Current Organic Synthesis

Author(s): Fatemeh Ghorbani, Seied Ali Pourmousavi* and Hamzeh Kiyani

DOI: 10.2174/1570179417666200409144600

DownloadDownload PDF Flyer Cite As
Novel Biomass Derived from Grape Pomace Waste as an Efficient Nanocatalyst for the Synthesis of Dibenzoxanthene, Tetraketone, bis(indolyl)alkane and Chromene Derivatives and their Antimicrobial Evaluation

Page: [440 - 456] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Sulfonated carbon-based solid acids (CBSAs) have been reported as an efficient solid acid catalyst for many acid-catalyzed reactions. Furthermore, the use of carbon obtained from biomass waste has been explored and these materials showed a higher catalytic performance and higher stability compared to other solid acids.

Objective: Novel biomass carbon-based solid acids nanoparticles with high catalytic activity in organic transformation, such as Grape pomace waste-SO3H Nanoparticles (GPW-SO3H NPs), were successfully synthesized.

Materials and Methods: Grape pomace waste-SO3H Nanoparticles (GPW-SO3H NPs) were successfully synthesized. The grape pomace waste was dried in an oven at a temperature of 70°C and crushed to powder using an electric spice grinder. A mixture of powdered grape pomace waste (1 g) and concentrated sulfuric acid (>98%, 10 mL) was stirred at room temperature. Then, the resultant mixture was transferred into a 100 mL sealed Teflon-lined autoclave and kept at 180°C for 12 h. After cooling to room temperature, the resulting black solid was dried at 100°C in an oven under vacuum and the sulfonic acid-functionalized magnetic nanoparticles (Fe3O4@C-SO3H) were obtained.

Results and Discussions: The catalytic activity of GPW-SO3H was assessed through an easy and rapid protocol developed for the one-pot synthesis of 14-aryl-14-H-dibenzo [a,j]xanthene, arylmethylene [bis(3- hydroxy-2-cyclohexene-1-one)], bis(indolyl)alkane and 2-amino-4-aryl-7-hydroxy-4H-chromene-3-carbonitrile derivatives in excellent yields. The advantages of this method include use of waste material for catalyst synthesis, high yields, mild reaction conditions, uncomplicated work-up procedures, neutral conditions, and recoverable catalyst.

Conclusion: We have shown that biomass-derived solid acids, prepared from grape pomace waste, serve as a non-toxic, inexpensive and a promising eco-friendly and novel carbon-based solid acid nanocatalyst for organic transformations.

Keywords: Carbon-based solid acids, grape pomace waste, dibenzoxanthene, tetraketone, bis(indolyl)alkane, chromene.

Graphical Abstract

[1]
Chang, B.; Fu, J.; Tian, Y.; Dong, X. Magnetically separable porous carbo nanospheres as solid acid catalysts. RSC Advances, 2013, 3, 1987-1994.
[http://dx.doi.org/10.1039/C2RA21982D]
[2]
Sajjadifar, S.; Rezayati, S. Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature. Chem. Pap., 2014, 68, 531-539.
[http://dx.doi.org/10.2478/s11696-013-0480-z]
[3]
Fahid, F.; Kanaani, A.; Pourmousavi, S.A.; Ajloo, D. Synthesis, tautomeric stability, spectroscopy and computational study of a potential molecular switch of (Z)-4-(phenylamino) pent-3-en-2-one. Mol. Phys., 2017, 115, 795-808.
[http://dx.doi.org/10.1080/00268976.2017.1287439]
[4]
Hoseien abadi, Z.; Pourmousavi, S.A.; Zamani, M. Synthesis of sulfonated carbon-based solid acid as a novel and efficient nanocatalyst for the preparation of highly functionalized piperidines and acylals: A DFT study. Res. Chem. Intermed., 2016, 42, 6105-6124.
[http://dx.doi.org/10.1007/s11164-016-2448-4]
[5]
Hatti-Kaul, R. Tِrnvall, U.; Gustafsson, L.; Bِrjesson, P. Industrial biotechnology for the production of bio-based chemicals-A cradle-to-grave perspective. Trends Biotechnol., 2007, 25(3), 119-124.
[http://dx.doi.org/10.1016/j.tibtech.2007.01.001] [PMID: 17234288]
[6]
Zeng, D.; Liu, S.; Gong, W.; Wang, G.; Qiu, J.; Chen, H. Carlohydrate cyclic acetal formation and migration. Appl. Catal. A., 2014, 469, 284-289.
[http://dx.doi.org/10.1016/j.apcata.2013.09.038]
[7]
Chen, H.Y.; Cui, Z.W. A Microwave-sensitive solid acid catalyst prepared from sweet potato via a simple method. Catalysis., 2016, 6, 211.
[http://dx.doi.org/10.3390/catal6120211]
[8]
Liu, R.L.; Gao, X.Y.; An, L.; Ma, J.; Zhang, J.F.; Zhang, Z.Q. Fabrication of magnetic carbonaceous solid acids from banana peel for the esterification of oleic acid. RSC Advances, 2015, 5, 93858.
[http://dx.doi.org/10.1039/C5RA15767F]
[9]
Liu, T.; Li, L.; Li, W.; Shi, C.J.; Wang, Y. Bioresour. Preparation and characterization of oleic acid with methanol. Technology (Singap.), 2013, 133, 618-621.
[10]
Wankhade Amey, A.; Ganvir, V.N. Preparation of low cost activated carbon from tea waste using sulphuric acid as activating agent. Int. Res. Environ.Sci., 2013, 2, 53-55.
[11]
Clod, D.M. Carbohydrate cyclic acetal formation and migration. Chem. Rev., 1979, 79, 491-513.
[http://dx.doi.org/10.1021/cr60322a002]
[12]
Ilango, K.; Valentina, P. Text book of Medicinal Chemistry; Chennai, Keerthi Publishers, 2007, 1, pp. 336-52.
[13]
Rajanarendar, E.; Mohan, G.; Shiva Rami Reddy, A. Synthesis and antimicrobial activity of new isoxazolyl-1,3- benzoxazines. Indian J. Chem., 2008, 47B, 112-116.
[14]
Shu, Q.; Gao, J.; Nawaz, Z.; Liao, Y.; Wang, D.; Wang, J. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl. Energy, 2010, 87, 2589-2596.
[http://dx.doi.org/10.1016/j.apenergy.2010.03.024]
[15]
Zong, M.H.; Duan, Z.Q.; Lou, W.Y.; Smith, T.J.; Wu, H. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem., 2007, 9, 434-437.
[http://dx.doi.org/10.1039/b615447f]
[16]
Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Mohammadpoor-Baltork, I.M.; Mahdavi, M. Preparation of an improved sulfonated carbon-based solid acid as a novel, efficient, and reusable catalyst for chemoselective synthesis of 2-oxazolines and bis-oxazolines. Monatsh. Chem., 2009, 140, 1489-1494.
[http://dx.doi.org/10.1007/s00706-009-0213-8]
[17]
(a)Nogradi, M. Product class 2: benzopyrylium salts. Benzopyrylium Salts. Sci. Synth., 2003, 14, 201.
(b)Kamel, M.M.; Shoeb, H.T. Dibenzoxanthylium Salts-IV: Studies on 1,2,5,6- Dibenzo- and 2,3,5,6-Dibenzo-Xanthylium Compounds. Tetrahedron., 1964, 20, 491. b) Katritzky, A.R.; Czerney,P.; and J.R. Levell, J.R. Benzotriazole- Mediated Conversions of para-H-Substituted Pyrylium, Benzo[b]pyrylium, and Xanthylium Salts into para- Position Functionalized Derivatives (An Indirect Electrophilic Substitution of Electron-Deficient Heteroaromatics). J. Org. Chem., 1997, 62, 8198.
[18]
Ion, R.M.; Albulescu, C.; Sirkecioglu, O.; Talinli, N. The spectroscopy and associated photodynamic activity of some 14-alkyl-14hdibenzo[a,j]xanthene derivatives. Photochem. Photobiol., 2000, 14, 201.
[http://dx.doi.org/www. photobiology. com/photobiol-ogy 2000/rodica 2/index. html.]
[19]
Poupelin, J.P.; Saint-Ruf, G.; Foussard-Blanpin, O.; Narcisse, G.; Uchida-Ernouf, G.; Lacroix, R. H4SiW12O40 Catalyzed One-Pot Synthesis of 12-Aryl- 8,9,10,12-tetrahydrobenzo[a] xanthen-11-ones Under Solvent-Free Conditions. Eur. J. Med. Chem., 1978, 13, 67.
[20]
Saint-Ruf, G. Huynh-Trong-Hieu; Poupelin, J.P. The effect of dibenzoxanthenes on the paralyzing action of zoxazolamine. Sci. Nat., 1975, 62(12), 584-585.
[http://dx.doi.org/10.1007/BF01166986] [PMID: 1214868]
[21]
Jha, A.; Beal, J. Convenient Synthesis of 12H-Benzo [a] xanthenes from 2-Tetralone. Tetrahedron Lett., 2004, 45, 8999.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.046]
[22]
Kuo, C.W.; Fang, J.M. Synthesis of xanthenes, indanes, and tetrahydro-naphthalenes via intramolecular phenyl–carbonyl coupling reactions. Synth. Commun., 2001, 31, 877.
[http://dx.doi.org/10.1081/SCC-100103323]
[23]
Sarma, R.J.; Baruha, J.B. One step synthesis of dibenzoxanthenes. Dyes and Pigm., 2005, 64, 91.
[http://dx.doi.org/10.1016/j.dyepig.2004.03.010]
[24]
Khosropour, A.R.; Khodaei, M.M.; Moghannian, H. Simple and convenient method for the synthesis of 14-alkyl or aryl-14-hdibenzo [ a,j]xanthenes catalyzed by ptsa in solution and solvent-free conditions. Synlett, 2005, 6, 955.
[http://dx.doi.org/10.1055/s-2005-864837]
[25]
Rajitha, B.; Sunil Kumar, B.; Thirupathi Reddy, Y.; Narsimha Reddy, P.; Sreenivasulu, N. A novel and efficient catalyst for the synthesis of aryl-14h-dibenzo [a.j]xanthenes under conventional heating and microwave irradiation. Tetrahedron Lett., 2005, 46, 8691.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.057]
[26]
Liu, D.; Yu, Y.; Shi, W.; Liu, C.; Luo, G. A highly efficient solvent-free synthesis of benzoxanthenes catalyzed by methanesulfonic Acid. Prep. Biochem. Biotechnol., 2007, 37(1), 77-81.
[http://dx.doi.org/10.1080/10826060601041465] [PMID: 17134985]
[27]
Wu, H.; Chen, X.M.; Wan, Y.; Xin, H.Q.; Xu, H.H.; Yue, C.H. Synthesis and luminescence of 14-aryl- or alkyl-14h-dibenzo[a,j]xanthenes catalyzed by 2-1′-methylimidazolium-3-yl-1-ethyl sulfate. Synth. Commun., 2009, 39, 3762.
[http://dx.doi.org/10.1080/00397910902838854]
[28]
Heravi, M.M.; Bakhtiari, K.; Daroogheha, Z.; Bamoharram, F. Facile heteropolyacid-promoted synthesis of 14-substituted-14-H-dibenzo [a, j] xanthene derivatives under solvent-free. J. Mol. Catal. Chem., 2007, 273, 99.
[http://dx.doi.org/10.1016/j.molcata.2007.03.041]
[29]
(a)Shaterian, H.R.; Ghashang, M.; Hassankhani, A. One-pot synthesis of aryl 14hdibenzo[a,j]xanthene leuco-dye derivatives. Dyes Pigments, 2008, 76, 564.
[http://dx.doi.org/10.1016/j.dyepig.2006.11.004]
(b)Hunnur, R.K.; Sunilkumar, B.; Kumar, P.S.; Srinivasulu, N.; Udupi, R.H.; Himabindu, V. Silica sulfuric acid: A simple, efficient, and reusable heterogeneous catalyst for the one-pot synthesis of aryl-14h-dibenzo[a,j]xanthenes under conventional heating and solvent-free conditions. Chem. Heterocycl. Compd., 2008, 44, 143.
[http://dx.doi.org/10.1007/s10593-008-0035-3]
[30]
Bigdeli, M.A.; Heravi, M.M.; Mahdavinia, G.H. Wet cyanuric chloride catalyzed simple and efficient synthesis of 14-aryl or alkyl-14hdibenzo[a,j]xanthenes. Catal. Commun., 2007, 8, 1595.
[http://dx.doi.org/10.1016/j.catcom.2007.01.007]
[31]
Saini, A.; Kumar, S.; Sandhu, J.S. A new libr-catalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14hdibenzo[a,j]xanthenes and tetrahydrobenzo[b]pyrans under solvent-free conventional and microwave heating. Synlett, 2006, 17, 1928.
[32]
Josephrajan, T.; Ramakrishnan, V.T. Termal and microwave assisted synthesis of N-aroylamino acridinediones. Can. J. Chem., 2007, 85, 572.
[http://dx.doi.org/10.1139/v07-075]
[33]
King, F.E.; Felton, D.G.I. cycloHexa-1: 3-dione: A reagent for the characterisation of aldehydes. J. Chem. Soc., 1948, 11, 1371.
[http://dx.doi.org/10.1039/jr9480001371]
[34]
Kidwai, M.; Bansal, V.; Mothsra, P.; Saxena, S.; Somvanshi, R.K. Deys and singh, Molecular iodine: A versatile catalyst for the synthesis of bis(4-hydroxycoumarin) methanes in water. J. Mol. Catal. Chem., 2007, 268, 76.
[http://dx.doi.org/10.1016/j.molcata.2006.11.054]
[35]
Kanterari, S.; Bantu, R.; Nagarapu, L. HClO4–SiO2 and PPA–SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. J. Mol. Catal., 2007, 269, 53.
[http://dx.doi.org/10.1016/j.molcata.2006.12.039]
[36]
Bayat, M.; Imanieh, H.; Hossieni, S.H. 2,2′-arylmethylene bis (3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) in aqueous medium atroom temperature. Chin. Chem. Lett., 2009, 20, 656.
[http://dx.doi.org/10.1016/j.cclet.2008.12.050]
[37]
Sundberg, R.J. The Chemistry of Indoles; Academic Press: New York, 1996.
[38]
Bell, R.; Carmeli, S.; Sar, N.; Vibrindole, A. A metabolite of the marine bacterium, vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish ostracion cubicus. J. Nat. Prod. (Lloydia), 1999, 57, 1587-1944.
[39]
Garbe, T.R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. Indolyl carboxylic acids by condensation of indoles with α-keto acids. J. Nat. Prod., 2000, 63(5), 596-598.
[http://dx.doi.org/10.1021/np990517s] [PMID: 10843566]
[40]
Kamal, A.; Qureshi, A.A. Syntheses of Some Substituted Di-Indolylmethanes in Aqueous Medium at Room Temperature. Tetrahedron, 1963, 19, 513.
[http://dx.doi.org/10.1016/S0040-4020(01)98540-0]
[41]
Babu, G.; Sridhar, N.; Perumal, P.T. A convenient method of synthesis of bisindolylmethanes: Indium trichloride catalyzed reactions of indole with aldehydes and Schiff’s bases. Synth. Commun., 2000, 30, 1609.
[http://dx.doi.org/10.1080/00397910008087197]
[42]
Koshima, H.; Matsuaka, W. N-bromosuccinimide catalyzed condensations of indoles with carbony. J. Heterocycl. Chem., 2002, 39, 1089.
[http://dx.doi.org/10.1002/jhet.5570390539]
[43]
Nagarajan, R.; Perumal, R.P.T. Potassium hydrogen sulfate –catalyzed reactions of indoes: A mild, expedient synthesis of bis-indlylmethanes. Chem. Lett., 2004, 33, 288.
[http://dx.doi.org/10.1246/cl.2004.288]
[44]
Ramesh, C.; Banerjee, J.; Pal, R. Adv. Silica-supported sodium hydrogen sulfate and amberlyst-15: Two efficient heterogenos catalysts for facile synthesis of bisand tris(1H-indol-3-yl) methanes from indoles and carbonyl compounds. Synth. Catal., 2003, 345, 557.
[http://dx.doi.org/10.1002/adsc.200303022]
[45]
Nagarajan, R.; Perumal, P.T. Electrophilic substition of indoles catalysed by triphenyl phoponium perchlorate: Synthesis of 3-acetyl indoles and bis-indolylmethane derivatives. Synth. Commun., 2002, 32, 105.
[http://dx.doi.org/10.1081/SCC-120001515]
[46]
Ramesh, C.; Ravindranath, N.; Das, B. Electrophilic substitution reactions of indoles with carbonyl compounds usng ceric ammonium nitrate: A novel and efficient method for the synthesis of di- and tri-indolylmethanes. J. Chem. Res. Synop., 2003, 555, 72-78.
[http://dx.doi.org/10.3184/030823403103173002]
[47]
Siamala, M. Recent progress in three-component reactions. Org. Prep. Proced. Int., 2009, 41, 1-68.
[http://dx.doi.org/10.1080/00304940802711218]
[48]
Poupaert, J.; Carato, P.; Colacino, E.; Yous, S. 2(3H)-benzoxazolone and bioisosters as privileged scaffold in the design of pharmacological probes. Curr. Med. Chem., 2005, 12(7), 877-885.
[http://dx.doi.org/10.2174/0929867053507388] [PMID: 15853716]
[49]
Triggle, D.J. 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell. Mol. Neurobiol., 2003, 23(3), 293-303.
[http://dx.doi.org/10.1023/A:1023632419813] [PMID: 12825828]
[50]
Kathrotiya, H.G.; Patel, M.P. Microwave-assisted synthesis of 3′-indolyl substituted 4H-chromenes catalyzed by DMAP and their antimicrobial activity. Med. Chem. Res., 2012, 21, 3406-3416.
[http://dx.doi.org/10.1007/s00044-011-9861-4]
[51]
Abrunhosa, L.; Costa, M.; Areias, F.; Venâncio, A.; Proença, F. Antifungal activity of a novel chromene dimer. J. Ind. Microbiol. Biotechnol., 2007, 34(12), 787-792.
[http://dx.doi.org/10.1007/s10295-007-0255-z] [PMID: 17899234]
[52]
Kidwai, M.; Saxena, S.; Khan, M.K.R.; Thukral, S.S. Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents. Bioorg. Med. Chem. Lett., 2005, 15(19), 4295-4298.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.041] [PMID: 16040241]
[53]
Alvey, L.; Prado, S.; Huteau, V.; Saint-Joanis, B.; Michel, S.; Koch, M.; Cole, S.T.; Tillequin, F.; Janin, Y.L. A new synthetic access to furo[3,2-f]chromene analogues of an antimycobacterial. Bioorg. Med. Chem., 2008, 16(17), 8264-8272.
[http://dx.doi.org/10.1016/j.bmc.2008.06.057] [PMID: 18752967]
[54]
Narender, T. Shweta; Gupta, S. A convenient and biogenetic type synthesis of few naturally occurring chromeno dihydrochalcones and their in vitro antileishmanial activity. Bioorg. Med. Chem. Lett., 2004, 14(15), 3913-3916.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.071] [PMID: 15225696]
[55]
Mansouri, K.; Khodarahmi, R.; Foroumadi, A.; Mostafaie, A.; Mohammadi Motlagh, H. Anti-angiogenic/proliferative behavior of a “4-aryl-4H-chromene” on blood vessel’s endothelial cells: A possible evidence on dual “anti-tumor” activity. Med. Chem. Res., 2011, 20, 920-929.
[http://dx.doi.org/10.1007/s00044-010-9418-y]
[56]
Tandon, V.K.; Vaish, M.; Jain, S.; Bhakuni, D.S.; Srimal, R.C. Synthesis, carbon-13 NMR, and hypotensive action of 2,3-dihydro-2,2-dimethyl-4H-naphtho [1,2- b] pyran-4-one. Indian J. Pharm. Sci., 1991, 523, 22-23.
[57]
Brunavs, M.; Dell, C.P.; Gallagher, P.T.; Owton, W.M.; Smith, C.M. 4H-naphtho[1,2-b]pyran derivatives as antiproliferative agents. Eur. Pat. Appl. EP., 1993, 075, 557.
[58]
Longobardi, M.; Bargagna, A.; Mariani, E.; Schenone, P.; Vitagliano, S.; Stella, L.; Di Sarno, A.; Marmo, E. 2H-[1]benzothiepino [5,4-b]pyran derivatives with local anesthetic and antiarrhythmic activities. Farmaco, 1990, 45(4), 399-404.
[PMID: 2400514]
[59]
Wang, H.J.; Lu, J.; Zhang, Z.H. Highly efficient three-component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives. Monatsh. Chem., 2010, 141, 1107-1112.
[http://dx.doi.org/10.1007/s00706-010-0383-4]
[60]
Heravi, M.M.; Jani, B.F.; Derikvand, F.; Bamoharram, F.F.; Oskooie, H.A. Three component, one-pot synthesis of dihydropyrano [3, 2-c] chromene derivatives in the presence of H 6 P 2 W 18 O 62• 18H 2 O as a green and recyclable catalyst. Catal. Commun., 2008, 10, 272-275.
[http://dx.doi.org/10.1016/j.catcom.2008.08.023]
[61]
Kolla, S.R.; Lee, Y.P. Ca(OH)2-mediated efficient synthesis of 2-amino-5-hydroxy-4H- chromene derivatives with various substituents. Tetrahedron, 2011, 67, 8271-8275.
[http://dx.doi.org/10.1016/j.tet.2011.08.086]
[62]
Xu, J.C.; Li, W.M. heng, H.; Lai, Y.F.; Zhang, P.F. One-pot synthesis of tetrahydrochromene derivatives catalyzed by lipase. Tetrahedron, 2011, 67, 9582-9587.
[http://dx.doi.org/10.1016/j.tet.2011.09.137]
[63]
Ding, D.; Zhao, C.G. Organocatalyzed synthesis of 2-amino-8-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles. Tetrahedron Lett., 2010, 51(9), 1322-1325.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.139] [PMID: 20161684]
[64]
Banerjee, S.S.; Horn, A.; Khatri, A.; Sereda, G. A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 2011, 52, 1878-1881.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.031]
[65]
Kiyani, H.; Ghorbani, F. Potassium phthalimide promoted green multicomponent tandem synthesis of 2-amino-4H-chromenes and 6-amino-4H-pyran-3-carboxylates. J. Saudi Chem. Soc., 2014, 18, 689-701.
[http://dx.doi.org/10.1016/j.jscs.2014.02.004]