Quantum Patterns of Genome Size Variation in Angiosperms

Page: [80 - 89] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Aims: The discontinuous pattern of genome size variation in angiosperms is an unsolved problem related to genome evolution. In this study, we introduced a genome evolution operator and solved the related eigenvalue equation to deduce the discontinuous pattern.

Background: Genome is a well-defined system for studying the evolution of species. One of the basic problems is the genome size evolution. The DNA amounts for angiosperm species are highly variable, differing over 1000-fold. One big surprise is the discovery of the discontinuous distribution of nuclear DNA amounts in many angiosperm genera.

Objective: The discontinuous distribution of nuclear DNA amounts has certain regularity, much like a group of quantum states in atomic physics. The quantum pattern has not been explained by all the evolutionary theories so far and we shall interpret it through the quantum simulation of genome evolution.

Methods: We introduced a genome evolution operator H to deduce the distribution of DNA amount. The nuclear DNA amount in angiosperms is studied from the eigenvalue equation of the genome evolution operator H. The operator H is introduced by physical simulation and it is defined as a function of the genome size N and the derivative with respect to the size.

Results: The discontinuity of DNA size distribution and its synergetic occurrence in related angiosperms species are successfully deduced from the solution of the equation. The results agree well with the existing experimental data of Aloe, Clarkia, Nicotiana, Lathyrus, Allium and other genera.

Conclusion: The success of our approach may infer the existence of a set of genomic evolutionary equations satisfying classical-quantum duality. The classical phase of evolution means it obeys the classical deterministic law, while the quantum phase means it obeys the quantum stochastic law. The discontinuity of DNA size distribution provides novel evidences on the quantum evolution of angiosperms. It has been realized that the discontinuous pattern is due to the existence of some unknown evolutionary constraints. However, our study indicates that these constraints on the angiosperm genome essentially originate from quantum.

Keywords: DNA amount, discontinuous distribution, genome evolution operator, eigen-value equation, evolution, quantum.

Graphical Abstract

[1]
Bennett MD, Leitch IJ. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 2011; 107(3): 467-590.
[http://dx.doi.org/10.1093/aob/mcq258] [PMID: 21257716]
[2]
Gregory TR. The Evolution of the Genome. Burlington: Academic Press 2005; pp. 3-87.
[http://dx.doi.org/10.1016/B978-012301463-4/50003-6]
[3]
Bennett MD, Leitch IJ. The Evolution of the Genome. Burlington: Academic Press 2005; pp. 89-162.
[http://dx.doi.org/10.1016/B978-012301463-4/50004-8]
[4]
Bennett MD, Leitch IJ. Nuclear DNA amount and genome size in angiosperms - Preface. Ann Bot (Lond) 1998; 82: 1.
[http://dx.doi.org/10.1006/anbo.1998.0788]
[5]
Brandham PE, Doherty MJ. Genome size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection. Ann Bot (Lond) 1998; 82: 67-73.
[http://dx.doi.org/10.1006/anbo.1998.0742]
[6]
Narayan RKJ. Discontinuous DNA variation in the evolution of plant species. J Genet 1985; 64(2-3): 101-9.
[http://dx.doi.org/10.1007/BF02931138]
[7]
Narayan RKJ. The role of genomic constraints upon evolutionary changes in genome size and chromosome organization. Ann Bot (Lond) 1998; 82: 57-66.
[http://dx.doi.org/10.1006/anbo.1998.0752]
[8]
Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE. Nuclear DNA amounts in roses. Ann Bot (Lond) 2000; 85(4): 557-61.
[http://dx.doi.org/10.1006/anbo.1999.1102]
[9]
Kellogg EA, Bennetzen JL. The evolution of nuclear genome structure in seed plants. Am J Bot 2004; 91(10): 1709-25.
[http://dx.doi.org/10.3732/ajb.91.10.1709] [PMID: 21652319]
[10]
Hu TT, Pattyn P, Bakker EG, et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 2011; 43(5): 476-81.
[http://dx.doi.org/10.1038/ng.807] [PMID: 21478890]
[11]
Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, et al. Architecture and evolution of a minute plant genome. Nature 2013; 498(7452): 94-8.
[http://dx.doi.org/10.1038/nature12132] [PMID: 23665961]
[12]
Fleischmann A, Michael TP, Rivadavia F, et al. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Ann Bot 2014; 114(8): 1651-63.
[http://dx.doi.org/10.1093/aob/mcu189] [PMID: 25274549]
[13]
Stetter MG, Schmid KJ. Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol Phylogenet Evol 2017; 109: 80-92.
[http://dx.doi.org/10.1016/j.ympev.2016.12.029] [PMID: 28057554]
[14]
Knight CG, Platt M, Rowe W, et al. Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape. Nucleic Acids Res 2009; 37(1): e6.
[http://dx.doi.org/10.1093/nar/gkn899] [PMID: 19029139]
[15]
Karev GP, Berezovskaya FS, Koonin EV. Modeling genome evolution with a diffusion approximation of a birth-and-death process. Bioinformatics 2005; 21(Suppl. 3): iii12-9.
[http://dx.doi.org/10.1093/bioinformatics/bti1202]
[16]
Laxton RR. The measure of diversity. J Theor Biol 1978; 70(1): 51-67.
[http://dx.doi.org/10.1016/0022-5193(78)90302-8] [PMID: 625122]
[17]
Zhang L, Luo L. Splice site prediction with quadratic discriminant analysis using diversity measure. Nucleic Acids Res 2003; 31(21): 6214-20.
[http://dx.doi.org/10.1093/nar/gkg805] [PMID: 14576308]
[18]
Feng Y, Luo L. Use of tetrapeptide signals for protein secondary-structure prediction. Amino Acids 2008; 35(3): 607-14.
[http://dx.doi.org/10.1007/s00726-008-0089-7] [PMID: 18431531]
[19]
Chen W, Luo L, Zhang L. The organization of nucleosomes around splice sites. Nucleic Acids Res 2010; 38(9): 2788-98.
[http://dx.doi.org/10.1093/nar/gkq007] [PMID: 20097656]
[20]
Ridley M. Evolution. 3rd ed. Blackwell Publishing 2004.
[21]
Eldredge N, Gould SJ. On punctuated equilibria. Science 1997; 276(5311): 338-41.
[http://dx.doi.org/10.1126/science.276.5311.337c] [PMID: 9139351]
[22]
Jiao Y, Wickett NJ, Ayyampalayam S, et al. Ancestral polyploidy in seed plants and angiosperms. Nature 2011; 473(7345): 97-100.
[http://dx.doi.org/10.1038/nature09916] [PMID: 21478875]
[23]
Ren R, Wang H, Guo C, et al. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant 2018; 11(3): 414-28.
[http://dx.doi.org/10.1016/j.molp.2018.01.002] [PMID: 29317285]
[24]
Li Z, Tiley GP, Galuska SR, et al. Multiple large-scale gene and genome duplications during the evolution of hexapods. Proc Natl Acad Sci USA 2018; 115(18): 4713-8.
[http://dx.doi.org/10.1073/pnas.1710791115] [PMID: 29674453]
[25]
Tank DC, Eastman JM, Pennell MW, et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol 2015; 207(2): 454-67.
[http://dx.doi.org/10.1111/nph.13491] [PMID: 26053261]
[26]
Wendel JF. The wondrous cycles of polyploidy in plants. Am J Bot 2015; 102(11): 1753-6.
[http://dx.doi.org/10.3732/ajb.1500320] [PMID: 26451037]
[27]
Tate JA, Soltis DE, Soltis PS. The Evolution of the Genome. Burlington: Academic Press 2005; pp. 371-426.
[http://dx.doi.org/10.1016/B978-012301463-4/50009-7]
[28]
Koszul R, Caburet S, Dujon B, Fischer G. Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J 2004; 23(1): 234-43.
[http://dx.doi.org/10.1038/sj.emboj.7600024] [PMID: 14685272]