Liposome Circulation Time is Prolonged by CD47 Coating

Page: [1029 - 1037] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Bio-degradable nano-particles have many applications as drug delivery vehicles because of their good bio-availability, controlled release, low toxicity and potential for encapsulation. However, the most important obstacle to nanoparticulate drug delivery is elimination by macrophages which reduces the residence time of nanoparticles in the blood. To overcome this problem, the surface of the nanoparticle can be passivated by coating with Polyethylene glycol (PEG). However, the use of PEG has its own disadvantages. CD47 receptor acts as a self marker on the surface of many cells and inhibits phagocytosis. This study used a CD47 mimicry peptide as a substitute for PEG to fabricate “stealth” nanoliposome with reduced macrophage clearance.

Methods: Doxorubibin was used as a model drug because of its inherent fluorescence. Doxorubicin- containing liposomes were coated with different percentages of CD47 mimicry peptide (0.5% and 1%). PEG-functionalized doxorubicin-containing liposomes, were used as a comparator. The liposomal formulations were intravenously injected into mice. Serum was collected at pre-defined time points and tissue samples were taken at 24 hours. Fluorescence was used to determine the concentration doxorubicin in serum, heart, spleen, kidney, liver and lung tissues.

Results: Tissue biodistribution and serum kinetic studies indicated that compared with PEG, the use of CD47 mimicry peptide increased the circulation time of doxorubicin in the circulation. Moreover, unwanted accumulation of doxorubicin in the reticuloendothelial tissues (liver and spleen), kidney and heart was significantly decreased by the CD47 mimicry peptide.

Conclusion: The use of a CD47 mimicry peptide on the surface of nanoliposomes improved the residence time of liposomal doxorubicin in the circulation. The accumulation of drug in non-target tissues was reduced, thereby potentially reducing toxicity.

Keywords: Liposome, CD47, kinetic, half-life, phagocytosis, macrophage.

Graphical Abstract

[1]
Bangham, A.D. Physical structure and behavior of lipids and lipid enzymes. Adv. Lipid Res., 1963, 1, 65-104.
[http://dx.doi.org/10.1016/B978-1-4831-9937-5.50008-9 ] [PMID: 14248958]
[2]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4), 907.
[http://dx.doi.org/10.3390/molecules23040907 ] [PMID: 29662019]
[3]
Matsui, H.; Ito, T.; Ohnishi, S. Phagocytosis by macrophages. III. Effects of heat-labile opsonin and poly(L-lysine). J. Cell Sci., 1983, 59, 133-143.
[PMID: 6306023]
[4]
Ohno, K.; Akashi, T.; Tsujii, Y.; Yamamoto, M.; Tabata, Y. Blood clearance and biodistribution of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization. Biomacromolecules, 2012, 13(3), 927-936.
[http://dx.doi.org/10.1021/bm201855m ] [PMID: 22324307]
[5]
Owens, D.E., III; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307(1), 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010 ] [PMID: 16303268]
[6]
Liu, T.; Li, L.; Teng, X.; Huang, X.; Liu, H.; Chen, D.; Ren, J.; He, J.; Tang, F. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials, 2011, 32(6), 1657-1668.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.035 ] [PMID: 21093905]
[7]
Huang, X.; Li, L.; Liu, T.; Hao, N.; Liu, H.; Chen, D.; Tang, F. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 2011, 5(7), 5390-5399.
[http://dx.doi.org/10.1021/nn200365a ] [PMID: 21634407]
[8]
He, X.; Nie, H.; Wang, K.; Tan, W.; Wu, X.; Zhang, P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal. Chem., 2008, 80(24), 9597-9603.
[http://dx.doi.org/10.1021/ac801882g ] [PMID: 19007246]
[9]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001]
[10]
Florence, A.T. “Targeting” nanoparticles: The constraints of physical laws and physical barriers. J. Control. Release, 2012, 164(2), 115-124.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.022]
[11]
Pajarinen, J.; Kouri, V.P.; Jämsen, E.; Li, T.F.; Mandelin, J.; Konttinen, Y.T. The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomater., 2013, 9(11), 9229-9240.
[http://dx.doi.org/10.1016/j.actbio.2013.06.027 ] [PMID: 23827094]
[12]
Sharma, G.; Valenta, D.T.; Altman, Y.; Harvey, S.; Xie, H.; Mitragotri, S. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release, 2010, 147(3), 408-412.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.116]
[13]
Cho, W.S.; Choi, M.; Han, B.S.; Cho, M.; Oh, J.; Park, K.; Kim, S.J.; Kim, S.H.; Jeong, J. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol. Lett., 2007, 175(1-3), 24-33.
[http://dx.doi.org/10.1016/j.toxlet.2007.09.008 ] [PMID: 17981407]
[14]
Nishanth, R.P.; Jyotsna, R.G.; Schlager, J.J.; Hussain, S.M.; Reddanna, P. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway. Nanotoxicology, 2011, 5(4), 502-516.
[http://dx.doi.org/10.3109/17435390.2010.541604 ] [PMID: 21417802]
[15]
Park, E.J.; Park, K. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol. Lett., 2009, 184(1), 18-25.
[http://dx.doi.org/10.1016/j.toxlet.2008.10.012 ] [PMID: 19022359]
[16]
Orr, G.A.; Chrisler, W.B.; Cassens, K.J.; Tan, R.; Tarasevich, B.J.; Markillie, L.M.; Zangar, R.C.; Thrall, B.D. Cellular recognition and trafficking of amorphous silica nanoparticles by macrophage scavenger receptor A. Nanotoxicology, 2011, 5(3), 296-311.
[http://dx.doi.org/10.3109/17435390.2010.513836 ] [PMID: 20849212]
[17]
Walkey, C.D.; Chan, W.C. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev., 2012, 41(7), 2780-2799.
[http://dx.doi.org/10.1039/C1CS15233E ] [PMID: 22086677]
[18]
Barenholz, Y. Doxil(R)--the first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020]
[19]
Sutton, D.; Nasongkla, N.; Blanco, E.; Gao, J. Functionalized micellar systems for cancer targeted drug delivery. Pharm. Res., 2007, 24(6), 1029-1046.
[http://dx.doi.org/10.1007/s11095-006-9223-y ] [PMID: 17385025]
[20]
Hong, R.L.; Huang, C.J.; Tseng, Y.L.; Pang, V.F.; Chen, S.T.; Liu, J.J. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: Is surface coating with polyethylene glycol beneficial? Clin. Cancer Res., 1999, 5(11), 3645-3652.
[21]
Tagami, T.; Uehara, Y.; Moriyoshi, N.; Ishida, T.; Kiwada, H. Anti-PEG IgM production by siRNA encapsulated in a PEGylated lipid nanocarrier is dependent on the sequence of the siRNA. J. Control. Release, 2011, 151(2), 149-154.
[http://dx.doi.org/10.1016/j.jconrel.2010.12.013]
[22]
Armstrong, J.K.; Hempel, G.; Koling, S.; Chan, L.S.; Fisher, T.; Meiselman, H.J.; Garratty, G. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer, 2007, 110(1), 103-111.
[http://dx.doi.org/10.1002/cncr.22739 ] [PMID: 17516438]
[23]
Sroda, K.; Rydlewski, J.; Langner, M.; Kozubek, A.; Grzybek, M.; Sikorski, A.F. Repeated injections of PEG-PE liposomes generate anti-PEG antibodies. Cell. Mol. Biol. Lett., 2005, 10(1), 37-47.
[PMID: 15809678]
[24]
Mosqueira, V.C.; Legrand, P.; Gulik, A.; Bourdon, O.; Gref, R.; Labarre, D.; Barratt, G. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials, 2001, 22(22), 2967-2979.
[http://dx.doi.org/10.1016/S0142-9612(01)00043-6 ] [PMID: 11575471]
[25]
Hayat, S.M.G.; Bianconi, V.; Pirro, M.; Jaafari, M.R.; Hatamipour, M.; Sahebkar, A. CD47: Role in the immune system and application to cancer therapy. Cell Oncol. (Dordr.), 2020, 43(1), 19-30.
[http://dx.doi.org/10.1007/s13402-019-00469-5] [PMID: 31485984]
[26]
Woodle, M.C.; Papahadjopoulos, D. Liposome preparation and size characterization. Methods Enzymol., 1989, 171, 193-217.
[PMID: 2593841]
[27]
Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed., 2010, 99(3), 306-314.
[http://dx.doi.org/10.1016/j.cmpb.2010.01.007 ] [PMID: 20176408]
[28]
Aghajani, J.; Mirtajani, S.B.; Amiri Kojuri, S.; Zaheire, R.; Ayoubi, S. Assessment of HIV infection in cells of infected individuals. Banat’s J. Biotechnol., 2017, 8(16)
[http://dx.doi.org/10.7904/2068-4738-VIII(16)-24]
[29]
Azar, O.L.; Ehsani, M.; Aiubi, S.; Rahmani, F.A.; Moradi Kor, N. Cytochemical staining for the detection of acute and chronic blood leukemia. Banat’s J. Biotechnol., 2016, 7(14), 46-52.
[http://dx.doi.org/10.7904/2068-4738-VII(14)-46]
[30]
Rodino, S.; Butu, M.; Gaidau, C.; Calin, M.; Butu, A. Ontological model for the evaluation of the impact of nanoparticles on the human cell morphology. Banat’s J. Biotechnol., 2017, 8(16), 18-23.
[http://dx.doi.org/10.7904/2068-4738-VIII(16)-18]
[31]
Yadegari, M. Evaluation of bone regeneration by ostrich egg white substitute implanted with bone in tibia bone defect in animal model. Banat’s J. Biotechnol., 2017, 8(15), 50.
[http://dx.doi.org/10.7904/2068-4738-VIII(15)-50]
[32]
Gheibi-Hayat, S.M.; Bianconi, V.; Pirro, M.; Sahebkar, A. Stealth functionalization of biomaterials and nanoparticles by CD47 mimicry. International J. Pharma., 2019, 569, 118628.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118628]]
[33]
Tsai, R.K.; Discher, D.E. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol., 2008, 180(5), 989-1003.
[http://dx.doi.org/10.1083/jcb.200708043 ] [PMID: 18332220]
[34]
Bruns, H.; Bessell, C.; Varela, J.C.; Haupt, C.; Fang, J.; Pasemann, S. cd47 enhances in vivo functionality of artificial antigen-presenting cells. Clin. Cancer Res., 2015, 21(9), 2075-2083.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2696]