141]
[144]
Werner, C.; Engelhard, K. Pathophysiology of traumatic brain injury. Br. J. Anaesth., 2007, 99(1), 4-9.
[http://dx.doi.org/10.1093/bja/aem131] [PMID: 17573392]
[145]
Bramlett, H.M.; Dietrich, W.D. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab., 2004, 24(2), 133-150.
[http://dx.doi.org/10.1097/01.WCB.0000111614.19196.04] [PMID: 14747740]
[146]
Sarkaki, A.R.; Khaksari Haddad, M.; Soltani, Z.; Shahrokhi, N.; Mahmoodi, M. Time- and dose-dependent neuroprotective effects of sex steroid hormones on inflammatory cytokines after a traumatic brain injury. J. Neurotrauma, 2013, 30(1), 47-54.
[http://dx.doi.org/10.1089/neu.2010.1686] [PMID: 21851230]
[147]
Shahrokhi, N.; Khaksari, M.; AsadiKaram, G.; Soltani, Z.; Shahrokhi, N. Role of melatonin receptors in the effect of estrogen on brain edema, intracranial pressure and expression of aquaporin 4 after traumatic brain injury. Iran. J. Basic Med. Sci., 2018, 21(3), 301-308.
[PMID: 29511497]
[148]
Herrera, F.; Sainz, R.M.; Mayo, J.C.; Martín, V.; Antolín, I.; Rodriguez, C. Glutamate induces oxidative stress not mediated by glutamate receptors or cystine transporters: protective effect of melatonin and other antioxidants. J. Pineal Res., 2001, 31(4), 356-362.
[http://dx.doi.org/10.1034/j.1600-079X.2001.310411.x] [PMID: 11703566]
[149]
Kireev, R.A.; Vara, E.; Viña, J.; Tresguerres, J.A. Melatonin and oestrogen treatments were able to improve neuroinflammation and apoptotic processes in dentate gyrus of old ovariectomized female rats. Age (Dordr.), 2014, 36(5), 9707.
[http://dx.doi.org/10.1007/s11357-014-9707-3] [PMID: 25135305]
[150]
Zawadzka, A.; Lozińska, I.; Molęda, Z.; Panasiewicz, M.; Czarnocki, Z. Highly selective inhibition of butyrylcholinesterase by a novel melatonin-tacrine heterodimers. J. Pineal Res., 2013, 54(4), 435-441.
[http://dx.doi.org/10.1111/jpi.12006] [PMID: 24325732]
[151]
Gerenu, G.; Liu, K.; Chojnacki, J.E.; Saathoff, J.M.; Martínez-Martín, P.; Perry, G.; Zhu, X.; Lee, H.G.; Zhang, S. Curcumin/melatonin hybrid 5-(4-hydroxy-phenyl)-3-oxo-pentanoic acid [2-(5-methoxy-1H-indol-3-yl)-ethyl]-amide ameliorates AD-like pathology in the APP/PS1 mouse model. ACS Chem. Neurosci., 2015, 6(8), 1393-1399.
[http://dx.doi.org/10.1021/acschemneuro.5b00082] [PMID: 25893520]
[152]
Egea, J.; Buendia, I.; Parada, E.; Navarro, E.; Rada, P.; Cuadrado, A.; López, M.G.; García, A.G.; León, R. Melatonin-sulforaphane hybrid ITH12674 induces neuroprotection in oxidative stress conditions by a ‘drug-prodrug’ mechanism of action. Br. J. Pharmacol., 2015, 172(7), 1807-1821.
[http://dx.doi.org/10.1111/bph.13025] [PMID: 25425158]