Organo-Halogens and their Possible Involvement in Prebiotic Chemistry

Page: [774 - 784] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

In this review, we examined the possibility that some halogenated organic derivatives were used in the primitive ocean at the beginning of life on Earth. Firstly, we described the existence of extraterrestrial halogenated molecules, then we studied their nonbiological syntheses on the present Earth, especially in volcanic environments. In order to demonstrate the diversity of today’s halogenated biomolecules, representative examples are given and the biosynthesis of some of them is summarized. Finally, we proposed two aspects of the chemistry of halogenated compounds that may have been useful en route to biomolecules, firstly the use of methyl chloride as the first methylation reagent, secondly the synthesis and use of α-chloro-carbonyl derivatives.

Keywords: Pre-biotic chemistry, halogen derivatives, SAM, methyl chloride, abiogenesis, α-chloro-carbonyl derivatives.

Graphical Abstract

[1]
Rossberg, M. Chlorinated hydrocarbons, Wiley-VCH Verlag GmbH & Co.KGaA: Weinheim, Germany. 2006.
[http://dx.doi.org/10.1002/14356007.a06_233.pub2]
[2]
Johnson, J. Origin of the elements in the solar system Science blog from the SDSS,, 2017.https://blog.sdss.org/2017/01/09/origin-of-the-elements-inthe-solar-system/
[3]
Wallerstein, G. Synthesis of the elements in stars: forty years of progress. Rev. Mod. Phys., 1997, 69, 995-1084.
[http://dx.doi.org/10.1103/RevModPhys.69.995]
[4]
Anders, E.; Ebihara, M. Solar-system abundances of the elements. Geochim. Cosmochim. Acta, 1982, 46, 2363-2380.
[http://dx.doi.org/10.1016/0016-7037(82)90208-3]
[5]
Neufeld, D.A.; Schilke, P.; Menten, K.M.; Wolfire, M.G.; Black, J.H.; Schuller, F.; Müller, H.S.P.; Thorwirth, S.; Güsten, R.; Philipp, S. Discovery of interstellar CF+. Astron. Astrophys., 2006, 454, L37-L40.
[http://dx.doi.org/10.1051/0004-6361:200600015]
[6]
Ziurys, L.M.; Apponi, A.J.; Phillips, T.G. Exotic fluoride molecules in IRC +10216: confirmation of AlF and searches for MgF and CaF. Astrophys. J., 1994, 433, 729-732.
[http://dx.doi.org/10.1086/174682]
[7]
Fayolle, E.C. Protostellar and cometary detections of organohalogens. Nature Astron., 2017, 1, 703-708.
[http://dx.doi.org/10.1038/s41550-017-0237-7]
[8]
Neufeld, D.A.; Wolfire, M.G. The chemistry of interstellar molecules containing the halogen elements. Astrophys. J., 2009, 706, 1594-1604.
[http://dx.doi.org/10.1088/0004-637X/706/2/1594]
[9]
Lis, D.C. Herschel/HIFI discovery of interstellar chloronium (H2Cl+). Astron. Astrophys., 2010, 521, L9.
[http://dx.doi.org/10.1051/0004-6361/201014959]
[10]
Soffen, G.A. The Viking project. J. Geophys. Res., 1977, 82, 3959-3970.
[http://dx.doi.org/10.1029/JS082i028p03959]
[11]
Bains, W. Martian methyl chloride. A lesson in uncertainty; Earth and Planetary Astrophysics, 2013.
[12]
Guaita, C. Did Viking discover life on Mars? Eur. Phys. J. Plus, 2017, 132, 346.
[http://dx.doi.org/10.1140/epjp/i2017-11637-y]
[13]
Keppler, F.; Harper, D.B.; Greule, M.; Ott, U.; Sattler, T.; Schöler, H.F.; Hamilton, J.T.G. Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings. Sci. Rep., 2014, 4, 7010.
[http://dx.doi.org/10.1038/srep07010] [PMID: 25394222]
[14]
De Keyser, J. Evidence for distributed gas sources of hydrogen halides in the coma of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc., 2017, 469, S695-S711.
[http://dx.doi.org/10.1093/mnras/stx2725]
[15]
Teiber, H.; Marks, M.A.W.; Wenzel, T.; Siebel, W.; Altherr, R.; Markl, G. The distribution of halogens (F, Cl, Br) in granitoid rocks. Chem. Geol., 2014, 374-375, 92-109.
[http://dx.doi.org/10.1016/j.chemgeo.2014.03.006]
[16]
Kendrick, M.A. Halogens in the Atlantis Bank gabbros, SW Indian Ridge: Implications for style of seafloor alteration. Earth Planet. Sci. Lett., 2019, 514, 96-107.
[http://dx.doi.org/10.1016/j.epsl.2019.02.034]
[17]
Kendrick, M.A.; Woodhead, J.D.; Kamenetsky, V.S. Tracking halogens through the subduction cycle. Geology, 2012, 40, 1075-1078.
[http://dx.doi.org/10.1130/G33265.1]
[18]
Michel, A.; Villemant, B. Determination of halogens (F, Cl, Br, I), sulfur and water in seventeen geological reference materials. Geostand. Geoanal. Res., 2003, 27, 163-171.
[http://dx.doi.org/10.1111/j.1751-908X.2003.tb00643.x]
[19]
Schnetger, B.; Muramatsu, Y.; Yoshida, S. Iodine (and other halogens) in twenty-six geological reference materials by ICP-MS and ion chromatography. Geostand. Geoanal. Res., 1998, 22, 181-186.
[http://dx.doi.org/10.1111/j.1751-908X.1998.tb00690.x]
[20]
Barbalace, K. Periodic table of the elements., https://environmental-chemistry.com/yogi/periodic/
[21]
Taylor, S.R. Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta, 1964, 28, 1273-1285.
[http://dx.doi.org/10.1016/0016-7037(64)90129-2]
[22]
Pinti, D.L. The origin and evolution of the oceans. Lectures in Astrobiology; Gargaud, M.; Barbier, B.; Martin, H; Reisse, J., Ed.; Springer-Verlag: Berlin Heidelberg, Germany, 2005, Vol. 1, pp. 83-112.
[http://dx.doi.org/10.1007/10913406_4]
[23]
Bani, P.; Boudon, G.; Balcone-Boissard, H.; Delmelle, P.; Quiniou, T.; Lefèvre, J.; Garaebiti Bule, E.; Hiroshi, S.; Lardy, M. The 2009-2010 eruption of Gaua volcano (Vanuatu archipelago): eruptive dynamics and unsuspected strong halogens source. J. Volcanol. Geotherm. Res., 2016, 322, 63-75.
[http://dx.doi.org/10.1016/j.jvolgeores.2015.06.023]
[24]
Aiuppa, A.; Baker, D.R.; Webster, J.D. Halogens in volcanic systems. Chem. Geol., 2009, 263, 1-18.
[http://dx.doi.org/10.1016/j.chemgeo.2008.10.005]
[25]
Aiuppa, A.; Federico, C.; Franco, A.; Giudice, G.; Gurrieri, S.; Inguaggiato, S.; Liuzzo, M.; McGonigle, A.J.S.; Valenza, M. Emission of bromine and iodine from Mount Etna volcano. Geochem. Geophys. Geosyst.,, 2005.6Q08008
[http://dx.doi.org/10.1029/2005GC000965]
[26]
Gutmann, A.; Bobrowski, N.; Roberts, T.J.; Rüdiger, J.; Hoffmann, T. Advances in bromine speciation in volcanic plumes. Front. Earth Sci., 2018, 6, 213.
[http://dx.doi.org/10.3389/feart.2018.00213]
[27]
Bobrowski, N.; von Glasow, R.; Aiuppa, A.; Inguaggiato, S.; Louban, I.; Ibrahim, O.W.; Platt, U. Reactive halogen chemistry in volcanic plumes. J. Geophys. Res., 2007, 112D06311
[http://dx.doi.org/10.1029/2006JD007206]
[28]
Donovan, A.; Tsanev, V.; Oppenheimer, C.; Edmonds, M. Reactive halogens (BrO and OClO) detected in the plume of Soufrière Hills Volcano during an eruption hiatus. Geochem. Geophys. Geosyst., 2014, 15, 3346-3363.
[http://dx.doi.org/10.1002/2014GC005419]
[29]
Zelenski, M.; Taran, Y. Volcanic emissions of molecular chlorine. Geochim. Cosmochim. Acta, 2012, 87, 210-226.
[http://dx.doi.org/10.1016/j.gca.2012.03.034]
[30]
Symonds, R.B.; Rose, W.I.; Reed, M.H. Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes. Nature, 1988, 334, 415-418.
[http://dx.doi.org/10.1038/334415a0]
[31]
Schwandner, F.; Seward, T.M.; Gize, A.P.; Hall, P.A.; Dietrich, V.J. Diffuse emission of organic trace gases from the flank and crater of a quiescent active volcano (Vulcano, Aeolian Islands, Italy) J. Geophys.Res, 2004.109D04301
[http://dx.doi.org/10.1029/2003JD003890]
[32]
Frische, M.; Garofalo, K.; Hansteen, T.H.; Borchers, R. Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua). Geochem. Geophys. Geosyst., 2006, 7(5)Q05020
[http://dx.doi.org/10.1029/2005GC001162]
[33]
Dong, C.; Flecks, S.; Unversucht, S.; Haupt, C.; van Pée, K.H.; Naismith, J.H. The structure of tryptophan 7-halogenase (PrnA) suggests a mechanism for regioselective chlorination. Science, 2005, 309, 2216-2219.
[http://dx.doi.org/10.1126/science.1116510] [PMID: 16195462]
[34]
Deng, H.; Cobb, S.L.; McEwan, A.R.; McGlinchey, R.P.; Naismith, J.H.; O’Hagan, D.; Robinson, D.A.; Spencer, J.B. The fluorinase from Streptomyces cattleya is also a chlorinase. Angew. Chem. Int. Ed. Engl., 2006, 45(5), 759-762.
[http://dx.doi.org/10.1002/anie.200503582] [PMID: 16370017]
[35]
Coleman, J.E.; de Silva, E.D.; Kong, F.; Andersen, R.J.; Allen, T.M. Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron, 1995, 51, 10653-10662.
[http://dx.doi.org/10.1016/0040-4020(95)00646-P]
[36]
Coleman, J.E.; Van Soest, R.; Andersen, R.J. New geodiamolides from the sponge Cymbastela sp. collected in Papua New Guinea. J. Nat. Prod., 1999, 62(8), 1137-1141.
[http://dx.doi.org/10.1021/np990155o] [PMID: 10479320]
[37]
Gribble, G.W. Biological activity of recently discovered halogenated marine natural products. Mar. Drugs, 2015, 13(7), 4044-4136.
[http://dx.doi.org/10.3390/md13074044] [PMID: 26133553]
[38]
Gribble, G.W. Naturally occurring organofluorines.The handbook of Environmental Chemistry; Neilson, A.H., Ed.; Sringer-Verlag: Berlin Heidelberg, Germany, 2002, Vol. 3, pp. 121-136.
[39]
Laturnus, F. Marine macroalgae in polar regions as natural sources for volatile organohalogens. Environ. Sci. Pollut. Res. Int., 2001, 8(2), 103-108.
[http://dx.doi.org/10.1007/BF02987302] [PMID: 11400635]
[40]
Gribble, G.W. The diversity of naturally occurring organobromine compounds. Chem. Soc. Rev., 1999, 28, 335-346.
[http://dx.doi.org/10.1039/a900201d]
[41]
Gribble, G.W. Naturally occurring organohalogen compounds. Acc. Chem. Res., 1998, 31, 141-152.
[http://dx.doi.org/10.1021/ar9701777]
[42]
Gribble, G.W. Naturally occurring organohalogen compounds - A survey. J. Nat. Prod., 1992, 55, 1353-1395.
[http://dx.doi.org/10.1021/np50088a001]
[43]
Murphy, C.D.; Schaffrath, C.; O’Hagan, D. Fluorinated natural products: the biosynthesis of fluoroacetate and 4-fluorothreonine in Streptomyces cattleya. Chemosphere, 2003, 52(2), 455-461.
[http://dx.doi.org/10.1016/S0045-6535(03)00191-7] [PMID: 12738270]
[44]
Klingensmith, C.W. A note on the natural occurrence of fluoroacetic acid, the acid of the new rodenticide"1080";. Science, 1945, 102, 622-623.
[http://dx.doi.org/10.1126/science.102.2659.622]
[45]
Jung, I.R.; Choi, S.E.; Hong, S.A.; Hwang, Y.; Kang, Y. Sodium fluorocitrate having protective effect on palmitate-induced beta cell death improves hyperglycemia in diabetic db/db mice. Sci. Rep., 2017, 7(1), 12916.
[http://dx.doi.org/10.1038/s41598-017-13365-5] [PMID: 29018279]
[46]
Kuter, K.Z.; Olech, Ł.; Dencher, N.A. Increased energetic demand supported by mitochondrial electron transfer chain and astrocyte assistance is essential to maintain the compensatory ability of the dopaminergic neurons in an animal model of early Parkinson’s disease. Mitochondrion, 2019, 47, 227-237.
[http://dx.doi.org/10.1016/j.mito.2018.12.002] [PMID: 30578987]
[47]
Carvalho, M.F.; Oliveira, R.S. Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Crit. Rev. Biotechnol., 2017, 37(7), 880-897.
[http://dx.doi.org/10.1080/07388551.2016.1267109] [PMID: 28049355]
[48]
Pattison, F.L.M.; Buchanan, R.L. Toxic fluorine compounds. 20. The use of the omega-fluorine atom in the study of the metabolism of branched-chain fatty acids. Biochem. J., 1964, 92(1), 100-105.
[http://dx.doi.org/10.1042/bj0920100] [PMID: 4953919]
[49]
Miles, D.H.; Mody, N.V.; Minyard, J.P.; Hedin, P.A. Constituents of marsh grass: survey of the essential oils in Juncus roemerianus. Phytochemistry, 1973, 12, 1399-1404.
[http://dx.doi.org/10.1016/0031-9422(73)80573-4]
[50]
Estrella, L.F.; Ferreira, V.B.; Gallistl, C.; Alves, M.G.R.; Vetter, W.; Malm, O.; Abadio Finco, F.D.B.; Torres, J.P.M. Occurrence of halogenated natural products in highly consumed fish from polluted and unpolluted tropical bays in SE Brazil. Environ. Pollut, 2018, 242(Pt A), 684-691.
[http://dx.doi.org/10.1016/j.envpol.2018.07.030] [PMID: 30025342]
[51]
Silk, P.J.; Lonergan, G.C.; Arsenault, T.L.; Boyle, C.D. Evidence of natural organochlorine formation in peat bogs. Chemosphere, 1997, 35, 2865-2880.
[http://dx.doi.org/10.1016/S0045-6535(97)00347-0]
[52]
Welinder, B.S. Halogenated tyrosines from the cuticle of Limulus polyphemus (L.). Biochim. Biophys. Acta, 1972, 279(3), 491-497.
[http://dx.doi.org/10.1016/0304-4165(72)90171-7] [PMID: 5082515]
[53]
Carte, B.K.; Troupe, N.; Chan, J.A.; Westley, J.W.; Faulkner, D.J. Rawsonol, an inhibitor of HMG-CoA reductase from the tropical green alga Avrainvillea rawsoni. Phytochemistry, 1989, 28, 2917-2919.
[http://dx.doi.org/10.1016/0031-9422(89)80253-5]
[54]
Chen, J.L.; Gerwick, W.H.; Schatzman, R.; Laney, M. Isorawsonol and related IMP dehydrogenase inhibitors from the tropical green alga Avrainvillea rawsonii. J. Nat. Prod., 1994, 57(7), 947-952.
[http://dx.doi.org/10.1021/np50109a011] [PMID: 7964790]
[55]
Higa, T.; Scheuer, P.J. Synthesis and properties of 6-bromo-3-chloro- and of 3,5,7-tribromoindole. Heterocycles, 1976, 4, 231-233.
[http://dx.doi.org/10.3987/R-1976-02-0231]
[56]
Kamada, T.; Vairappan, C.S. New bioactive secondary metabolites from Bornean red alga, Laurencia similis (Ceramiales). Nat. Prod. Commun., 2013, 8(3), 287-288.
[http://dx.doi.org/10.1177/1934578X1300800302] [PMID: 23678792]
[57]
Fahy, E.; Potts, B.C.M.; Faulkner, D.J. 6-Bromotryptamine derivatives from the gulf of California tunicate Didemnum candidum. J. Nat. Prod., 1991, 54, 564-569.
[http://dx.doi.org/10.1021/np50074a032]
[58]
Sun, C.; Lin, X.; Weinreb, S.M. Explorations on the total synthesis of the unusual marine alkaloid chartelline A. J. Org. Chem., 2006, 71(8), 3159-3166.
[http://dx.doi.org/10.1021/jo060084f] [PMID: 16599614]
[59]
Chekan, J.R.; Lee, G.Y.; El Gamal, A.; Purdy, T.N.; Houk, K.N.; Moore, B.S. Bacterial tetrabromopyrrole debrominase shares a reductive dehalogenation strategy with human thyroid deiodinase; Biochem, 2019.
[http://dx.doi.org/10.1021/acs.biochem.9b00318]
[60]
Nguyen, T.B.; Nguyen, L.A.; Corbin, M.; Retailleau, P.; Ermolenko, L.; Al-Mourabit, A. Toward the synthesis of sceptrin and benzosceptrin: solvent effect in stereo- and regioselective [2+2] photodimerization and easy access to the fully substituted benzobutane. Eur. J. Org. Chem., 2018, 5861-5868.
[http://dx.doi.org/10.1002/ejoc.201800458]
[61]
Kwon, O.S.; Kim, D.; Kim, H.; Lee, Y.J.; Lee, H.S.; Sim, C.J.; Oh, D.C.; Lee, S.K.; Oh, K.B.; Shin, J. Bromopyrrole alkaloids from the sponge Agelas kosrae. Mar. Drugs, 2018, 16(12), 513.
[http://dx.doi.org/10.3390/md16120513] [PMID: 30563015]
[62]
Mann, M.G.A.; Mkwananzi, H.B.; Antunes, E.M.; Whibley, C.E.; Hendricks, D.T.; Bolton, J.J.; Beukes, D.R. Halogenated monoterpene aldehydes from the South African marine alga Plocamium corallorhiza. J. Nat. Prod., 2007, 70(4), 596-599.
[http://dx.doi.org/10.1021/np060547c] [PMID: 17343409]
[63]
Crews, P.; Campbell, L.; Heron, E. Different chemical types of Plocamium violaceum (rhodophyta) from the Monterey Bay region, California. J. Phycol., 1977, 13, 297-301.
[http://dx.doi.org/10.1111/j.1529-8817.1977.tb02930.x]
[64]
Ji, N.Y.; Li, X.M.; Ding, L.P.; Wang, B.G. Halogenated eudesmane derivatives and other terpenes from the marine red alga Laurencia pinnata and their chemotaxonomic significance. Biochem. Syst. Ecol., 2016, 64, 1-5.
[http://dx.doi.org/10.1016/j.bse.2015.11.010]
[65]
Farimani, M.M.; Miran, M. Labdane diterpenoids from Salvia reuterana. Phytochemistry, 2014, 108, 264-269.
[http://dx.doi.org/10.1016/j.phytochem.2014.08.024] [PMID: 25236692]
[66]
Kutateladze, A.G.; Reddy, D.S. High-throughput in silico structure validation and revision of halogenated natural products is enabled by parametric corrections to DFT-computed 13C NMR chemical shifts and spin-spin coupling constants. J. Org. Chem., 2017, 82(7), 3368-3381.
[http://dx.doi.org/10.1021/acs.joc.7b00188] [PMID: 28339201]
[67]
Woolner, V.H.; Gordon, R.M.A.; Miller, J.H.; Lein, M.; Northcote, P.T.; Keyzers, R.A. Halogenated meroditerpenoids from a south pacific collection of the red alga Callophycus serratus. J. Nat. Prod., 2018, 81(11), 2446-2454.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00487] [PMID: 30407005]
[68]
Ishii, T.; Miyagi, M.; Shinjo, Y.; Minamida, Y.; Matsuura, H.; Abe, T.; Kikuchi, N.; Suzuki, M. Two new brominated C15-acetogenins from the red alga Laurencia japonensis. Nat. Prod. Res., 2019, 2019, 1-7.
[http://dx.doi.org/10.1080/14786419.2019.1590712] [PMID: 30931617]
[69]
Searle, P.A.; Molinski, T.F. Trachycladines A and B: 2′-C-methyl-5′-deoxyribofuranosyl nucleosides from the marine sponge Trachycladus laevispirulifer. J. Org. Chem., 1995, 60, 4296-4298.
[http://dx.doi.org/10.1021/jo00118a059]
[70]
Narayanan, S.; Iyengar, M.R.S.; Ganju, P.L.; Rengaraju, S.; Shomura, T.; Tsuruoka, T.; Inouye, S.; Niida, T. γ-Chloronorvaline, a leucine analog from Streptomyces. J. Antibiot. (Tokyo), 1980, 33(11), 1249-1255.
[http://dx.doi.org/10.7164/antibiotics.33.1249] [PMID: 6894746]
[71]
Dong, M.; Cao, P.; Ma, Y.T.; Luo, J.; Yan, Y.; Li, R.T.; Huang, S.X. A new actinomycin Z analogue with an additional oxygen bridge between chromophore and β-depsipentapeptide from Streptomyces sp. KIB-H714. Nat. Prod. Res., 2019, 33(2), 219-225.
[http://dx.doi.org/10.1080/14786419.2018.1443097] [PMID: 29495881]
[72]
Yoshida, H.; Arai, N.; Sugoh, M.; Iwabuchi, J.; Shiomi, K.; Shinose, M.; Tanaka, Y.; Omura, S. 4-chlorothreonine, a herbicidal antimetabolite produced by Streptomyces sp. OH-5093. J. Antibiot. (Tokyo), 1994, 47(10), 1165-1166.
[http://dx.doi.org/10.7164/antibiotics.47.1165] [PMID: 7961168]
[73]
Liu, R.; Zhang, P.; Gan, T.; Cook, J.M. Regiospecific bromination of 3-methylindoles with NBS and its application to the concise synthesis of optically active unusual tryptophan present in marine cyclic peptides. J. Org. Chem., 1997, 62(21), 7447-7456.
[http://dx.doi.org/10.1021/jo971067g] [PMID: 11671863]
[74]
Hedner, E.; Sjögren, M.; Frändberg, P.A.; Johansson, T.; Göransson, U.; Dahlström, M.; Jonsson, P.; Nyberg, F.; Bohlin, L. Brominated cyclodipeptides from the marine sponge Geodia barretti as selective 5-HT ligands. J. Nat. Prod., 2006, 69(10), 1421-1424.
[http://dx.doi.org/10.1021/np0601760] [PMID: 17067154]
[75]
Jimenez, E.C.; Watkins, M.; Olivera, B.M. Multiple 6-bromotryptophan residues in a sleep-inducing peptide. Biochemistry, 2004, 43(38), 12343-12348.
[http://dx.doi.org/10.1021/bi0489412] [PMID: 15379573]
[76]
Apriletti, J.W.; Ribeiro, R.C.J.; Wagner, R.L.; Feng, W.; Webb, P.; Kushner, P.J.; West, B.L.; Nilsson, S.; Scanlan, T.S.; Fletterick, R.J.; Baxter, J.D. Molecular and structural biology of thyroid hormone receptors. Clin. Exp. Pharmacol. Physiol. Suppl., 1998, 25, S2-S11.
[http://dx.doi.org/10.1111/j.1440-1681.1998.tb02293.x] [PMID: 9809185]
[77]
O’Hagan, D.; Schaffrath, C.; Cobb, S.L.; Hamilton, J.T.G.; Murphy, C.D. Biochemistry: biosynthesis of an organofluorine molecule. Nature, 2002, 416(6878), 279.
[http://dx.doi.org/10.1038/416279a] [PMID: 11907567]
[78]
Agarwal, V.; Miles, Z.D.; Winter, J.M.; Eustáquio, A.S.; El Gamal, A.A.; Moore, B.S. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev., 2017, 117(8), 5619-5674.
[http://dx.doi.org/10.1021/acs.chemrev.6b00571] [PMID: 28106994]
[79]
Sundaramoorthy, M.; Terner, J.; Poulos, T.L. Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. Chem. Biol., 1998, 5(9), 461-473.
[http://dx.doi.org/10.1016/S1074-5521(98)90003-5] [PMID: 9751642]
[80]
Vaillancourt, F.H.; Yeh, E.; Vosburg, D.A.; O’Connor, S.E.; Walsh, C.T. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature, 2005, 436(7054), 1191-1194.
[http://dx.doi.org/10.1038/nature03797] [PMID: 16121186]
[81]
Butler, A.; Carter-Franklin, J.N. The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat. Prod. Rep., 2004, 21(1), 180-188.
[http://dx.doi.org/10.1039/b302337k] [PMID: 15039842]
[82]
Carter-Franklin, J.N.; Butler, A. Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J. Am. Chem. Soc., 2004, 126(46), 15060-15066.
[http://dx.doi.org/10.1021/ja047925p] [PMID: 15548002]
[83]
Fukuzawa, A.; Aye, M.; Takasugi, Y.; Nakamura, M.; Tamura, M.; Murai, A. Enzymatic bromo-ether cyclization of laurediols with bromoperoxidase. Chem. Lett., 1994, 23(12), 2307-2310.
[http://dx.doi.org/10.1246/cl.1994.2307]
[84]
Wuosmaa, A.M.; Hager, L.P. Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science, 1990, 249(4965), 160-162.
[http://dx.doi.org/10.1126/science.2371563] [PMID: 2371563]
[85]
Nagatoshi, Y.; Nakamura, T. Characterization of three halide methyltransferases in Arabidopsis thaliana. Plant Biotechnol., 2007, 24, 503-506.
[http://dx.doi.org/10.5511/plantbiotechnology.24.503]
[86]
Attieh, J.M.; Hanson, A.D.; Saini, H.S. Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. J. Biol. Chem., 1995, 270(16), 9250-9257.
[http://dx.doi.org/10.1074/jbc.270.16.9250] [PMID: 7721844]
[87]
Itoh, N.; Toda, H.; Matsuda, M.; Negishi, T.; Taniguchi, T.; Ohsawa, N. Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish). BMC Plant Biol., 2009, 9, 116.
[http://dx.doi.org/10.1186/1471-2229-9-116] [PMID: 19723322]
[88]
Martin, J.L.; McMillan, F.M. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct. Biol., 2002, 12(6), 783-793.
[http://dx.doi.org/10.1016/S0959-440X(02)00391-3] [PMID: 12504684]
[89]
Ragsdale, S.W. Catalysis of methyl group transfers involving tetrahydrofolate and B(12). Vitam. Horm., 2008, 79, 293-324.
[http://dx.doi.org/10.1016/S0083-6729(08)00410-X] [PMID: 18804699]
[90]
Weiss, M.C.; Sousa, F.L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W.F. The physiology and habitat of the last universal common ancestor. Nat. Microbiol., 2016, 1(9), 16116.
[http://dx.doi.org/10.1038/nmicrobiol.2016.116] [PMID: 27562259]
[91]
Williamson, A. Theory of ætherification. Philos. Mag., 1850, 37, 350-356.
[http://dx.doi.org/10.1080/14786445008646627]
[92]
Studer, A.; Stupperich, E.; Vuilleumier, S.; Leisinger, T. Chloromethane: tetrahydrofolate methyl transfer by two proteins from Methylobacterium chloromethanicum strain CM4. Eur. J. Biochem., 2001, 268(10), 2931-2938.
[http://dx.doi.org/10.1046/j.1432-1327.2001.02182.x] [PMID: 11358510]
[93]
Koehn, E.M.; Fleischmann, T.; Conrad, J.A.; Palfey, B.A.; Lesley, S.A.; Mathews, I.I.; Kohen, A. An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature, 2009, 458(7240), 919-923.
[http://dx.doi.org/10.1038/nature07973] [PMID: 19370033]
[94]
Bourgis, F.; Roje, S.; Nuccio, M.L.; Fisher, D.B.; Tarczynski, M.C.; Li, C.; Herschbach, C.; Rennenberg, H.; Pimenta, M.J.; Shen, T.L.; Gage, D.A.; Hanson, A.D. S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell, 1999, 11(8), 1485-1498.
[http://dx.doi.org/10.1105/tpc.11.8.1485] [PMID: 10449582]
[95]
Baldwin, J.E.; Flinn, A. Use of L-aspartic acid β-semialdehyde in the synthesis of more complex non protein amino acids. Tetrahedron Lett., 1987, 28, 3605-3608.
[http://dx.doi.org/10.1016/S0040-4039(00)95547-3]
[96]
Shalayel, I.; Vallée, Y. Chemistry of homocysteine thiolactone in a prebiotic perspective. Life (Basel), 2019, 9(2), 40.
[http://dx.doi.org/10.3390/life9020040] [PMID: 31100840]
[97]
Newman, M.S.; Farbman, M.D. The synthesis of hydroaromatic compounds containing angular groups. 1. Hydrophenanthrene series. J. Am. Chem. Soc., 1944, 66, 1550-1552.
[http://dx.doi.org/10.1021/ja01237a042]
[98]
Dick, C.R. Halogenation of aldehydes. Chlorination of propanal. J. Org. Chem., 1962, 27, 272-274.
[http://dx.doi.org/10.1021/jo01048a066]
[99]
Lorenzini, A.; Walling, C. The chlorination of aldehydes by cupric chloride. J. Org. Chem., 1967, 32, 4008-4010.
[http://dx.doi.org/10.1021/jo01287a062]
[100]
Galtsoff, P.S. Copper content of sea water. Ecology, 1943, 24, 263-265.
[http://dx.doi.org/10.2307/1929706]
[101]
Schmidt, R.L.; Forster, W.O. Copper in the marine environment. Part I. Crit. Rev. Environ. Control, 1977, 8, 101-152.
[http://dx.doi.org/10.1080/10643387709381660]
[102]
Blossom, N. Copper in the ocean environment. Earth and Planetary Astrophysics,, 2015.https://www.chemet. com/copper-in-the-ocean-environment/
[103]
Sutherland, J.D. The origin of life - Out of the blue. Angew. Chem. Int. Ed. Engl., 2016, 55(1), 104-121.
[http://dx.doi.org/10.1002/anie.201506585] [PMID: 26510485]
[104]
Schwendinger, G.; Tauler, R.; Saetia, S.; Liedl, K.R.; Kroemer, R.T.; Rode, B.M. Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions. Inorg. Chim. Acta, 1995, 228, 207-214.
[http://dx.doi.org/10.1016/0020-1693(94)04186-Y]
[105]
Hromatka, O.; Haberl, R. Uber das 2,5-dioxy-1,4-dithian. Monatsh. Chem., 1954, 85, 1088-1096.
[http://dx.doi.org/10.1007/BF00899857]
[106]
Zamberlan, F.; Fantinati, A.; Trapella, C. 1,4-Dithiane-2,5-diol: an attractive platform for the synthesis of sulfur-containing functionalized heterocycles. Eur. J. Org. Chem., 2018, 2018(25), 3248-3264.
[http://dx.doi.org/10.1002/ejoc.201701785]
[107]
Vallée, Y.; Shalayel, I.; Ly, K.D.; Rao, K.V.R.; De Paëpe, G.; Märker, K.; Milet, A. At the very beginning of life on Earth: the thiol-rich peptide (TRP) world hypothesis. Int. J. Dev. Biol., 2017, 61(8-9), 471-478.
[http://dx.doi.org/10.1387/ijdb.170028yv] [PMID: 29139533]
[108]
Shalayel, I.; Coulibaly, S.; Ly, K.D.; Milet, A.; Vallée, Y. The reaction of aminonitriles with aminothiols: a way to thiol-containing peptides and nitrogen heterocycles in the primitive Earth ocean. Life (Basel), 2018, 8(4), 47.
[http://dx.doi.org/10.3390/life8040047] [PMID: 30347745]
[109]
Canavelli, P.; Islam, S.; Powner, M.W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature, 2019, 571(7766), 546-549.
[http://dx.doi.org/10.1038/s41586-019-1371-4] [PMID: 31292542]
[110]
Nair, P.V.; Busch, H. Improved synthesis of monofluoro- and monochloropyruvic acids. J. Org. Chem., 1958, 23, 137-139.
[http://dx.doi.org/10.1021/jo01095a634]
[111]
Esakova, O.A.; Meshalkina, L.E.; Kochetov, G.A.; Golbik, R. Halogenated pyruvate derivatives as substrates of transketolase from Saccharomyces cerevisiae. Biochemistry (Mosc.), 2009, 74(11), 1234-1238.
[http://dx.doi.org/10.1134/S0006297909110091] [PMID: 19916939]
[112]
Andersson, M.; Holmberg, H.; Adlercreutz, P. Microbial production of D-(S)-chlorolactic acid by Proteus vulgaris cells. Enzyme Microb. Technol., 1998, 22, 170-178.
[http://dx.doi.org/10.1016/S0141-0229(97)00152-X]
[113]
Meister, A.; Fraser, P.E.; Tice, S.V. Enzymatic desulfuration of β-mercaptopyruvate to pyruvate. J. Biol. Chem., 1954, 206(2), 561-575.
[PMID: 13143015]
[114]
Andreeßen, C.; Gerlt, V.; Steinbüchel, A. Conversion of cysteine to 3-mercaptopyruvic acid by bacterial aminotransferases. Enzyme Microb. Technol., 2017, 99, 38-48.
[http://dx.doi.org/10.1016/j.enzmictec.2017.01.004] [PMID: 28193330]
[115]
Coggins, A.J.; Powner, M.W. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis. Nat. Chem., 2017, 9(4), 310-317.
[http://dx.doi.org/10.1038/nchem.2624] [PMID: 28338685]