A Review on Metal-Free Oxidative α-Cyanation and Alkynylation of N-Substituted Tetrahydroisoquinolines as a Rapid Route for the Synthesis of Isoquinoline Alkaloids

Page: [809 - 816] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

As a fast-growing research field in modern organic chemistry, the crossdehydrogenative coupling (CDC) has seen considerable development in its scope of application, uptake into industry, and understanding of its mechanism to functionalize the tetrahydroisoquinoline (THIQ) scaffold. Among the vast number of possibilities offered by the CDC coupling, the metal-free oxidative α-cyanation and alkynylation reactions have emerged as powerful strategies in the synthesis of diverse and potentially bioactive THIQs. Even though transition-metal catalyzed CDC reactions have undoubtedly made significant progress in THIQ chemistry, general and selective protocols for the metal-free oxidative α-cyanation and alkynylation reactions of THIQs are urgently needed. Thereby, this critical discussion is aimed to highlight the recent progress in this field of CDC reactions where Csp3-H bonds are activated without metal catalysts to introduce the CN and the alkynyl groups into the THIQ core.

Keywords: C-functionalization, cross-dehydrogenative coupling, tetrahydroisoquinolines, direct coupling, oxidative α-cyanation, alkynylation, metal-free conditions.

Graphical Abstract

[1]
Li, C.J.; Li, Z. Green chemistry: The development of Cross-Dehydrogenative Coupling (CDC) for chemical synthesis. Pure Appl. Chem., 2006, 78, 935-945.
[http://dx.doi.org/10.1351/pac200678050935]
[2]
Murahashi, S.; Zhang, D. Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450. Chem. Soc. Rev., 2008, 37(8), 1490-1501.
[http://dx.doi.org/10.1039/b706709g] [PMID: 18648675]
[3]
Li, C.J. Cross-dehydrogenative coupling (CDC): exploring C-C bond formations beyond functional group transformations. Acc. Chem. Res., 2009, 42(2), 335-344.
[http://dx.doi.org/10.1021/ar800164n] [PMID: 19220064]
[4]
Girard, S.A.; Knauber, T.; Li, C.J. The cross-dehydrogenative coupling of C(sp3)-H bonds: a versatile strategy for C-C bond formations. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 74-100.
[http://dx.doi.org/10.1002/anie.201304268] [PMID: 24214829]
[5]
Narayan, R.; Matcha, K.; Antonchick, A.P. Metal-free oxidative C-C bond formation through C-H bond functionalization. Chemistry, 2015, 21(42), 14678-14693.
[http://dx.doi.org/10.1002/chem.201502005] [PMID: 26239615]
[6]
Singh, I.P.; Shah, P. Tetrahydroisoquinolines in therapeutics: a patent review (2010-2015). Expert Opin. Ther. Pat., 2017, 27(1), 17-36.
[http://dx.doi.org/10.1080/13543776.2017.1236084] [PMID: 27623022]
[7]
Scott, J.D.; Williams, R.M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev., 2002, 102(5), 1669-1730.
[http://dx.doi.org/10.1021/cr010212u] [PMID: 11996547]
[8]
Pingaew, R.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Design, synthesis and molecular docking studies of novel N-benzenesulfonyl-1,2,3,4-tetrahydroisoquinoline-based triazoles with potential anticancer activity. Eur. J. Med. Chem., 2014, 81, 192-203.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.019] [PMID: 24836071]
[9]
Zhu, P.; Ye, W.; Li, J.; Zhang, Y.; Huang, W.; Cheng, M.; Wang, Y.; Zhang, Y.; Liu, H.; Zuo, J. Design, synthesis, and biological evaluation of novel tetrahydroisoquinoline derivatives as potential antitumor candidate. Chem. Biol. Drug Des., 2017, 89(3), 443-455.
[http://dx.doi.org/10.1111/cbdd.12873] [PMID: 27717183]
[10]
Ramanivas, T.; Sushma, B.; Nayak, V.L.; Chandra Shekar, K.; Srivastava, A.K. Design, synthesis and biological evaluations of chirally pure 1,2,3,4-tertrahydroisoquinoline analogs as anti-cancer agents. Eur. J. Med. Chem., 2015, 92, 608-618.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.030] [PMID: 25615796]
[11]
Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol., 2010, 14(3), 347-361.
[http://dx.doi.org/10.1016/j.cbpa.2010.02.018] [PMID: 20303320]
[12]
Hanna, J.N.; Kang, F.N.; Kaiser, M.; Brun, R.; Efange, S.M.N. 1-Aryl-1,2,3,4-tetrahydroisoquinolines as potential antimalarials: synthesis, in vitro antiplasmodial activity and in silico pharmacokinetics evaluation. RSC Advances, 2014, 4, 22856-22865.
[http://dx.doi.org/10.1039/C3RA46791K]
[13]
Truax, V.M.; Zhao, H.; Katzman, B.M.; Prosser, A.R.; Alcaraz, A.A.; Saindane, M.T.; Howard, R.B.; Culver, D.; Arrendale, R.F.; Gruddanti, P.R.; Evers, T.J.; Natchus, M.G.; Snyder, J.P.; Liotta, D.C.; Wilson, L.J. Discovery of tetrahydroisoquinoline-based CXCR4 antagonists. ACS Med. Chem. Lett., 2013, 4(11), 1025-1030.
[http://dx.doi.org/10.1021/ml400183q] [PMID: 24936240]
[14]
Wilckens, K.; Duhs, M.A.; Lentz, D.; Czekelius, C. Chiral 1,1′‐bi(tetrahydroisoquinoline)‐type diamines as efficient ligands for nickel‐catalysed enantioselective Michael addition to nitroalkenes. Eur. J. Org. Chem., 2011, 5441-5446.
[http://dx.doi.org/10.1002/ejoc.201100488]
[15]
Naicker, T.; Arvidsson, P.I.; Kruger, H.G.; Maguire, G.E.M.; Govender, T. Tetrahydroisoquinoline‐based N‐oxides as chiral organocatalysts for the asymmetric allylation of aldehydes. Eur. J. Org. Chem., 2011, 6923-6932.
[http://dx.doi.org/10.1002/ejoc.201100923]
[16]
Su, Y.J.; Huang, H.L.; Li, C.L.; Chien, C.H.; Tao, Y.T.; Chou, P.T.; Datta, S.; Liu, R.S. Highly efficient red electrophosphorescent devices based on iridium isoquinoline complexes: remarkable external quantum efficiency over a wide range of current. Adv. Mater., 2003, 15, 884-888.
[http://dx.doi.org/10.1002/adma.200304630]
[17]
Galvis, C.E.P.; Kouznetsov, V.V. Biomimetic total synthesis of Dysoxylum alkaloids. J. Org. Chem., 2019, 84(23), 15294-15308.
[http://dx.doi.org/10.1021/acs.joc.9b02093] [PMID: 31689360]
[18]
Rida, P.C.; LiVecche, D.; Ogden, A.; Zhou, J.; Aneja, R. The noscapine chronicle: a pharmaco‐historic biography of the opiate alkaloid family and its clinical applications. Med. Res. Rev., 2015, 35(5), 1072-1096.
[http://dx.doi.org/10.1002/med.21357] [PMID: 26179481]
[19]
Galvis, C.E.P.; Kouznetsov, V.V. Recent advances for the C–C and C–N bond formation in the synthesis of 1-phenethyl-tetrahydroisoquinoline, aporphine, homoaporphine, and β-carboline alkaloids. Synthesis, 2017, 49, 4535-4561.
[http://dx.doi.org/10.1055/s-0036-1589512]
[20]
Cass, L.J.; Frederik, W.S. Methopholine, a new analgesic agent. Am. J. Med. Sci., 1963, 246, 550-557.
[http://dx.doi.org/10.1097/00000441-196311000-00005] [PMID: 14082642]
[21]
Dingemanse, J.; Gehin, M.; Cruz, H.G.; Hoever, P. Formulation development for the orexin receptor antagonist almorexant: assessment in two clinical studies. Drug Des. Devel. Ther., 2014, 8, 397-403.
[http://dx.doi.org/10.2147/DDDT.S62118] [PMID: 24812492]
[22]
Byvatov, E.; Sasse, B.C.; Stark, H.; Schneider, G. From virtual to real screening for D3 dopamine receptor ligands. ChemBioChem, 2005, 6(6), 997-999.
[http://dx.doi.org/10.1002/cbic.200400400] [PMID: 15852335]
[23]
Zimmermann, T.J.; Roy, S.; Martinez, N.E.; Ziegler, S.; Hedberg, C.; Waldmann, H. Biology-oriented synthesis of a tetrahydroisoquinoline-based compound collection targeting microtubule polymerization. ChemBioChem, 2013, 14(3), 295-300.
[http://dx.doi.org/10.1002/cbic.201200711] [PMID: 23364933]
[24]
Sanders, B.D.; Jackson, B.; Brent, M.; Taylor, A.M.; Dang, W.; Berger, S.L.; Schreiber, S.L.; Howitz, K.; Marmorstein, R. Identification and characterization of novel sirtuin inhibitor scaffolds. Bioorg. Med. Chem., 2009, 17(19), 7031-7041.
[http://dx.doi.org/10.1016/j.bmc.2009.07.073] [PMID: 19734050]
[25]
Tamayo, N.A.; Bo, Y.; Gore, V.; Ma, V.; Nishimura, N.; Tang, P.; Deng, H.; Klionsky, L.; Lehto, S.G.; Wang, W.; Youngblood, B.; Chen, J.; Correll, T.L.; Bartberger, M.D.; Gavva, N.R.; Norman, M.H. Fused piperidines as a novel class of potent and orally available transient receptor potential melastatin type 8 (TRPM8) antagonists. J. Med. Chem., 2012, 55(4), 1593-1611.
[http://dx.doi.org/10.1021/jm2013634] [PMID: 22329507]
[26]
Nguyen, H.H.; Kim, M.B.; Wilson, R.J.; Butch, C.J.; Kuo, K.M.; Miller, E.J.; Tahirovic, Y.A.; Jecs, E.; Truax, V.M.; Wang, T.; Sum, C.S.; Cvijic, M.E.; Schroeder, G.M.; Wilson, L.J.; Liotta, D.C. Design, synthesis, and pharmacological evaluation of second-generation tetrahydroisoquinoline-based CXCR4 antagonists with favorable ADME properties. J. Med. Chem., 2018, 61(16), 7168-7188.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00450] [PMID: 30052039]
[27]
Gandhi, S. Catalytic enantioselective cross dehydrogenative coupling of sp3 C-H of heterocycles. Org. Biomol. Chem., 2019, 17(45), 9683-9692.
[http://dx.doi.org/10.1039/C9OB02113B] [PMID: 31710329]
[28]
Otto, N.; Ferenc, D.; Opatz, T. A modular access to (±)-tubocurine and (±)-curine - formal total synthesis of tubocurarine. J. Org. Chem., 2017, 82(2), 1205-1217.
[http://dx.doi.org/10.1021/acs.joc.6b02647] [PMID: 27997804]
[29]
Marien, N.; Verniest, G. Gold (I)‐catalyzed synthesis of dihydrodibenzoquinolizinium salts. Adv. Synth. Catal., 2017, 359, 1996-2000.
[http://dx.doi.org/10.1002/adsc.201700126]
[30]
Kouznetsov, V.V.; Galvis, C.E.P. Strecker reaction and α-amino nitriles: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron, 2018, 74, 773-810.
[http://dx.doi.org/10.1016/j.tet.2018.01.005]
[31]
Villamizar, M.C.O.; Galvis, C.E.P.; Kouznetsov, V.V. The C-1 functionalization of tetrahydroisoquinolines via cross-dehydrogenative coupling reactions. In: Heterocycles via Cross Dehydrogenative Coupling. Synthesis and Functionalization; Srivastava, A.; Jana, C.K., Eds.; Springer: Singapore, 2019; pp. 77-108.
[http://dx.doi.org/10.1007/978-981-13-9144-6_3]
[32]
Narayan, R.; Matcha, K.; Antonchick, A.P. Metal‐free oxidative C-C bond formation through C-H bond functionalization. Chem. Eur. J.,, 2015, 21, 14678-14693.
[33]
Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K.R. A versatile C-H functionalization of tetrahydroisoquinolines catalyzed by iodine at aerobic conditions. Org. Lett., 2013, 15(5), 1092-1095.
[http://dx.doi.org/10.1021/ol4001153] [PMID: 23419035]
[34]
Tanoue, A.; Yoo, W.J.; Kobayashi, S. Sulfuryl chloride as an efficient initiator for the metal-free aerobic cross-dehydrogenative coupling reaction of tertiary amines. Org. Lett., 2014, 16(9), 2346-2349.
[http://dx.doi.org/10.1021/ol500661t] [PMID: 24725125]
[35]
Ueda, H.; Yoshida, K.; Tokuyama, H. Acetic acid promoted metal-free aerobic carbon-carbon bond forming reactions at α-position of tertiary amines. Org. Lett., 2014, 16(16), 4194-4197.
[http://dx.doi.org/10.1021/ol5018883] [PMID: 25062493]
[36]
Wagner, A.; Ofial, A.R. Potassium thiocyanate as source of cyanide for the oxidative α-cyanation of tertiary amines. J. Org. Chem., 2015, 80(5), 2848-2854.
[http://dx.doi.org/10.1021/jo502846c] [PMID: 25625439]
[37]
Nauth, A.M.; Otto, N.; Opatz, T. α-Cyanation of aromatic tertiary amines using ferricyanide as a non‐toxic cyanide source. Adv. Synth. Catal., 2015, 357, 3424-3428.
[http://dx.doi.org/10.1002/adsc.201500698]
[38]
Grundke, C.; Opatz, T. Strecker reactions with hexacyanoferrates as non-toxic cyanide sources. Green Chem., 2019, 21, 2362-2366.
[http://dx.doi.org/10.1039/C9GC00720B]
[39]
Kärkäs, M.D. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem. Soc. Rev., 2018, 47(15), 5786-5865.
[http://dx.doi.org/10.1039/C7CS00619E] [PMID: 29911724]
[40]
Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S.R. Electrifying organic synthesis. Angew. Chem. Int. Ed. Engl., 2018, 57(20), 5594-5619.
[http://dx.doi.org/10.1002/anie.201711060] [PMID: 29292849]
[41]
Louafi, F.; Hurvois, J.P.; Chibani, A.; Roisnel, T. Synthesis of tetrahydroisoquinoline alkaloids via anodic cyanation as the key step. J. Org. Chem., 2010, 75(16), 5721-5724.
[http://dx.doi.org/10.1021/jo100714y] [PMID: 20704442]
[42]
Benmekhbi, L.; Louafi, F.; Roisnel, T.; Hurvois, J.P. Synthesis of tetrahydroisoquinoline alkaloids and related compounds through the alkylation of anodically prepared α-amino nitriles. J. Org. Chem., 2016, 81(15), 6721-6739.
[http://dx.doi.org/10.1021/acs.joc.6b01419] [PMID: 27410716]
[43]
Nauth, A.M.; Opatz, T. Non-toxic cyanide sources and cyanating agents. Org. Biomol. Chem., 2018, 17(1), 11-23.
[http://dx.doi.org/10.1039/C8OB02140F] [PMID: 30288542]
[44]
Bonardi, A-H.; Dumur, F.; Noirbent, G.; Lalevée, J.; Gigmes, D. Organometallic vs organic photoredox catalysts for photocuring reactions in the visible region. Beilstein J. Org. Chem., 2018, 14, 3025-3046.
[http://dx.doi.org/10.3762/bjoc.14.282] [PMID: 30591826]
[45]
Pan, Y.; Wang, S.; Kee, C.W.; Dubuisson, E.; Yang, Y.; Loh, K.P.; Tan, C.H. Graphene oxide and Rose Bengal: oxidative C–H functionalisation of tertiary amines using visible light. Green Chem., 2011, 13, 3341-3344.
[http://dx.doi.org/10.1039/c1gc15865a]
[46]
Rueping, M.; Vila, C.; Bootwicha, T. Continuous flow organocatalytic C–H functionalization and cross-dehydrogenative coupling reactions: Visible light organophotocatalysis for multicomponent reactions and C–C, C–P bond formations. ACS Catal., 2013, 3, 1676-1680.
[http://dx.doi.org/10.1021/cs400350j]
[47]
Yan, C.; Liu, Y.; Wang, Q. Mild and highly efficient metal-free oxidative α-cyanation of N-acyl/sulfonyl tetrahydroisoquinolines. RSC Advances, 2014, 4, 60075-60078.
[http://dx.doi.org/10.1039/C4RA12922A]
[48]
Liu, L.; Floreancig, P.E. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone-catalyzed reactions employing MnO2 as a stoichiometric oxidant. Org. Lett., 2010, 12(20), 4686-4689.
[http://dx.doi.org/10.1021/ol102078v] [PMID: 20863093]
[49]
Kim, H.P.; Yu, H.; Kim, H.; Kim, S.H.; Lee, D. DDQ-promoted mild and efficient metal-free oxidative α-cyanation of N-acyl/sulfonyl 1,2,3,4-tetrahydroisoquinolines. Molecules, 2018, 23(12), 3223.
[http://dx.doi.org/10.3390/molecules23123223] [PMID: 30563272]
[50]
Yan, C.; Liu, Y.; Wang, Q. Direct C-H allylation of N-acyl/sulfonyl tetrahydroisoquinolines and analogues. Org. Lett., 2015, 17(22), 5714-5717.
[http://dx.doi.org/10.1021/acs.orglett.5b03042] [PMID: 26558601]
[51]
Chen, W.; Zheng, H.; Pan, X.; Xie, Z.; Zan, X.; Sun, B.; Liu, L.; Lou, H. A metal-free cross-dehydrogenative coupling of N-carbamoyl tetrahydroisoquinoline by sodium persulfate. Tetrahedron Lett., 2014, 55, 2879-2882.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.094]
[52]
Oss, G.; de Vos, S.D.; Luc, K.N.H.; Harper, J.B.; Nguyen, T.V. Tropylium-promoted oxidative functionalization of tetrahydroisoquinolines. J. Org. Chem., 2018, 83(2), 1000-1010.
[http://dx.doi.org/10.1021/acs.joc.7b02584] [PMID: 29231724]
[53]
Dandia, A.; Singh, R.; Maheshwari, S. Malononitrile as a key reagent in multicomponent reactions for the synthesis of pharmaceutically important pyridines. Curr. Org. Chem., 2014, 18, 2513-2529.
[http://dx.doi.org/10.2174/138527281819141028114524]
[54]
Zhang, H.; Shen, J.; Yang, Z.; Cui, X. PIDA-mediated intramolecular oxidative C–N bond formation for the direct synthesis of quinoxalines from enaminones. RSC Advances, 2019, 9, 7718-7722.
[http://dx.doi.org/10.1039/C9RA01200A]
[55]
Shu, X.Z.; Xia, X.F.; Yang, Y.F.; Ji, K.G.; Liu, X.Y.; Liang, Y.M. Selective functionalization of sp3 C-H bonds adjacent to nitrogen using (diacetoxyiodo)benzene (DIB). J. Org. Chem., 2009, 74(19), 7464-7469.
[http://dx.doi.org/10.1021/jo901583r] [PMID: 19731925]
[56]
Hari, D.P.; König, B.; Eosin, Y. Eosin Y catalyzed visible light oxidative C-C and C-P bond formation. Org. Lett., 2011, 13(15), 3852-3855.
[http://dx.doi.org/10.1021/ol201376v] [PMID: 21744842]
[57]
Xie, Z.; Liu, L.; Chen, W.; Zheng, H.; Xu, Q.; Yuan, H.; Lou, H. Practical metal-free C(sp3)-H functionalization: construction of structurally diverse α-substituted N-benzyl and N-allyl carbamates. Angew. Chem. Int. Ed. Engl., 2014, 53(15), 3904-3908.
[http://dx.doi.org/10.1002/anie.201310193] [PMID: 24596320]
[58]
Chen, L.; Sun, C.; Feng, G.; Cao, M.; Zhao, S.L.; Yan, J.; Wan, R.Z.; Liu, L. Direct oxidative C-H alkynylation of N-carbamoyl tetrahydroisoquinolines and dihydroisoquinolines. Org. Biomol. Chem., 2018, 16(15), 2792-2799.
[http://dx.doi.org/10.1039/C8OB00373D] [PMID: 29611855]