Novel Biomass Derived from Grape Pomace Waste as an Efficient Nanocatalyst for the Synthesis of Dibenzoxanthene, Tetraketone, bis(indolyl)alkane and Chromene Derivatives and their Antimicrobial Evaluation

Page: [440 - 456] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Sulfonated carbon-based solid acids (CBSAs) have been reported as an efficient solid acid catalyst for many acid-catalyzed reactions. Furthermore, the use of carbon obtained from biomass waste has been explored and these materials showed a higher catalytic performance and higher stability compared to other solid acids.

Objective: Novel biomass carbon-based solid acids nanoparticles with high catalytic activity in organic transformation, such as Grape pomace waste-SO3H Nanoparticles (GPW-SO3H NPs), were successfully synthesized.

Materials and Methods: Grape pomace waste-SO3H Nanoparticles (GPW-SO3H NPs) were successfully synthesized. The grape pomace waste was dried in an oven at a temperature of 70°C and crushed to powder using an electric spice grinder. A mixture of powdered grape pomace waste (1 g) and concentrated sulfuric acid (>98%, 10 mL) was stirred at room temperature. Then, the resultant mixture was transferred into a 100 mL sealed Teflon-lined autoclave and kept at 180°C for 12 h. After cooling to room temperature, the resulting black solid was dried at 100°C in an oven under vacuum and the sulfonic acid-functionalized magnetic nanoparticles (Fe3O4@C-SO3H) were obtained.

Results and Discussions: The catalytic activity of GPW-SO3H was assessed through an easy and rapid protocol developed for the one-pot synthesis of 14-aryl-14-H-dibenzo [a,j]xanthene, arylmethylene [bis(3- hydroxy-2-cyclohexene-1-one)], bis(indolyl)alkane and 2-amino-4-aryl-7-hydroxy-4H-chromene-3-carbonitrile derivatives in excellent yields. The advantages of this method include use of waste material for catalyst synthesis, high yields, mild reaction conditions, uncomplicated work-up procedures, neutral conditions, and recoverable catalyst.

Conclusion: We have shown that biomass-derived solid acids, prepared from grape pomace waste, serve as a non-toxic, inexpensive and a promising eco-friendly and novel carbon-based solid acid nanocatalyst for organic transformations.

Keywords: Carbon-based solid acids, grape pomace waste, dibenzoxanthene, tetraketone, bis(indolyl)alkane, chromene.

Graphical Abstract

[1]
Chang, B.; Fu, J.; Tian, Y.; Dong, X. Magnetically separable porous carbo nanospheres as solid acid catalysts. RSC Advances, 2013, 3, 1987-1994.
[http://dx.doi.org/10.1039/C2RA21982D]
[2]
Sajjadifar, S.; Rezayati, S. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature. Chem. Pap., 2014, 68, 531-539.
[http://dx.doi.org/10.2478/s11696-013-0480-z]
[3]
Fahid, F.; Kanaani, A.; Pourmousavi, S.A.; Ajloo, D. Synthesis, tautomeric stability, spectroscopy and computational study of a potential molecular switch of (Z)-4-(phenylamino) pent-3-en-2-one. Mol. Phys., 2017, 115, 795-808.
[http://dx.doi.org/10.1080/00268976.2017.1287439]
[4]
Hoseien abadi, Z.; Pourmousavi, S.A.; Zamani, M. Synthesis of sulfonated carbon-based solid acid as a novel and efficient nanocatalyst for the preparation of highly functionalized piperidines and acylals: A DFT study. Res. Chem. Intermed., 2016, 42, 6105-6124.
[http://dx.doi.org/10.1007/s11164-016-2448-4]
[5]
Hatti-Kaul, R. Tِrnvall, U.; Gustafsson, L.; Bِrjesson, P. Industrial biotechnology for the production of bio-based chemicals-A cradle-to-grave perspective. Trends Biotechnol., 2007, 25(3), 119-124.
[http://dx.doi.org/10.1016/j.tibtech.2007.01.001] [PMID: 17234288]
[6]
Zeng, D.; Liu, S.; Gong, W.; Wang, G.; Qiu, J.; Chen, H. Carlohydrate cyclic acetal formation and migration. Appl. Catal. A., 2014, 469, 284-289.
[http://dx.doi.org/10.1016/j.apcata.2013.09.038]
[7]
Chen, H.Y.; Cui, Z.W. A Microwave-sensitive solid acid catalyst prepared from sweet potato via a simple method. Catalysis., 2016, 6, 211.
[http://dx.doi.org/10.3390/catal6120211]
[8]
Liu, R.L.; Gao, X.Y.; An, L.; Ma, J.; Zhang, J.F.; Zhang, Z.Q. Fabrication of magnetic carbonaceous solid acids from banana peel for the esterification of oleic acid. RSC Advances, 2015, 5, 93858.
[http://dx.doi.org/10.1039/C5RA15767F]
[9]
Liu, T.; Li, L.; Li, W.; Shi, C.J.; Wang, Y. Bioresour. Preparation and characterization of oleic acid with methanol. Technology (Singap.), 2013, 133, 618-621.
[10]
Wankhade Amey, A.; Ganvir, V.N. Preparation of low cost activated carbon from tea waste using sulphuric acid as activating agent. Int. Res. Environ.Sci., 2013, 2, 53-55.
[11]
Clod, D.M. Carbohydrate cyclic acetal formation and migration. Chem. Rev., 1979, 79, 491-513.
[http://dx.doi.org/10.1021/cr60322a002]
[12]
Ilango, K.; Valentina, P. Text book of Medicinal Chemistry; Chennai, Keerthi Publishers, 2007, 1, pp. 336-52.
[13]
Rajanarendar, E.; Mohan, G.; Shiva Rami Reddy, A. Synthesis and antimicrobial activity of new isoxazolyl-1,3- benzoxazines. Indian J. Chem., 2008, 47B, 112-116.
[14]
Shu, Q.; Gao, J.; Nawaz, Z.; Liao, Y.; Wang, D.; Wang, J. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl. Energy, 2010, 87, 2589-2596.
[http://dx.doi.org/10.1016/j.apenergy.2010.03.024]
[15]
Zong, M.H.; Duan, Z.Q.; Lou, W.Y.; Smith, T.J.; Wu, H. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem., 2007, 9, 434-437.
[http://dx.doi.org/10.1039/b615447f]
[16]
Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.M.; Mahdavi, M. Preparation of an improved sulfonated carbon-based solid acid as a novel, efficient, and reusable catalyst for chemoselective synthesis of 2-oxazolines and bis-oxazolines. Monatsh. Chem., 2009, 140, 1489-1494.
[http://dx.doi.org/10.1007/s00706-009-0213-8]
[17]
(a)Nogradi, M. Product class 2: benzopyrylium salts. Benzopyrylium Salts. Sci. Synth., 2003, 14, 201.
(b)Kamel, M.M.; Shoeb, H.T. Dibenzoxanthylium Salts-IV: Studies on 1,2,5,6- Dibenzo- and 2,3,5,6-Dibenzo-Xanthylium Compounds. Tetrahedron., 1964, 20, 491. b) Katritzky, A.R.; Czerney,P.; and J.R. Levell, J.R. Benzotriazole- Mediated Conversions of para-H-Substituted Pyrylium, Benzo[b]pyrylium, and Xanthylium Salts into para- Position Functionalized Derivatives (An Indirect Electrophilic Substitution of Electron-Deficient Heteroaromatics). J. Org. Chem., 1997, 62, 8198.
[18]
Ion, R.M.; Albulescu, C.; Sirkecioglu, O.; Talinli, N. The spectroscopy and associated photodynamic activity of some 14-alkyl-14hdibenzo[a,j]xanthene derivatives. Photochem. Photobiol., 2000, 14, 201.
[http://dx.doi.org/www. photobiology. com/photobiol-ogy 2000/rodica 2/index. html.]
[19]
Poupelin, J.P.; Saint-Ruf, G.; Foussard-Blanpin, O.; Narcisse, G.; Uchida-Ernouf, G.; Lacroix, R. H4SiW12O40 Catalyzed One-Pot Synthesis of 12-Aryl- 8,9,10,12-tetrahydrobenzo[a] xanthen-11-ones Under Solvent-Free Conditions. Eur. J. Med. Chem., 1978, 13, 67.
[20]
Saint-Ruf, G. Huynh-Trong-Hieu; Poupelin, J.P. The effect of dibenzoxanthenes on the paralyzing action of zoxazolamine. Sci. Nat., 1975, 62(12), 584-585.
[http://dx.doi.org/10.1007/BF01166986] [PMID: 1214868]
[21]
Jha, A.; Beal, J. Convenient Synthesis of 12H-Benzo [a] xanthenes from 2-Tetralone. Tetrahedron Lett., 2004, 45, 8999.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.046]
[22]
Kuo, C.W.; Fang, J.M. Synthesis of xanthenes, indanes, and tetrahydro-naphthalenes via intramolecular phenyl–carbonyl coupling reactions. Synth. Commun., 2001, 31, 877.
[http://dx.doi.org/10.1081/SCC-100103323]
[23]
Sarma, R.J.; Baruha, J.B. One step synthesis of dibenzoxanthenes. Dyes and Pigm., 2005, 64, 91.
[http://dx.doi.org/10.1016/j.dyepig.2004.03.010]
[24]
Khosropour, A.R.; Khodaei, M.M.; Moghannian, H. Simple and convenient method for the synthesis of 14-alkyl or aryl-14-hdibenzo [ a,j]xanthenes catalyzed by ptsa in solution and solvent-free conditions. Synlett, 2005, 6, 955.
[http://dx.doi.org/10.1055/s-2005-864837]
[25]
Rajitha, B.; Sunil Kumar, B.; Thirupathi Reddy, Y.; Narsimha Reddy, P.; Sreenivasulu, N. A novel and efficient catalyst for the synthesis of aryl-14h-dibenzo [a.j]xanthenes under conventional heating and microwave irradiation. Tetrahedron Lett., 2005, 46, 8691.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.057]
[26]
Liu, D.; Yu, Y.; Shi, W.; Liu, C.; Luo, G. A highly efficient solvent-free synthesis of benzoxanthenes catalyzed by methanesulfonic Acid. Prep. Biochem. Biotechnol., 2007, 37(1), 77-81.
[http://dx.doi.org/10.1080/10826060601041465] [PMID: 17134985]
[27]
Wu, H.; Chen, X.M.; Wan, Y.; Xin, H.Q.; Xu, H.H.; Yue, C.H. Synthesis and luminescence of 14-aryl- or alkyl-14h-dibenzo[a,j]xanthenes catalyzed by 2-1′-methylimidazolium-3-yl-1-ethyl sulfate. Synth. Commun., 2009, 39, 3762.
[http://dx.doi.org/10.1080/00397910902838854]
[28]
Heravi, M.M.; Bakhtiari, K.; Daroogheha, Z.; Bamoharram, F. Facile heteropolyacid-promoted synthesis of 14-substituted-14-H-dibenzo [a, j] xanthene derivatives under solvent-free. J. Mol. Catal. Chem., 2007, 273, 99.
[http://dx.doi.org/10.1016/j.molcata.2007.03.041]
[29]
(a)Shaterian, H.R.; Ghashang, M.; Hassankhani, A. One-pot synthesis of aryl 14hdibenzo[a,j]xanthene leuco-dye derivatives. Dyes Pigments, 2008, 76, 564.
[http://dx.doi.org/10.1016/j.dyepig.2006.11.004]
(b)Hunnur, R.K.; Sunilkumar, B.; Kumar, P.S.; Srinivasulu, N.; Udupi, R.H.; Himabindu, V. Silica sulfuric acid: A simple, efficient, and reusable heterogeneous catalyst for the one-pot synthesis of aryl-14h-dibenzo[a,j]xanthenes under conventional heating and solvent-free conditions. Chem. Heterocycl. Compd., 2008, 44, 143.
[http://dx.doi.org/10.1007/s10593-008-0035-3]
[30]
Bigdeli, M.A.; Heravi, M.M.; Mahdavinia, G.H. Wet cyanuric chloride catalyzed simple and efficient synthesis of 14-aryl or alkyl-14hdibenzo[a,j]xanthenes. Catal. Commun., 2007, 8, 1595.
[http://dx.doi.org/10.1016/j.catcom.2007.01.007]
[31]
Saini, A.; Kumar, S.; Sandhu, J.S. A new libr-catalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14hdibenzo[a,j]xanthenes and tetrahydrobenzo[b]pyrans under solvent-free conventional and microwave heating. Synlett, 2006, 17, 1928.
[32]
Josephrajan, T.; Ramakrishnan, V.T. Termal and microwave assisted synthesis of N-aroylamino acridinediones. Can. J. Chem., 2007, 85, 572.
[http://dx.doi.org/10.1139/v07-075]
[33]
King, F.E.; Felton, D.G.I. cycloHexa-1: 3-dione: A reagent for the characterisation of aldehydes. J. Chem. Soc., 1948, 11, 1371.
[http://dx.doi.org/10.1039/jr9480001371]
[34]
Kidwai, M.; Bansal, V.; Mothsra, P.; Saxena, S.; Somvanshi, R.K. Deys and singh, Molecular iodine: A versatile catalyst for the synthesis of bis(4-hydroxycoumarin) methanes in water. J. Mol. Catal. Chem., 2007, 268, 76.
[http://dx.doi.org/10.1016/j.molcata.2006.11.054]
[35]
Kanterari, S.; Bantu, R.; Nagarapu, L. HClO4–SiO2 and PPA–SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. J. Mol. Catal., 2007, 269, 53.
[http://dx.doi.org/10.1016/j.molcata.2006.12.039]
[36]
Bayat, M.; Imanieh, H.; Hossieni, S.H. 2,2′-arylmethylene bis (3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) in aqueous medium atroom temperature. Chin. Chem. Lett., 2009, 20, 656.
[http://dx.doi.org/10.1016/j.cclet.2008.12.050]
[37]
Sundberg, R.J. The Chemistry of Indoles; Academic Press: New York, 1996.
[38]
Bell, R.; Carmeli, S.; Sar, N.; Vibrindole, A. A metabolite of the marine bacterium, vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish ostracion cubicus. J. Nat. Prod. (Lloydia), 1999, 57, 1587-1944.
[39]
Garbe, T.R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. Indolyl carboxylic acids by condensation of indoles with α-keto acids. J. Nat. Prod., 2000, 63(5), 596-598.
[http://dx.doi.org/10.1021/np990517s] [PMID: 10843566]
[40]
Kamal, A.; Qureshi, A.A. Syntheses of Some Substituted Di-Indolylmethanes in Aqueous Medium at Room Temperature. Tetrahedron, 1963, 19, 513.
[http://dx.doi.org/10.1016/S0040-4020(01)98540-0]
[41]
Babu, G.; Sridhar, N.; Perumal, P.T. A convenient method of synthesis of bisindolylmethanes: Indium trichloride catalyzed reactions of indole with aldehydes and Schiff’s bases. Synth. Commun., 2000, 30, 1609.
[http://dx.doi.org/10.1080/00397910008087197]
[42]
Koshima, H.; Matsuaka, W. N-bromosuccinimide catalyzed condensations of indoles with carbony. J. Heterocycl. Chem., 2002, 39, 1089.
[http://dx.doi.org/10.1002/jhet.5570390539]
[43]
Nagarajan, R.; Perumal, R.P.T. Potassium hydrogen sulfate –catalyzed reactions of indoes: A mild, expedient synthesis of bis-indlylmethanes. Chem. Lett., 2004, 33, 288.
[http://dx.doi.org/10.1246/cl.2004.288]
[44]
Ramesh, C.; Banerjee, J.; Pal, R. Adv. Silica-supported sodium hydrogen sulfate and amberlyst-15: Two efficient heterogenos catalysts for facile synthesis of bisand tris(1H-indol-3-yl) methanes from indoles and carbonyl compounds. Synth. Catal., 2003, 345, 557.
[http://dx.doi.org/10.1002/adsc.200303022]
[45]
Nagarajan, R.; Perumal, P.T. Electrophilic substition of indoles catalysed by triphenyl phoponium perchlorate: Synthesis of 3-acetyl indoles and bis-indolylmethane derivatives. Synth. Commun., 2002, 32, 105.
[http://dx.doi.org/10.1081/SCC-120001515]
[46]
Ramesh, C.; Ravindranath, N.; Das, B. Electrophilic substitution reactions of indoles with carbonyl compounds usng ceric ammonium nitrate: A novel and efficient method for the synthesis of di- and tri-indolylmethanes. J. Chem. Res. Synop., 2003, 555, 72-78.
[http://dx.doi.org/10.3184/030823403103173002]
[47]
Siamala, M. Recent progress in three-component reactions. Org. Prep. Proced. Int., 2009, 41, 1-68.
[http://dx.doi.org/10.1080/00304940802711218]
[48]
Poupaert, J.; Carato, P.; Colacino, E.; Yous, S. 2(3H)-benzoxazolone and bioisosters as privileged scaffold in the design of pharmacological probes. Curr. Med. Chem., 2005, 12(7), 877-885.
[http://dx.doi.org/10.2174/0929867053507388] [PMID: 15853716]
[49]
Triggle, D.J. 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell. Mol. Neurobiol., 2003, 23(3), 293-303.
[http://dx.doi.org/10.1023/A:1023632419813] [PMID: 12825828]
[50]
Kathrotiya, H.G.; Patel, M.P. Microwave-assisted synthesis of 3′-indolyl substituted 4H-chromenes catalyzed by DMAP and their antimicrobial activity. Med. Chem. Res., 2012, 21, 3406-3416.
[http://dx.doi.org/10.1007/s00044-011-9861-4]
[51]
Abrunhosa, L.; Costa, M.; Areias, F.; Venâncio, A.; Proença, F. Antifungal activity of a novel chromene dimer. J. Ind. Microbiol. Biotechnol., 2007, 34(12), 787-792.
[http://dx.doi.org/10.1007/s10295-007-0255-z] [PMID: 17899234]
[52]
Kidwai, M.; Saxena, S.; Khan, M.K.R.; Thukral, S.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg. Med. Chem. Lett., 2005, 15(19), 4295-4298.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.041] [PMID: 16040241]
[53]
Alvey, L.; Prado, S.; Huteau, V.; Saint-Joanis, B.; Michel, S.; Koch, M.; Cole, S.T.; Tillequin, F.; Janin, Y.L. A new synthetic access to furo[3,2-f]chromene analogues of an antimycobacterial. Bioorg. Med. Chem., 2008, 16(17), 8264-8272.
[http://dx.doi.org/10.1016/j.bmc.2008.06.057] [PMID: 18752967]
[54]
Narender, T. Shweta; Gupta, S. A convenient and biogenetic type synthesis of few naturally occurring chromeno dihydrochalcones and their in vitro antileishmanial activity. Bioorg. Med. Chem. Lett., 2004, 14(15), 3913-3916.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.071] [PMID: 15225696]
[55]
Mansouri, K.; Khodarahmi, R.; Foroumadi, A.; Mostafaie, A.; Mohammadi Motlagh, H. Anti-angiogenic/proliferative behavior of a “4-aryl-4H-chromene” on blood vessel’s endothelial cells: A possible evidence on dual “anti-tumor” activity. Med. Chem. Res., 2011, 20, 920-929.
[http://dx.doi.org/10.1007/s00044-010-9418-y]
[56]
Tandon, V.K.; Vaish, M.; Jain, S.; Bhakuni, D.S.; Srimal, R.C. Synthesis, carbon-13 NMR, and hypotensive action of 2,3-dihydro-2,2-dimethyl-4H-naphtho [1,2- b] pyran-4-one. Indian J. Pharm. Sci., 1991, 523, 22-23.
[57]
Brunavs, M.; Dell, C.P.; Gallagher, P.T.; Owton, W.M.; Smith, C.M. 4H-naphtho[1,2-b]pyran derivatives as antiproliferative agents. Eur. Pat. Appl. EP., 1993, 075, 557.
[58]
Longobardi, M.; Bargagna, A.; Mariani, E.; Schenone, P.; Vitagliano, S.; Stella, L.; Di Sarno, A.; Marmo, E. 2H-[1]benzothiepino [5,4-b]pyran derivatives with local anesthetic and antiarrhythmic activities. Farmaco, 1990, 45(4), 399-404.
[PMID: 2400514]
[59]
Wang, H.J.; Lu, J.; Zhang, Z.H. Highly efficient three-component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives. Monatsh. Chem., 2010, 141, 1107-1112.
[http://dx.doi.org/10.1007/s00706-010-0383-4]
[60]
Heravi, M.M.; Jani, B.F.; Derikvand, F.; Bamoharram, F.F.; Oskooie, H.A. Three component, one-pot synthesis of dihydropyrano [3, 2-c] chromene derivatives in the presence of H 6 P 2 W 18 O 62• 18H 2 O as a green and recyclable catalyst. Catal. Commun., 2008, 10, 272-275.
[http://dx.doi.org/10.1016/j.catcom.2008.08.023]
[61]
Kolla, S.R.; Lee, Y.P. Ca(OH)2-mediated efficient synthesis of 2-amino-5-hydroxy-4H- chromene derivatives with various substituents. Tetrahedron, 2011, 67, 8271-8275.
[http://dx.doi.org/10.1016/j.tet.2011.08.086]
[62]
Xu, J.C.; Li, W.M. heng, H.; Lai, Y.F.; Zhang, P.F. One-pot synthesis of tetrahydrochromene derivatives catalyzed by lipase. Tetrahedron, 2011, 67, 9582-9587.
[http://dx.doi.org/10.1016/j.tet.2011.09.137]
[63]
Ding, D.; Zhao, C.G. Organocatalyzed synthesis of 2-amino-8-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles. Tetrahedron Lett., 2010, 51(9), 1322-1325.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.139] [PMID: 20161684]
[64]
Banerjee, S.S.; Horn, A.; Khatri, A.; Sereda, G. A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 2011, 52, 1878-1881.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.031]
[65]
Kiyani, H.; Ghorbani, F. Potassium phthalimide promoted green multicomponent tandem synthesis of 2-amino-4H-chromenes and 6-amino-4H-pyran-3-carboxylates. J. Saudi Chem. Soc., 2014, 18, 689-701.
[http://dx.doi.org/10.1016/j.jscs.2014.02.004]