Current Organic Chemistry

Author(s): Poonam and Ram Singh*

DOI: 10.2174/1385272824999200409115018

Use of Bimetallic Nanoparticles in the Synthesis of Heterocyclic Molecules

Page: [351 - 360] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

The heterocyclic molecules are medicinally important and are applied in different other fields. The environmentally benign synthetic method for the synthesis of this important group of compounds is always explored. Bimetallic nanoparticles are getting attention as heterogeneous catalysts for their synthesis. The bimetallic nanoparticles have been usually synthesized by chemical or physical methods or both in combination. Chemists are also using part of plants in the synthesis of bimetallic nanoparticles and these have been successful. The present review work will be going to enrich the existing literature by compiling the use of plant parts in the synthesis of bimetallic nanoparticles and their utility in the synthesis of heterocyclic molecules.

Keywords: Bimetallic, nanoparticles, pyrrole, green synthesis, heterocyclic compounds, imidazoles.

Graphical Abstract

[1]
Kerru, N.; Bhaskaruni, S.V.; Gummidi, L.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synth. Commun., 2019, 49, 2437-2459.
[http://dx.doi.org/10.1080/00397911.2019.1639755]
[2]
Védrine, J. Heterogeneous catalysis on metal oxides. Catalysts, 2017, 7, 341-366.
[http://dx.doi.org/10.3390/catal7110341]
[3]
Poonam; Singh, R. Facile one-pot synthesis of 5-amino-1H-pyrazole-4-carbonitriles using alumina-silica-supported MnO2 as recyclable catalyst in water. Res. Chem. Intermed., 2019, 45, 4531-4542.
[http://dx.doi.org/10.1007/s11164-019-03847-8]
[4]
Climent, M.J.; Corma, A.; Iborra, S. Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv, 2012, 2, 16-58.
[http://dx.doi.org/10.1039/C1RA00807B]
[5]
Yasukawa, T.; Masuda, R.; Kobayashi, S. Development of heterogeneous catalyst systems for the continuous synthesis of chiral amines via asymmetric hydrogenation. Nat. Catal., 2019, 2, 1088-1092.
[http://dx.doi.org/10.1038/s41929-019-0371-y]
[6]
Comès, A.; Fiorilli, S.; Aprile, C. Multifunctional heterogeneous catalysts highly performing in the conversion of carbon dioxide: mechanistic insights. J. CO2 Utiliz.,. 2020, 37, 213-221.
[7]
Vedrine, J.C. Acid–base characterization of heterogeneous catalysts: an up-to-date overview. Res. Chem. Intermed., 2015, 41(12), 9387-9423.
[http://dx.doi.org/10.1007/s11164-015-1982-9]
[8]
Grace, A.N.; Pandian, K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles-a brief study. Colloids Surf. A Physicochem. Eng. Asp., 2007, 297, 63-70.
[http://dx.doi.org/10.1016/j.colsurfa.2006.10.024]
[9]
Rodrigues, T.S.; da Silva, A.G.; Camargo, P.H. Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7, 5857-5874.
[http://dx.doi.org/10.1039/C9TA00074G]
[10]
Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H.J. Nanoparticles for heterogeneous catalysis: new mechanistic insights. Acc. Chem. Res., 2013, 46(8), 1673-1681.
[http://dx.doi.org/10.1021/ar300225s] [PMID: 23252628]
[11]
Li, H-H.; Yu, S-H. Recent advances on controlled synthesis and engineering of hollow alloyed nanotubes for electrocatalysis. Adv. Mater., 2019, 31(38)e1803503
[http://dx.doi.org/10.1002/adma.201803503] [PMID: 30645003]
[12]
Park, J.; Kwon, T.; Kim, J.; Jin, H.; Kim, H.Y.; Kim, B.; Joo, S.H.; Lee, K. Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chem. Soc. Rev., 2018, 47(22), 8173-8202.
[http://dx.doi.org/10.1039/C8CS00336J] [PMID: 30009297]
[13]
Yin, P.; Zhang, Q.; Shreeve, J.M. Dancing with energetic nitrogen atoms: versatile N-functionalization strategies for N-heterocyclic frameworks in high energy density materials. Acc. Chem. Res., 2016, 49(1), 4-16.
[http://dx.doi.org/10.1021/acs.accounts.5b00477] [PMID: 26717271]
[14]
Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R.P. ALOthman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J. King Saud Univ. Sci., 2019, 31, 257-269.
[15]
Sharma, G.; Gupta, V.K.; Agarwal, S.; Kumar, A.; Thakur, S.; Pathania, D. Fabrication and characterization of Fe@MoPO nanoparticles: ion exchange behavior and photocatalytic activity against malachite green. J. Mol. Liq., 2016, 219, 1137-1143.
[http://dx.doi.org/10.1016/j.molliq.2016.04.046]
[16]
Sharma, G.; Naushad, M.; Kumar, A.; Devi, S.; Khan, M.R. Lanthanum/Cadmium/Polyaniline bimetallic nanocomposite for the photodegradation of organic pollutant. Iran. Polym. J., 2015, 24, 1003-1013.
[17]
Mazhar, T.; Shrivastava, V.; Tomar, R.S. Green synthesis of bimetallic nanoparticles and its applications: a review. J. Pharm. Sci. Res., 2017, 9, 102-110.
[18]
Rosbero, T.M.S.; Camacho, D.H. Green preparation and characterization of tentacle-like silver/copper nanoparticles for catalytic degradation of toxic chlorpyrifos in water. J. Environ. Chem. Eng., 2017, 5, 2524-2532.
[http://dx.doi.org/10.1016/j.jece.2017.05.009]
[19]
Salgado, P.; Mártire, D.O.; Vidal, G. Eucalyptus extracts-mediated synthesis of metallic and metal oxide nanoparticles: current status and perspectives. Mater. Res. Express, 2019, 6, 82006.
[http://dx.doi.org/10.1088/2053-1591/ab254c]
[20]
Al-Haddad, J.; Alzaabi, F.; Pal, P.; Rambabu, K.; Banat, F. Green synthesis of bimetallic copper-silver nanoparticles and their application in catalytic and antibacterial activities. Clean Tech. Env. Policy, 2019, 22, 269-277.
[http://dx.doi.org/10.1007/s10098-019-01765-2]]
[21]
Akinsiku, A.A.; Ajanaku, K.O.; Adekoya, J.A.; Ajayi, S.O.; Emetere, M.E.; Dare, E.O. Combined green synthesis and theoretical study of Ag/Co nanoparticles from biomass materials. Appl. Phy. A, 2019, 125, 643.
[http://dx.doi.org/10.1007/s00339-019-2931-z]
[22]
Kodhaiyolii, S.; Mohanraj, S.; Rengasamy, M.; Pugalenthi, V. Phytofabrication of bimetallic Co–Ni nanoparticles using Boerhavia diffusa leaf extract: analysis of phytocompounds and application for simultaneous production of biohydrogen and bioethanol. Mater. Res. Express, 2019, 6(9)095051
[http://dx.doi.org/10.1088/2053-1591/ab2ea8]
[23]
Nasrollahzadeh, M.; Sajjadi, M.; Komber, H.; Khonakdar, H.A.; Sajadi, S.M. In situ green synthesis of Cu‐Ni bimetallic nanoparticles supported on reduced graphene oxide as an effective and recyclable catalyst for the synthesis of N‐benzyl‐N‐aryl‐5‐amino‐1H‐tetrazoles. Appl. Organomet. Chem., 2019, 33(7)e4938
[http://dx.doi.org/10.1002/aoc.4938]
[24]
Thakore, S.I.; Nagar, P.S.; Jadeja, R.N.; Thounaojam, M.; Devkar, R.V.; Rathore, P.S. Sapota fruit latex mediated synthesis of Ag; Cu mono and bimetallic nanoparticles and their in vitro toxicity studies. Arab. J. Chem., 2019, 12(5), 694-700.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.042]
[25]
Sivamaruthi, B.S.; Ramkumar, V.S.; Archunan, G.; Chaiyasut, C.; Suganthy, N. Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula-In vitro evaluation of anticancer and antimicrobial activity. J. Drug Deliv. Sci. Technol., 2019, 51, 139-151.
[http://dx.doi.org/10.1016/j.jddst.2019.02.024]
[26]
Elemike, E.E.; Onwudiwe, D.C.; Nundkumar, N.; Singh, M.; Iyekowa, O. Green synthesis of Ag; Au and Ag-Au bimetallic nanoparticles using Stigmaphyllon ovatum leaf extract and their in vitro anticancer potential. Mater. Lett., 2019, 243, 148-152.
[http://dx.doi.org/10.1016/j.matlet.2019.02.049]
[27]
Gao, J.F.; Wu, Z.L.; Duan, W.J.; Zhang, W.Z. Simultaneous adsorption and degradation of triclosan by Ginkgo biloba L. stabilized Fe/Co bimetallic nanoparticles. Sci. Total Environ., 2019, 662, 978-989.
[http://dx.doi.org/10.1016/j.scitotenv.2019.01.194] [PMID: 30795484]
[28]
Mallikarjuna, K.; Bathula, C.; Dinneswara Reddy, G.; Shrestha, N.K.; Kim, H.; Noh, Y.Y. Au-Pd bimetallic nanoparticles embedded highly porous Fenugreek polysaccharide based micro networks for catalytic applications. Int. J. Biol. Macromol., 2019, 126, 352-358.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.137] [PMID: 30572053]
[29]
Botha, T.L.; Elemike, E.E.; Horn, S.; Onwudiwe, D.C.; Giesy, J.P.; Wepener, V. Cytotoxicity of Ag, Au and Ag-Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract. Sci. Rep., 2019, 9(1), 4169.
[http://dx.doi.org/10.1038/s41598-019-40816-y] [PMID: 30862803]
[30]
Dobrucka, R.; Kaczmarek, M.; Łagiedo, M.; Kielan, A.; Dlugaszewska, J. Evaluation of biologically synthesized Au-CuO and CuO-ZnO nanoparticles against glioma cells and microorganisms. Saudi Pharm. J., 2019, 27(3), 373-383.
[http://dx.doi.org/10.1016/j.jsps.2018.12.006] [PMID: 30976181]
[31]
Ravikumar, K.V.G.; Sudakaran, S.V.; Ravichandran, K.; Pulimi, M.; Natarajan, C.; Mukherjee, A. Green synthesis of NiFe nano particles using Punica granatum peel extract for tetracycline removal. J. Clean. Prod., 2019, 210, 767-776.
[http://dx.doi.org/10.1016/j.jclepro.2018.11.108]
[32]
Rao, A.V.; Ashok, B.; Mahesh, M.U.; Subbareddy, G.V.; Sekhar, V.C.; Ramanamurthy, G.V.; Rajulu, A.V. Antibacterial cotton fabrics with in situ generated silver and copper bimetallic nanoparticles using red sanders powder extract as reducing agent. Int. J. Polym. Anal. Charact., 2019, 24(4), 346-354.
[http://dx.doi.org/10.1080/1023666X.2019.1598631]
[33]
Elemike, E.E.; Onwudiwe, D.C.; Fayemi, O.E.; Botha, T.L. Green synthesis and electrochemistry of Ag, Au, and Ag–Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract. Appl. Phy. A, 2019, 125(1), 42.
[http://dx.doi.org/10.1007/s00339-018-2348-0]
[34]
Subbiah, K.S.; Beedu, S.R. Biogenic synthesis of biopolymer-based Ag-Au bimetallic nanoparticle constructs and their anti-proliferative assessment. IET Nanobiotechnol., 2018, 12(8), 1047-1055.
[http://dx.doi.org/10.1049/iet-nbt.2018.5135] [PMID: 30964012]
[35]
Sathya, K.; Saravanathamizhan, R.; Baskar, G. Ultrasonic assisted green synthesis of Fe and Fe/Zn bimetallic nanoparticles for in vitro cytotoxicity study against HeLa cancer cell line. Mol. Biol. Rep., 2018, 45(5), 1397-1404.
[http://dx.doi.org/10.1007/s11033-018-4302-9] [PMID: 30128625]
[36]
Rani, M.; Shanker, U. Photocatalytic degradation of toxic phenols from water using bimetallic metal oxide nanostructures. Colloids Surf. A Physicochem. Eng. Asp., 2018, 553, 546-561.
[http://dx.doi.org/10.1016/j.colsurfa.2018.05.071]
[37]
Al-Asfar, A.; Zaheer, Z.; Aazam, E.S. Eco-friendly green synthesis of Ag@Fe bimetallic nanoparticles: antioxidant, antimicrobial and photocatalytic degradation of bromothymol blue. J. Photochem. Photobiol. B, 2018, 185, 143-152.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.028] [PMID: 29906655]
[38]
Leishangthem, D.; Yumkhaibam, M.A.K.; Henam, P.S.; Nagarajan, S. An insight into the effect of composition for enhance catalytic performance of biogenic Au/Ag bimetallic nanoparticles. J. Phys. Org. Chem., 2018, 31(6)e3815
[http://dx.doi.org/10.1002/poc.3815]
[39]
Dauthal, P.; Mukhopadhyay, M. Antioxidant activity of phytosynthesized biomatrix-loaded noble metallic nanoparticles. Chin. J. Chem. Eng., 2018, 26(5), 1200-1208.
[http://dx.doi.org/10.1016/j.cjche.2017.12.014]
[40]
Abbasi, B.H.; Zaka, M.; Hashmi, S.S.; Khan, Z. Biogenic synthesis of Au, Ag and Au–Ag alloy nanoparticles using Cannabis sativa leaf extract. IET Nanobiotechnol., 2017, 12(3), 277-284.
[http://dx.doi.org/10.1049/iet-nbt.2017.0169] [PMID: 28476985]
[41]
Saeed, M.; Mansha, A.; Hamayun, M.; Ahmad, A.; Ulhaq, A.; Ashfaq, M. Green synthesis of CoFe2O4 and investigation of its catalytic efficiency for degradation of dyes in aqueous medium. Zeit. für Physika. Chem, 2018, 232(3), 359-371.
[http://dx.doi.org/10.1515/zpch-2017-1065]]
[42]
Sorbiun, M.; Mehr, E.S.; Ramazani, A.; Fardood, S.T. Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. J. Mater. Sci. Mater. Electron., 2018, 29(4), 2806-2814.
[http://dx.doi.org/10.1007/s10854-017-8209-3]
[43]
Jadhav, M.S.; Kulkarni, S.; Raikar, P.; Barretto, D.A.; Vootla, S.K.; Raikar, U.S. Green biosynthesis of CuO & Ag–CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities. New J. Chem., 2018, 42(1), 204-213.
[http://dx.doi.org/10.1039/C7NJ02977B]
[44]
Li, J.; Tian, B.; Li, T.; Dai, S.; Weng, Y.; Lu, J.; Xu, X.; Jin, Y.; Pang, R.; Hua, Y. Biosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. Int. J. Nanomedicine, 2018, 13, 1411-1424.
[http://dx.doi.org/10.2147/IJN.S149079] [PMID: 29563796]
[45]
Sun, L.; Yin, Y.; Lv, P.; Su, W.; Zhang, L. Green controllable synthesis of Au–Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity. RSC Adv, 2018, 8(8), 3964-3973.
[http://dx.doi.org/10.1039/C7RA13650A]
[46]
Kuppusamy, P.; Ilavenil, S.; Srigopalram, S.; Kim, D.H.; Govindan, N.; Maniam, G.P.; Choi, K.C. Synthesis of bimetallic nanoparticles (Au–Ag alloy) using Commelina nudiflora L. plant extract and study its on oral pathogenic bacteria. J. Inorg. Organomet. Polym. Mater., 2017, 27(2), 562-568.
[http://dx.doi.org/10.1007/s10904-017-0498-8]
[47]
Çıplak, Z.; Getiren, B.; Gökalp, C.; Yıldız, A.; Yıldız, N. Green synthesis of reduced graphene oxide-Ag Au bimetallic nanocomposite: catalytic performance. Chem. Eng. Commun., 2019, 207(4), 559-573.
[http://dx.doi.org/10.1080/00986445.2019.1613227]]
[48]
Fierascu, I.; Georgiev, M.I.; Ortan, A.; Fierascu, R.C.; Avramescu, S.M.; Ionescu, D.; Sutan, A.; Brinzan, A.; Ditu, L.M. Phyto-mediated metallic nano-architectures via Melissa officinalis L.: synthesis, characterization and biological properties. Sci. Rep., 2017, 7(1), 12428.
[http://dx.doi.org/10.1038/s41598-017-12804-7] [PMID: 28963525]
[49]
Huang, J.; Odoom‐Wubah, T.; Jing, X.; Sun, D.; Gu, Z.; Li, Q. Plant‐Mediated synthesis of zinc oxide supported nickel‐palladium alloy catalyst for the selective hydrogenation of 1,3‐butadiene. ChemCatChem, 2017, 9(5), 870-881.
[http://dx.doi.org/10.1002/cctc.201601178]
[50]
Karthika, V.; Arumugam, A.; Gopinath, K.; Kaleeswarran, P.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J. Photochem. Photobiol. B, 2017, 167, 189-199.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.01.008] [PMID: 28076823]
[51]
Rocha-Rocha, O.; Cortez-Valadez, M.; Hernandez-Martinez, A.R.; Gamez-Corrales, R.; Alvarez, R.A.; Britto-Hurtado, R.; Flores-Acosta, M. Green synthesis of Ag-Cu nanoalloys using Opuntia ficus-indica. J. Electron. Mater., 2017, 46(2), 802-807.
[http://dx.doi.org/10.1007/s11664-016-4942-2]
[52]
Weng, X.; Guo, M.; Luo, F.; Chen, Z. One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract: biomolecules identification; characterization and catalytic activity. Chem. Eng. J., 2017, 308, 904-911.
[http://dx.doi.org/10.1016/j.cej.2016.09.134]
[53]
Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N.S.; Kadaikunnan, S.; Govindarajan, M.; Benelli, G.; Arumugam, A. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog., 2016, 101, 1-11.
[http://dx.doi.org/10.1016/j.micpath.2016.10.011] [PMID: 27765621]
[54]
Lateef, A.; Ojo, S.A.; Folarin, B.I.; Gueguim-Kana, E.B.; Beukes, L.S. Kolanut (Cola nitida) mediated synthesis of silver-gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. J. Cluster Sci., 2016, 27(5), 1561-1577.
[http://dx.doi.org/10.1007/s10876-016-1019-6]
[55]
Luo, F.; Yang, D.; Chen, Z.; Megharaj, M.; Naidu, R. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis. Sci. Total Environ., 2016, 562, 526-532.
[http://dx.doi.org/10.1016/j.scitotenv.2016.04.060] [PMID: 27110966]
[56]
Ganaie, S.U.; Abbasi, T.; Abbasi, S.A. Rapid and green synthesis of bimetallic Au–Ag nanoparticles using an otherwise worthless weed Antigonon leptopus. J. Exp. Nanosci., 2016, 11(6), 395-417.
[http://dx.doi.org/10.1080/17458080.2015.1070311]
[57]
Meena Kumari, M.; Jacob, J.; Philip, D. Green synthesis and applications of Au-Ag bimetallic nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 185-192.
[http://dx.doi.org/10.1016/j.saa.2014.08.079] [PMID: 25218228]
[58]
Zhu; Y.; Lu; M. Plant-mediated synthesis of Au–Pd alloy nanoparticles supported on MnO2 nanostructures and their application toward oxidation of 5-(hydroxymethyl) furfural. RSC Adv, 2015, 5(104), 85579-85585.
[http://dx.doi.org/10.1039/C5RA13157J]
[59]
Gopalakrishnan, R.; Loganathan, B.; Raghu, K. Green synthesis of Au–Ag bimetallic nanocomposites using Silybum marianum seed extract and their application as a catalyst. RSC Adv, 2015, 5(40), 31691-31699.
[http://dx.doi.org/10.1039/C5RA03571F]
[60]
Naeimi, H.; Didar, A.; Rashid, Z. Microwave-assisted synthesis of pyrido-dipyrimidines using magnetically CuFe2O4 nanoparticles as an efficient, reusable, and powerful catalyst in water. J. Iran Chem. Soc, 2017, 14, 377.
[http://dx.doi.org/10.1007/s13738-016-0986-8]
[61]
Feng, X.; Wang, Q.; Lin, W.; Dou, G.L.; Huang, Z.B.; Shi, D.Q. Highly efficient synthesis of polysubstituted pyrroles via four-component domino reaction. Org. Lett., 2013, 15(10), 2542-2545.
[http://dx.doi.org/10.1021/ol4010382] [PMID: 24490761]
[62]
Rosse, G. Novel pyrroles as nicotinic acetylcholine receptor modulators. ACS Med. Chem. Lett., 2012, 4(1), 15.
[http://dx.doi.org/10.1021/ml300403h] [PMID: 24900555]
[63]
Li, B.L.; Zhang, M.; Hu, H.C.; Du, X.; Zhang, Z.H. Nano-CoFe2O4 supported molybdenum as an efficient and magnetically recoverable catalyst for a one-pot, four-component synthesis of functionalized pyrroles. New J. Chem., 2014, 38, 2435-2442.
[http://dx.doi.org/10.1039/c3nj01368e]
[64]
Li, B.L.; Hu, H.C.; Mo, L.P.; Zhang, Z.H. Nano CoFe2O4 supported antimony (III) as an efficient and recyclable catalyst for one-pot three component synthesis of multisubstituted pyrroles. RSC Adv, 2014, 4, 12929-12943.
[http://dx.doi.org/10.1039/C3RA47855F]
[65]
Saha, M.; Pradhan, K.; Das, A.R. Facile and eco-friendly synthesis of chromeno[4,3-b] pyrrol-4(1H)-one derivatives applying magnetically recoverable nano crystalline CuFe2O4 involving a domino three-component reaction in aqueous media. RSC Adv, 2016, 6, 55033-55038.
[http://dx.doi.org/10.1039/C6RA06979G]
[66]
Moghaddam, F.M.; Foroushani, B.K.; Rezvani, H.R. Nickel ferrite nanoparticles: An efficient and reusable nanocatalyst for a neat, one-pot and four-component synthesis of pyrroles. RSC Adv, 2015, 5, 18092-18096.
[http://dx.doi.org/10.1039/C4RA09348H]
[67]
Naik, T.R.R.; Shivashankar, S.A. Heterogeneous bimetallic ZnFe2O4 nanopowder catalyzed synthesis of Hantzsch 1,4-dihydropyridines in water. Tet. Lett., 2016, 57, 4046-4049.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.071]
[68]
Pagadala, R.; Maddila, S.; Dasireddy, V.D.B.C.; Jonnalagadda, S.B. Zn-VCO3 hydrotalcite: a highly efficient and reusable heterogeneous catalyst for the Hantzsch dihydropyridine reaction. Catal. Commun., 2014, 45, 148-152.
[http://dx.doi.org/10.1016/j.catcom.2013.11.012]
[69]
Elwahy, A.H.M.; Shaaban, M.R. Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials. RSC Adv, 2015, 5, 75659-75710.
[http://dx.doi.org/10.1039/C5RA11421G]
[70]
El-Remaily, M.A.E.A.A.A.; Abu-Dief, A.M. CuFe2O4 nanoparticles: an efficient heterogeneous magnetically separable catalyst for synthesis of some novel propynyl-1Himidazoles derivatives. Tetrahedron, 2015, 71, 2579-2584.
[http://dx.doi.org/10.1016/j.tet.2015.02.057]
[71]
Sanasi, P.D.; Santhipriya, D.; Ramesh, Y.; Kumar, M.R.; Swathi, B.; Rao, K.J. Nano copper and cobalt ferrites as heterogeneous catalysts for the one-pot synthesis of 2,4,5-tri substituted imidazoles. J. Chem. Sci., 2014, 126, 1715-1720.
[http://dx.doi.org/10.1007/s12039-014-0729-2 ]
[72]
Zhang, M.; Lu, J.; Zhang, J.N.; Zhang, Z.H. Magnetic carbon nanotube supported Cu (CoFe2O4/CNT-Cu) catalyst: a sustainable catalyst for the synthesis of 3-nitro-2-arylimidazo[1,2-a]pyridines. Catal. Commun., 2016, 78, 26-32.
[http://dx.doi.org/10.1016/j.catcom.2016.02.004]
[73]
Swami, S.; Agarwala, A.; Shrivastava, R. Sulfonic acid functionalized silica-coated CuFe2O4 core-shell nanoparticles: an efficient and magnetically separable heterogeneous catalyst for syntheses of 2-pyrazole-3-aminoimidazo-fused polyheterocycles. New J. Chem., 2016, 40, 9788-9794.
[http://dx.doi.org/10.1039/C6NJ02264B]
[74]
Rakhtshah, J.; Salehzadeh, S.; Gowdini, E.; Maleki, F.; Baghery, S.; Zolfigol, M.A. Synthesis of pyrazole derivatives in the presence of a dioxomolybdenum complex supported on silica coated magnetite nanoparticles as an efficient and easily recyclable catalyst. RSC Adv, 2016, 6, 104875-104885.
[http://dx.doi.org/10.1039/C6RA20988B]
[75]
Ghomi, J.S.; Koopaei, B.K.; Alavi, H.S. Pseudo five-component process for the synthesis of 4,40-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives using ZnAl2O4 nanoparticles in aqueous media. RSC Adv, 2014, 4, 46106-46113.
[http://dx.doi.org/10.1039/C4RA07584F]
[76]
Pradhan, K.; Paul, S.; Das, A.R. Magnetically retrievable nano crystalline CuFe2O4 catalyzed multi-component reaction: a facile and efficient synthesis of functionalized dihydropyrano[2,3-c]pyrazole, pyrano[3,2-c]coumarin and 4H-chromene derivatives in aqueous media. Catal. Sci. Technol., 2014, 4, 822-831.
[http://dx.doi.org/10.1039/c3cy00901g]
[77]
Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: a review. Drugs Today (Barc), 2015, 51(12), 705-718.
[PMID: 26798851]
[78]
Zahmatkesh, S.; Esmaeilpour, M.; Javidi, J. 1,4-Dihydroxyanthraquinone–copper-(II) supported on superparamagnetic Fe3O4@SiO2: an efficient catalyst for N-arylation of nitrogen heterocycles and alkylamines with aryl halides and click synthesis of 1-aryl-1,2,3-triazole derivatives. RSC Adv, 2016, 6, 90154-90164.
[http://dx.doi.org/10.1039/C6RA16646F]
[79]
Kumar, B.S.P.A.; Reddy, K.H.V.; Madhav, B.; Ramesh, K.; Nageswar, Y.V.D. Magnetically separable CuFe2O4 nano particles catalyzed multicomponent synthesis of 1,4-disubstituted1,2,3-triazoles in tap water using ‘click chemistry’. Tet. Lett., 2012, 53, 4595-4599.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.077]
[80]
Kumar, A.S.; Reddy, M.A.; Knorn, M.; Reiser, O.; Sreedhar, B. Magnetically recoverable CuFe2O4 nanoparticles: catalyzed synthesis of aryl azides and 1,4-diaryl-1,2,3-triazoles from boronic acids in water. Eur. J. Org. Chem., 2013, 2013(21), 4674-4680.
[http://dx.doi.org/10.1002/ejoc.201300343]
[81]
Sapra, R.; Patel, D.; Meshram, D. A mini review: recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis. J. Med. Chem. Sci., 2020, 3, 71-78.
[http://dx.doi.org/10.26655/JMCHEMSCI.2020.1.9]]
[82]
Liu, H-W.; Fang, Y.; Wang, S-Y.; Ji, S-J. Base-promoted multicomponent reactions: a synthesis of 2-amino-1,3-selenazole derivatives. J. Org. Chem., 2020, 85(5), 3508-3516.
[http://dx.doi.org/10.1021/acs.joc.9b03234] [PMID: 31958013]
[83]
Veer, B.; Singh, R. Facile synthesis of 2-arylimidazo[1,2-a]pyridines catalyzed by DBU in aqueous ethanol. Proc. Royal Soc. A, 2019, 47520190238
[http://dx.doi.org/10.1098/rspa.2019.0238]]
[84]
Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of biologically active molecules through multicomponent reactions. Molecules, 2020, 25(505), 71.
[http://dx.doi.org/10.3390/molecules25030505]