Exploiting Anti-Inflammation Effects of Flavonoids in Chronic Inflammatory Diseases

Page: [2610 - 2619] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases.

Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases.

Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models.

Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.

Keywords: Chronic inflammatory diseases, flavonoids, anti-inflammation effects, neurological, arachidonic, therapeutic.

[1]
Hunter P. The inflammation theory of disease. The growing realization that chronic inflammation is crucial in many diseases opens new avenues for treatment. EMBO Rep 2012; 13(11): 968-70.
[http://dx.doi.org/10.1038/embor.2012.142] [PMID: 23044824]
[2]
Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation. Nat Immunol 2017; 18(8): 826-31.
[http://dx.doi.org/10.1038/ni.3790] [PMID: 28722720]
[3]
Ma KC, Schenck EJ, Pabon MA, Choi AMK. The role of danger signals in the pathogenesis and perpetuation of critical illness. Am J Respir Crit Care Med 2018; 197(3): 300-9.
[http://dx.doi.org/10.1164/rccm.201612-2460PP] [PMID: 28977759]
[4]
Pahwa R, Jialal I. Chronic Inflammation. Treasure Island, FL, USA: StatPearls 2018.
[5]
Sartor RB. Current concepts of the etiology and pathogenesis of ulcerative colitis and Crohn’s disease. Gastroenterol Clin North Am 1995; 24(3): 475-507.
[PMID: 8809232]
[6]
Singh D, Srivastava S, Pradhan M, Kanwar JR, Singh MR. Inflammatory bowel disease: pathogenesis, causative factors, issues, drug treatment strategies and delivery approaches. Crit Rev Ther Drug Carrier Syst 2015; 32(3): 181-214.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2015011095] [PMID: 26080808]
[7]
Sarbagili-Shabat C, Sigall-Boneh R, Levine A. Nutritional therapy in inflammatory bowel disease. Curr Opin Gastroenterol 2015; 31(4): 303-8.
[http://dx.doi.org/10.1097/MOG.0000000000000178] [PMID: 25887458]
[8]
Aswad M, Rayan M, Abu-Lafi S, et al. Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity. Inflamm Res 2018; 67(1): 67-75.
[http://dx.doi.org/10.1007/s00011-017-1096-5] [PMID: 28956064]
[9]
Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules 2016; 21(10): 1321.
[http://dx.doi.org/10.3390/molecules21101321] [PMID: 27706084]
[10]
Fürst R, Zündorf I. Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm 2014; 2014 146832
[http://dx.doi.org/10.1155/2014/146832] [PMID: 24987194]
[11]
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5 e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[12]
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel) 2018; 5(3): 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[13]
Tsuda S, Egawa T, Ma X, Oshima R, Kurogi E, Hayashi T. Coffee polyphenol caffeic acid but not chlorogenic acid increases 5'AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. J Nutr Biochem 2012; 23(11): 1403-9.
[http://dx.doi.org/10.1016/j.jnutbio.2011.09.001] [PMID: 22227267]
[14]
Kanwar J, Taskeen M, Mohammad I, Huo C, Chan TH, Dou QP. Recent advances on tea polyphenols. Front Biosci (Elite Ed) 2012; 4: 111-31.
[http://dx.doi.org/10.2741/e363] [PMID: 22201858]
[15]
Bae JS. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Arch Pharm Res 2012; 35(9): 1511-23.
[http://dx.doi.org/10.1007/s12272-012-0901-5] [PMID: 23054707]
[16]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal 2013; 2013 162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[17]
Wang Y, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol 2011; 91(4): 949-56.
[http://dx.doi.org/10.1007/s00253-011-3449-2] [PMID: 21732240]
[18]
Brodowska KM. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur J Biol Res 2017; 7(2)
[19]
Cook NC, Samman S. Flavonoids: chemistry, metabolism, cardioprotective effects and dietary sources. J Nutr Biochem 1996; 7: 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[20]
Rakers C, Schwerdtfeger SM, Mortier J, et al. Inhibitory potency of flavonoid derivatives on influenza virus neuraminidase. Bioorg Med Chem Lett 2014; 24(17): 4312-7.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.010] [PMID: 25096296]
[21]
Lago JH, Toledo-Arruda AC, Mernak M, et al. Structure-activity association of flavonoids in lung diseases. Molecules 2014; 19(3): 3570-95.
[http://dx.doi.org/10.3390/molecules19033570] [PMID: 24662074]
[22]
Kim HP, Son KH, Chang HW, Kang SS. Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci 2004; 96(3): 229-45.
[http://dx.doi.org/10.1254/jphs.CRJ04003X] [PMID: 15539763]
[23]
Yao LH, Jiang YM, Shi J, et al. Flavonoids in food and their health benefits. Plant Foods Hum Nutr 2004; 59(3): 113-22.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[24]
Hou DX, Kumamoto T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid Redox Signal 2010; 13(5): 691-719.
[http://dx.doi.org/10.1089/ars.2009.2816] [PMID: 20070239]
[25]
Yokoyama T, Kosaka Y, Mizuguchi M. Structural insight into the interactions between death-associated protein kinase 1 and natural flavonoids. J Med Chem 2015; 58(18): 7400-8.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00893] [PMID: 26322379]
[26]
Peng HL, Huang WC, Cheng SC, Liou CJ. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways. Int Immunopharmacol 2018; 60: 202-10.
[http://dx.doi.org/10.1016/j.intimp.2018.05.004] [PMID: 29758489]
[27]
Chen L, Teng H, Jia Z, et al. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Crit Rev Food Sci Nutr 2017; 1-17.
[PMID: 28682647]
[28]
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014; 20(7): 1126-67.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[29]
Chen GL, Fan MX, Wu JL, Li N, Guo MQ. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem 2019; 277: 706-12.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.040] [PMID: 30502207]
[30]
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols Nutr. 2018; p. 10.
[31]
Kumar R, Caruso IP, Ullah A, Cornelio ML, Fossey MA. Exploring the binding mechanism of flavonoid quercetin to phospholipase A2: Fluorescence spectroscopy and computational approach. Eur J Exp Biol 2017; 7: 33.
[http://dx.doi.org/10.21767/2248-9215.100033]
[32]
González Mosquera DM, Hernández Ortega Y, Fernández PL, et al. Flavonoids from Boldoa purpurascens inhibit proinflammatory cytokines (TNF-α and IL-6) and the expression of COX-2. Phytother Res 2018; 32(9): 1750-4.
[http://dx.doi.org/10.1002/ptr.6104] [PMID: 29726034]
[33]
Hanáková Z, Hošek J, Kutil Z, et al. Anti-inflammatory activity of natural geranylated flavonoids: Cyclooxygenase and lipoxygenase inhibitory properties and proteomic analysis. J Nat Prod 2017; 80(4): 999-1006.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01011] [PMID: 28322565]
[34]
Salaritabar A, Darvishi B, Hadjiakhoondi F, et al. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J Gastroenterol 2017; 23(28): 5097-114.
[http://dx.doi.org/10.3748/wjg.v23.i28.5097] [PMID: 28811706]
[35]
Vezza T, Rodríguez-Nogales A, Algieri F, Utrilla MP, Rodriguez-Cabezas ME, Galvez J. Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients 2016; 8(4): 211.
[http://dx.doi.org/10.3390/nu8040211] [PMID: 27070642]
[36]
Hart AL, Al-Hassi HO, Rigby RJ, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 2005; 129(1): 50-65.
[http://dx.doi.org/10.1053/j.gastro.2005.05.013] [PMID: 16012934]
[37]
Yoshida T. Concise commentary: quercetin flavonoid of the month or IBD therapy? Dig Dis Sci 2018; 63(12): 3305-6.
[http://dx.doi.org/10.1007/s10620-018-5269-z] [PMID: 30182309]
[38]
Hoensch HP, Weigmann B. Regulation of the intestinal immune system by flavonoids and its utility in chronic inflammatory bowel disease. World J Gastroenterol 2018; 24(8): 877-81.
[http://dx.doi.org/10.3748/wjg.v24.i8.877] [PMID: 29491681]
[39]
Harald P, Hoensch RO. The value of flavonoids for the human nutrition: Short review and perspectives. Clin Nutr Exp 2015; 3: 8-14.
[http://dx.doi.org/10.1016/j.yclnex.2015.09.001]
[40]
Bian Y, Liu P, Zhong J, et al. Quercetin attenuates adhesion molecule expression in intestinal microvascular endothelial cells by modulating multiple pathways. Dig Dis Sci 2018; 63(12): 3297-304.
[http://dx.doi.org/10.1007/s10620-018-5221-2] [PMID: 30076503]
[41]
Comalada M, Camuesco D, Sierra S, et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Eur J Immunol 2005; 35(2): 584-92.
[http://dx.doi.org/10.1002/eji.200425778] [PMID: 15668926]
[42]
Sánchez de Medina F, Gálvez J, Romero JA, Zarzuelo A. Effect of quercitrin on acute and chronic experimental colitis in the rat. J Pharmacol Exp Ther 1996; 278(2): 771-9.
[PMID: 8768730]
[43]
Hussain T, Tan B, Liu G, et al. Health-promoting properties of Eucommia ulmoides: a review. Evid Based Complement Alternat Med 2016; 2016 52029089
[44]
Hussain T, Tan B, Rahu N, Kalhoro DH, Dad R, Yin Y. Protective mechanism of Eucommia ulmoids flavone (EUF) on enterocyte damage induced by LPS. Free Radic Biol Med 2017; 2017: S40.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.152]
[45]
Hussain T, Tan B, Liu G, et al. The regulatory mechanism of Eucommia ulmoides flavone effects on damage repair in enterocytes. Free Radic Biol Med 2018; S139-40.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.460]
[46]
Xiao D, Yuan D, Tan B, Wang J, Liu Y, Tan B. The Role of Nrf2 signaling pathway in Eucommia ulmoides flavones regulating oxidative stress in the intestine of piglets. Oxid Med Cell Longev 2019; 2019 97196189
[http://dx.doi.org/10.1155/2019/9719618]
[47]
Hussain T, Tan B, Yin Y, Blachier F, Tossou CB, Rahu N. Oxidative stress and inflammation: what polyphenols can do for us? Oxid Med Cell Longev 2016; 2016 74327979
[48]
Zhang YS, Wang F, Cui SX, Qu XJ. Natural dietary compound naringin prevents azoxymethane/dextran sodium sulfate-induced chronic colorectal inflammation and carcinogenesis in mice. Cancer Biol Ther 2018; 19(8): 735-44.
[http://dx.doi.org/10.1080/15384047.2018.1453971] [PMID: 29580144]
[49]
Onasanwo SA, Velagapudi R, El-Bakoush A, Olajide OA. Inhibition of neuroinflammation in BV2 microglia by the biflavonoid kolaviron is dependent on the Nrf2/ARE antioxidant protective mechanism. Mol Cell Biochem 2016; 414(1-2): 23-36.
[http://dx.doi.org/10.1007/s11010-016-2655-8] [PMID: 26838169]
[50]
González H, Pacheco R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflammation 2014; 11: 201.
[http://dx.doi.org/10.1186/s12974-014-0201-8] [PMID: 25441979]
[51]
Ota A, Ulrih NP. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front Pharmacol 2017; 8: 436.
[http://dx.doi.org/10.3389/fphar.2017.00436] [PMID: 28729836]
[52]
Manuel SL, Rahman S, Wigdahl B, Khan ZK, Jain P. Dendritic cells in autoimmune diseases and neuroinflammatory disorders. Front Biosci 2007; 12: 4315-35.
[http://dx.doi.org/10.2741/2390] [PMID: 17485377]
[53]
Sagar D, Foss C, El Baz R, Pomper MG, Khan ZK, Jain P. Mechanisms of dendritic cell trafficking across the blood-brain barrier. J Neuroimmune Pharmacol 2012a; 7(1): 74-94.
[http://dx.doi.org/10.1007/s11481-011-9302-7] [PMID: 21822588]
[54]
Sagar D, Lamontagne A, Foss CA, Khan ZK, Pomper MG, Jain P. Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood-brain barrier through paracellular transmigration and ERK activation. J Neuroinflammation 2012b; 9: 245.
[http://dx.doi.org/10.1186/1742-2094-9-245] [PMID: 23102113]
[55]
Pashenkov M, Huang YM, Kostulas V, Haglund M, Söderström M, Link H. Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 2001; 124(Pt 3): 480-92.
[http://dx.doi.org/10.1093/brain/124.3.480] [PMID: 11222448]
[56]
Greter M, Heppner FL, Lemos MP, et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 2005; 11(3): 328-34.
[http://dx.doi.org/10.1038/nm1197] [PMID: 15735653]
[57]
Li KC, Ho YL, Hsieh WT, Huang SS, Chang YS, Huang GJ. Apigenin-7-glycoside prevents LPS-induced acute lung injury via downregulation of oxidative enzyme expression and protein activation through inhibition of MAPK phosphorylation. Int J Mol Sci 2015; 16(1): 1736-54.
[http://dx.doi.org/10.3390/ijms16011736] [PMID: 25590301]
[58]
Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 2008; 3(3-4): 115-26.
[http://dx.doi.org/10.1007/s12263-008-0091-4] [PMID: 18937002]
[59]
Suk K. Research focus on natural products and the body’s immune and inflammatory systems. Hauppauge, NY, USA: Nova Science publisher Inc. 2007.
[60]
Farooqui AA. Therapeutic potentials of curcumin for alzheimer disease. Cham, Switzerland: Springer International Publishing 2016; pp. 259-96.
[http://dx.doi.org/10.1007/978-3-319-15889-1_7]
[61]
Sternberg Z, Chadha K, Lieberman A, et al. Immunomodulatory responses of peripheral blood mononuclear cells from multiple sclerosis patients upon in vitro incubation with the flavonoid luteolin: additive effects of IFN-beta. J Neuroinflammation 2009; 6: 28.
[http://dx.doi.org/10.1186/1742-2094-6-28] [PMID: 19825164]
[62]
Kim JS, Jobin C. The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology 2005; 115(3): 375-87.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02156.x] [PMID: 15946255]
[63]
Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 2017; 14(5): 314.
[http://dx.doi.org/10.1038/nrcardio.2017.33] [PMID: 28300082]
[64]
Golia E, Limongelli G, Natale F, et al. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep 2014; 16(9): 435.
[http://dx.doi.org/10.1007/s11883-014-0435-z] [PMID: 25037581]
[65]
Rashida G, Raina B. DeGaulle, Chigbu I, Pooja J, and Zafar KK. 2019. Potential role of flavonoids in treating chronic. Inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019; 8: 35.
[66]
Kostyuk VA, Potapovich AI, Suhan TO, de Luca C, Korkina LG. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Eur J Pharmacol 2011; 658(2-3): 248-56.
[http://dx.doi.org/10.1016/j.ejphar.2011.02.022] [PMID: 21371465]
[67]
Al-Awwadi NA, Araiz C, Bornet A, et al. Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in high-fructose-fed rats. J Agric Food Chem 2005; 53(1): 151-7.
[http://dx.doi.org/10.1021/jf048919f] [PMID: 15631522]
[68]
Boesch-Saadatmandi C, Loboda A, Wagner AE, et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem 2011; 22(3): 293-9.
[http://dx.doi.org/10.1016/j.jnutbio.2010.02.008] [PMID: 20579867]
[69]
Osiecki H. The role of chronic inflammation in cardiovascular disease and its regulation by nutrients. Altern Med Rev 2004; 9(1): 32-53.
[PMID: 15005643]
[70]
Droke EA, Hager KA, Lerner MR, et al. Soy isoflavones avert chronic inflammation-induced bone loss and vascular disease. J Inflamm (Lond) 2007; 4: 17.
[http://dx.doi.org/10.1186/1476-9255-4-17] [PMID: 17825101]
[71]
García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 2009; 58(9): 537-52.
[http://dx.doi.org/10.1007/s00011-009-0037-3] [PMID: 19381780]
[72]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[73]
Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res 2010; 27(6): 962-78.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[74]
Bruno A, Siena L, Gerbino S, et al. Apigenin affects leptin/leptin receptor pathway and induces cell apoptosis in lung adenocarcinoma cell line. Eur J Cancer 2011; 47(13): 2042-51.
[http://dx.doi.org/10.1016/j.ejca.2011.03.034] [PMID: 21550230]
[75]
Bitler CM, Viale TM, Damaj B, Crea R. Hydrolyzed olive vegetation water in mice has anti-inflammatory activity. J Nutr 2005; 135(6): 1475-9.
[http://dx.doi.org/10.1093/jn/135.6.1475] [PMID: 15930455]
[76]
Nam NH. Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 2006; 6(8): 945-51.
[http://dx.doi.org/10.2174/138955706777934937] [PMID: 16918500]
[77]
Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev 2004; 18(18): 2195-224.
[http://dx.doi.org/10.1101/gad.1228704] [PMID: 15371334]
[78]
Haddad JJ. Redox regulation of pro-inflammatory cytokines and IkappaB-alpha/NF-kappaB nuclear translocation and activation. Biochem Biophys Res Commun 2002; 296(4): 847-56.
[http://dx.doi.org/10.1016/S0006-291X(02)00947-6] [PMID: 12200125]
[79]
Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004; 3(1): 17-26.
[http://dx.doi.org/10.1038/nrd1279] [PMID: 14708018]
[80]
Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006; 72(11): 1439-52.
[http://dx.doi.org/10.1016/j.bcp.2006.07.004] [PMID: 16920072]
[81]
De Stefano D, Maiuri MC, Simeon V, et al. Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-γ. Eur J Pharmacol 2007; 566(1-3): 192-9.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.051] [PMID: 17477920]
[82]
Chen JC, Ho FM, Chen CP, et al. Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IkappaB kinase, nuclear factor-κ B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. Eur J Pharmacol 2005; 521(1-3): 9-20.
[http://dx.doi.org/10.1016/j.ejphar.2005.08.005] [PMID: 16171798]
[83]
Lertnimitphun P, Jiang Y, Kim N, et al. Safranal alleviates dextran sulfate sodium-induced colitis and suppresses macrophage-mediated inflammation. Front Pharmacol 2019; 10: 1281.
[http://dx.doi.org/10.3389/fphar.2019.01281] [PMID: 31736758]
[84]
Nishitani Y, Yamamoto K, Yoshida M, et al. Intestinal anti-inflammatory activity of luteolin: role of the aglycone in NF-κB inactivation in macrophages co-cultured with intestinal epithelial cells. Biofactors 2013; 39(5): 522-33.
[http://dx.doi.org/10.1002/biof.1091] [PMID: 23460110]
[85]
Muniandy K, Gothai S, Badran KMH, Suresh Kumar S, Esa NM, Arulselvan P. Suppression of proinflammatory cytokines and mediators in LPS-induced RAW 264.7 macrophages by stem extract of Alternanthera sessilis via the inhibition of the NF-κB pathway. J Immunol Res 2018; 2018 3430684
[http://dx.doi.org/10.1155/2018/3430684] [PMID: 30155492]
[86]
Roy D, Perreault M, Marette A. Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am J Physiol 1998; 274(4): E692-9.
[PMID: 9575831]
[87]
Fryer LG, Hajduch E, Rencurel F, et al. Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes 2000; 49(12): 1978-85.
[http://dx.doi.org/10.2337/diabetes.49.12.1978] [PMID: 11117997]
[88]
Peters U, Poole C, Arab L. Does tea affect cardiovascular disease? A meta-analysis. Am J Epidemiol 2001; 154(6): 495-503.
[http://dx.doi.org/10.1093/aje/154.6.495] [PMID: 11549554]
[89]
Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410(6824): 37-40.
[http://dx.doi.org/10.1038/35065000] [PMID: 11242034]
[90]
Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 2006; 66(5): 2500-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3636] [PMID: 16510563]
[91]
Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 2005; 1754(1-2): 253-62.
[http://dx.doi.org/10.1016/j.bbapap.2005.08.017] [PMID: 16198162]
[92]
Xagorari A, Roussos C, Papapetropoulos A. Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin. Br J Pharmacol 2002; 136(7): 1058-64.
[http://dx.doi.org/10.1038/sj.bjp.0704803] [PMID: 12145106]
[93]
Chen CC, Chow MP, Huang WC, Lin YC, Chang YJ. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships. Mol Pharmacol 2004; 66(3): 683-93.
[PMID: 15322261]
[94]
Ichikawa D, Matsui A, Imai M, Sonoda Y, Kasahara T. Effect of various catechins on the IL-12 p40 production by murine peritoneal macrophages and A. Biol Pharm Bull 2004; 27: 1353-8.
[http://dx.doi.org/10.1248/bpb.27.1353] [PMID: 15340218]
[95]
Pasten C, Olave NC, Zhou L, Tabengwa EM, Wolkowicz PE, Grenett HE. Polyphenols downregulate PAI-1 gene expression in cultured human coronary artery endothelial cells: molecular contributor to cardiovascular protection. Thromb Res 2007; 121(1): 59-65.
[http://dx.doi.org/10.1016/j.thromres.2007.02.001] [PMID: 17379280]
[96]
Liao Y, Shen W, Kong G, Lv H, Tao W, Bo P. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells. PLoS One 2014; 9(3) e92007
[http://dx.doi.org/10.1371/journal.pone.0092007] [PMID: 24646936]
[97]
Lefort EC, Blay J. Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res 2013; 57(1): 126-44.
[http://dx.doi.org/10.1002/mnfr.201200424] [PMID: 23197449]
[98]
Balez R, Steiner N, Engel M, et al. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep 2016; 6: 31450.
[http://dx.doi.org/10.1038/srep31450] [PMID: 27514990]
[99]
Chandrasekharan NV, Dai H, Roos KLT, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 2002; 99(21): 13926-31.
[http://dx.doi.org/10.1073/pnas.162468699] [PMID: 12242329]
[100]
Needleman P, Isakson PC. The discovery and function of COX-2. J Rheumatol Suppl 1997; 49: 6-8.
[PMID: 9249644]
[101]
Yoon JH, Baek SJ. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J 2005; 46(5): 585-96.
[http://dx.doi.org/10.3349/ymj.2005.46.5.585] [PMID: 16259055]
[102]
Laughton MJ, Evans PJ, Moroney MA, Hoult JR, Halliwell B. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability. Biochem Pharmacol 1991; 42(9): 1673-81.
[http://dx.doi.org/10.1016/0006-2952(91)90501-U] [PMID: 1656994]
[103]
Luceri C, Caderni G, Sanna A, Dolara P. Red wine and black tea polyphenols modulate the expression of cycloxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced f344 rat colon tumors. J Nutr 2002; 132(6): 1376-9.
[http://dx.doi.org/10.1093/jn/132.6.1376] [PMID: 12042461]
[104]
Hou DX, Luo D, Tanigawa S, et al. Prodelphinidin B-4 3′-O-gallate, a tea polyphenol, is involved in the inhibition of COX-2 and iNOS via the downregulation of TAK1-NF-kappaB pathway. Biochem Pharmacol 2007; 74(5): 742-51.
[http://dx.doi.org/10.1016/j.bcp.2007.06.006] [PMID: 17658484]
[105]
Miles EA, Zoubouli P, Calder PC. Differential anti-inflammatory effects of phenolic compounds from extra virgin olive oil identified in human whole blood cultures. Nutrition 2005; 21(3): 389-94.
[http://dx.doi.org/10.1016/j.nut.2004.06.031] [PMID: 15797683]
[106]
González R, Ballester I, López-Posadas R, et al. Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 2011; 51(4): 331-62.
[http://dx.doi.org/10.1080/10408390903584094] [PMID: 21432698]
[107]
Kou X, Kirbergerb M, Chen YN. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Sci Hum Wellness 2013; 2: 22-8.
[http://dx.doi.org/10.1016/j.fshw.2013.01.001]
[108]
Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep 2014; 31(1): 109-39.
[http://dx.doi.org/10.1039/C3NP70065H] [PMID: 24292194]
[109]
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013; 53: 401-26.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[110]
Maioli NA, Zarpelon AC, Mizokami SS, et al. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2. Braz J Med Biol Res 2015; 48(4): 321-31.
[http://dx.doi.org/10.1590/1414-431x20144187] [PMID: 25714890]
[111]
Pinho-Ribeiro FA, Fattori V, Zarpelon AC, et al. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress. Inflammopharmacology 2016a; 24(2-3): 97-107.
[http://dx.doi.org/10.1007/s10787-016-0266-3] [PMID: 27160222]
[112]
Fattori V, Pinho-Ribeiro FA, Borghi SM, et al. Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-κB activation. Inflamm Res 2015; 64(12): 993-1003.
[http://dx.doi.org/10.1007/s00011-015-0885-y] [PMID: 26456836]
[113]
Serafim KGG, Navarro SA, Zarpelon AC, et al. Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice. Naunyn Schmiedebergs Arch Pharmacol 2015; 388(11): 1211-21.
[http://dx.doi.org/10.1007/s00210-015-1160-z] [PMID: 26246053]
[114]
Pinho-Ribeiro FA, Verri WA Jr, Chiu IM. Nociceptor sensory neuron–immune interactions in pain and inflammation. Trends Immunol 2017; 38(1): 5-19.
[http://dx.doi.org/10.1016/j.it.2016.10.001] [PMID: 27793571]
[115]
Ruiz-Miyazawa KW, Pinho-Ribeiro FA, Borghi SM, et al. Hesperidin methylchalcone suppresses experimental gout arthritis in mice by inhibiting NF-kappaB activation. J Agric Food Chem 2018a; 66(25): 6269-80.
[http://dx.doi.org/10.1021/acs.jafc.8b00959] [PMID: 29852732]
[116]
Zhang Y, Liu B, Chen X, et al. Naringenin ameliorates behavioral dysfunction and neurological deficits in a dgalactose-induced aging mouse model through activation of PI3K/Akt/Nrf2 pathway. Rejuvenation Res 2017; 20(6): 462-72.
[http://dx.doi.org/10.1089/rej.2017.1960] [PMID: 28622086]
[117]
Ji LL, Sheng YC, Zheng ZY, Shi L, Wang ZT. The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity. Free Radic Biol Med 2015; 85: 12-23.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.03.035] [PMID: 25881548]
[118]
Selvam C, Jachak SM, Thilagavathi R, Chakraborti AK. Design, synthesis, biological evaluation and molecular docking of curcumin analogues as antioxidant, cyclooxygenase inhibitory and anti-inflammatory agents. Bioorg Med Chem Lett 2005; 15(7): 1793-7.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.039] [PMID: 15780608]
[119]
Bustanji Y, Taha MO, Almasri IM, Al-Ghussein MA, Mohammad MK, Alkhatib HS. Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J Enzyme Inhib Med Chem 2009; 24(3): 771-8.
[http://dx.doi.org/10.1080/14756360802364377] [PMID: 18720192]
[120]
Li P, Zheng Y, Chen X. Drugs for autoimmune inflammatory diseases: From small molecule compounds to anti-TNF biologics. Front Pharmacol 2017; 8: 460.
[http://dx.doi.org/10.3389/fphar.2017.00460] [PMID: 28785220]
[121]
Felten R, Scher F, Sibilia J, Chasset F, Arnaud L. Advances in the treatment of systemic lupus erythematosus: From back to the future, to the future and beyond. Joint Bone Spine 2019; 86(4): 429-36.
[PMID: 30243784]
[122]
Mak P, Leung YK, Tang WY, Harwood C, Ho SM. Apigenin suppresses cancer cell growth through ERbeta. Neoplasia 2006; 8(11): 896-904.
[http://dx.doi.org/10.1593/neo.06538] [PMID: 17132221]