Indium Bromide-catalyzed Unprecedented Hydrogenolysis: A Novel One-Pot Synthesis of Per-O-Acetylated β-carboxymethyl O and S-glycosides

Page: [900 - 908] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Numerous O (oxa)- and S (thia)-glycosyl esters and their analogous glycosyl acids have been accomplished through stereoselective glycosylation of various peracetylated bromo sugar with benzyl glycolate using InBr3 as a glycosyl promotor followed by in situ hydrogenolysis of resulting glycosyl ester. A tandem glycosylating and hydrogenolytic activity of InBr3 has been successfully investigated in a one-pot procedure. The resulting synthetically valuable and virtually unexplored class of β-CMGL (glycosyl acids) could serve as an excellent potential chiral auxiliary in the asymmetric synthesis of a wide range of enantiomerically pure medicinally prevalent β-lactams and other bioactive molecules of diverse medicinal interest.

Keywords: Glycosides, glycosylation, anomeric position, stereoselectivity, hydrogenolysis, catalysis.

Graphical Abstract

[1]
Newman, R.A.; Yang, P.; Pawlus, A.D.; Block, K.I. Cardiac glycosides as novel cancer therapeutic agents. Mol. Interv., 2008, 8(1), 36-49.
[http://dx.doi.org/10.1124/mi.8.1.8] [PMID: 18332483]
[2]
Roy, P.; Dhara, D.; Parida, P.K.; Kar, R.K.; Bhunia, A.; Jana, K.; Sinha Babu, S.P.; Misra, A.K. C-cinnamoyl glycosides as a new class of anti-filarial agents. Eur. J. Med. Chem., 2016, 114, 308-317.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.001] [PMID: 27015610]
[3]
Aminin, D.L.; Menchinskaya, E.S.; Pisliagin, E.A.; Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I. Anticancer activity of sea cucumber triterpene glycosides. Mar. Drugs, 2015, 13(3), 1202-1223.
[http://dx.doi.org/10.3390/md13031202] [PMID: 25756523]
[4]
Iyer, A.K.V.; Zhou, M.; Azad, N.; Elbaz, H.; Wang, L.; Rogalsky, D.K.; Rojanasakul, Y.; O’Doherty, G.A.; Langenhan, J.M. A direct comparison of the anticancer activities of digitoxin MeON-neoglycosides and O-glycosides: oligosaccharide chain length-dependent induction of caspase-9-mediated apoptosis. ACS Med. Chem. Lett., 2010, 1(7), 326-330.
[http://dx.doi.org/10.1021/ml1000933] [PMID: 21103068]
[5]
Schneider, N.F.Z.; Cerella, C.; Simões, C.M.O.; Diederich, M. Anticancer and immunogenic properties of cardiac glycosides. Molecules, 2017, 22(11), 1932.
[http://dx.doi.org/10.3390/molecules22111932] [PMID: 29117117]
[6]
Tiwari, V.K.; Mishra, R.C.; Sharma, A.; Tripathi, R.P. Carbohydrate based potential chemotherapeutic agents: recent developments and their scope in future drug discovery. Mini Rev. Med. Chem., 2012, 12(14), 1497-1519.
[http://dx.doi.org/10.2174/138955712803832654] [PMID: 22827177]
[7]
Ernst, B.; Hart, G.W.; Sinay, P. Carbohydrates in Chemistry and Biology; Wiley & Blackwell, 2008.
[http://dx.doi.org/10.1002/9783527618255]
[8]
Jensen, M.; Schmidt, S.; Fedosova, N.U.; Mollenhauer, J.; Jensen, H.H. Synthesis and evaluation of cardiac glycoside mimics as potential anticancer drugs. Bioorg. Med. Chem., 2011, 19(7), 2407-2417.
[http://dx.doi.org/10.1016/j.bmc.2011.02.016] [PMID: 21421322]
[9]
Prassas, I.; Diamandis, E.P. Novel therapeutic applications of cardiac glycosides. Nat. Rev. Drug Discov., 2008, 7(11), 926-935.
[http://dx.doi.org/10.1038/nrd2682] [PMID: 18948999]
[10]
Chen, W.L.; Ren, Y.; Ren, J.; Erxleben, C.; Johnson, M.E.; Gentile, S.; Kinghorn, A.D.; Swanson, S.M.; Burdette, J.E. (+)-Strebloside-induced cytotoxicity in ovarian cancer cells is mediated through cardiac glycoside signaling networks. J. Nat. Prod., 2017, 80(3), 659-669.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01150] [PMID: 28234008]
[11]
Demchenko, A.V. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; John Wiley & sons, 2008.
[http://dx.doi.org/10.1002/9783527621644]
[12]
Demchenko, A. 1,2-Cis O-glycosylation: methods, strategies, principles. Curr. Org. Chem., 2005, 7(1), 35-79.
[http://dx.doi.org/10.2174/1385272033373175]
[13]
Adero, P.O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. The experimental evidence in support of glycosylation mechanisms at the SN1-SN2 interface. Chem. Rev., 2018, 118(17), 8242-8284.
[http://dx.doi.org/10.1021/acs.chemrev.8b00083] [PMID: 29846062]
[14]
Mydock, L.K.; Demchenko, A.V. Mechanism of chemical O-glycosylation: from early studies to recent discoveries. Org. Biomol. Chem., 2010, 8(3), 497-510.
[http://dx.doi.org/10.1039/B916088D] [PMID: 20090962]
[15]
Demchenko, A.V. Stereoselective chemical 1,2-Cis O-glycosylation: from “sugar ray” to modern techniques of the 21st century. Synlett, 2003, (9), 1225-1240.
[http://dx.doi.org/10.1002/chin.200340283]
[16]
Crich, D. Mechanism of a chemical glycosylation reaction. Acc. Chem. Res., 2010, 43(8), 1144-1153.
[http://dx.doi.org/10.1021/ar100035r] [PMID: 20496888]
[17]
Manabe, S.; Ito, Y. Optimizing glycosylation reaction selectivities by protecting group manipulation. Curr. Bioact. Compd., 2008, 4(4), 258-281.
[http://dx.doi.org/10.2174/157340708786847861]
[18]
Guo, J.; Ye, X.S. Protecting groups in carbohydrate chemistry: influence on stereoselectivity of glycosylations. Molecules, 2010, 15(10), 7235-7265.
[http://dx.doi.org/10.3390/molecules15107235] [PMID: 20966873]
[19]
Kulkarni, S.S.; Wang, C.C.; Sabbavarapu, N.M.; Podilapu, A.R.; Liao, P.H.; Hung, S.C. “One-pot” protection, glycosylation, and protection-glycosylation strategies of carbohydrates. Chem. Rev., 2018, 118(17), 8025-8104.
[http://dx.doi.org/10.1021/acs.chemrev.8b00036] [PMID: 29870239]
[20]
Gould, N.D.; Liana Allen, C.; Nam, B.C.; Schepartz, A.; Miller, S.J. Combined Lewis acid and Brønsted acid-mediated reactivity of glycosyl trichloroacetimidate donors. Carbohydr. Res., 2013, 382, 36-42.
[http://dx.doi.org/10.1016/j.carres.2013.09.011] [PMID: 24177201]
[21]
Li, Y.; Mo, H.; Lian, G.; Yu, B. Revisit of the phenol O-glycosylation with glycosyl imidates, BF3·OEt2 is a better catalyst than TMSOTf. Carbohydr. Res., 2012, 363, 14-22.
[http://dx.doi.org/10.1016/j.carres.2012.09.025] [PMID: 23103509]
[22]
Li, W.; Yu, B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem. Soc. Rev., 2018, 47(21), 7954-7984.
[http://dx.doi.org/10.1039/C8CS00209F] [PMID: 29993057]
[23]
Nielsen, M.M.; Pedersen, C.M. Catalytic glycosylations in oligosaccharide synthesis. Chem. Rev., 2018, 118(17), 8285-8358.
[http://dx.doi.org/10.1021/acs.chemrev.8b00144] [PMID: 29969248]
[24]
McKay, M.J.; Nguyen, H.M. Recent advances in transition metal-catalyzed glycosylation. ACS Catal., 2012, 2(8), 1563-1595.
[http://dx.doi.org/10.1021/cs3002513] [PMID: 22924154]
[25]
Banik, B.K.; Manhas, M.S. Stereospecific novel glycosylation of hydroxy β-lactams via iodine-catalyzed reaction: a new method for optical resolution. Tetrahedron, 2012, 68(52), 10769-10779.
[http://dx.doi.org/10.1016/j.tet.2012.01.078]
[26]
Banik, B.K.; Manhas, M.S.; Bose, A.K. Stereospecific glycosylation via ferrier rearrangement for optical resolution. J. Org. Chem., 1994, 59(17), 4714-4716.
[http://dx.doi.org/10.1021/jo00096a004]
[27]
Banik, B.K.; Banik, I.; Becker, F.F. Asymmetric synthesis of anticancer β-lactams via Staudinger reaction: utilization of chiral ketene from carbohydrate. Eur. J. Med. Chem., 2010, 45(2), 846-848.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.024] [PMID: 19962794]
[28]
Banik, B. K.; Banik, I.; Becker, F. F. Stereocontrolled synthesis of anticancer β-lactams via the Staudinger reaction. Bioorganic Med. Chem.,, 2005.
[http://dx.doi.org/10.1016/j.bmc.2005.03.044]
[29]
Banik, I.; Becker, F.F.; Banik, B.K. Stereoselective synthesis of β-lactams with polyaromatic imines: entry to new and novel anticancer agents. J. Med. Chem., 2003, 46(1), 12-15.
[http://dx.doi.org/10.1021/jm0255825] [PMID: 12502355]
[30]
Banik, B.K.; Becker, F.F.; Banik, I. Synthesis of anticancer β-lactams: mechanism of action. Bioorg. Med. Chem., 2004, 12(10), 2523-2528.
[http://dx.doi.org/10.1016/j.bmc.2004.03.033] [PMID: 15110834]
[31]
Banik, B.K.; Banik, I.; Becker, F.F. Novel anticancer β-lactams.In: Heterocyclic Scaffolds I., 2010, Springer. Vol. 22, 349-373.
[http://dx.doi.org/10.1007/7081_2010_28]
[32]
Shaikh, A.L.; Banik, B.K. A novel asymmetric synthesis of 3-(1H-pyrrol-1-Yl)-substituted β-lactams via a bismuth nitrate-catalyzed reaction. Helv. Chim. Acta, 2012, 95(5), 839-844.
[http://dx.doi.org/10.1002/hlca.201100202]
[33]
Banik, B.K.; Becker, F.F. Selective anticancer activity of β-lactams derived from polyaromatic compound. Mol. Med. Rep., 2010, 3(2), 315-316.
[http://dx.doi.org/10.3892/mmr_000000257] [PMID: 21472239]
[34]
Banik, B.K.; Samajdar, S.; Becker, F.F. Asymmetric synthesis of anticancer β-lactams via Staudinger reaction. Mol. Med. Rep., 2010, 3(2), 319-321.
[http://dx.doi.org/10.3892/mmr_000000259] [PMID: 21472241]
[35]
Banik, B.K. Novel synthesis of β-lactams and their biological evaluation. J. Indian Chem. Soc., 2014, 91, 1837-1860.
[36]
Cheaib, R.; Listkowski, A.; Chambert, S.; Doutheau, A.; Queneau, Y. Synthesis of new mono- and disaccharidic Carboxymethylglycoside Lactones (CMGLs) and their use toward 1,2-bisfunctionalized carbohydrate synthons. Tetrahedron Asymmetry, 2008, 19, 1919-1933.
[http://dx.doi.org/10.1016/j.tetasy.2008.07.016]
[37]
Virta, P.; Karskela, M.; Lönnberg, H. Orthogonally protected cyclo-β-tetrapeptides as solid-supported scaffolds for the synthesis of glycoclusters. J. Org. Chem., 2006, 71(5), 1989-1999.
[http://dx.doi.org/10.1021/jo052348o] [PMID: 16496985]
[38]
Choudhury, A.K.; Kitaoka, M.; Hayashi, K. Synthesis of a cellobiosylated dimer and trimer and of cellobiose-coated Polyamidoamine (PAMAM) dendrimers to study accessibility of an enzyme, cellodextrin phosphorylase. Eur. J. Org. Chem., 2003, 2003(13), 2462-2470.
[http://dx.doi.org/10.1002/ejoc.200300018]
[39]
Autar, R.; Khan, A.S.; Schad, M.; Hacker, J.; Liskamp, R.M.J.; Pieters, R.J. Adhesion inhibition of F1C-fimbriated Escherichia coli and Pseudomonas aeruginosa PAK and PAO by multivalent carbohydrate ligands. ChemBioChem, 2003, 4(12), 1317-1325.
[http://dx.doi.org/10.1002/cbic.200300719] [PMID: 14661274]
[40]
Miskolczi, I.; Sztaricskai, F.; Herczegh, P.; Bognár, R.; Koczka, I. Cephalosporins containing carbohydrates. J. Antibiot. (Tokyo), 1985, 38(9), 1273-1276.
[http://dx.doi.org/10.7164/antibiotics.38.1273] [PMID: 4066508]
[41]
Astronomo, R.D.; Burton, D.R. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug Discov., 2010, 9(4), 308-324.
[http://dx.doi.org/10.1038/nrd3012] [PMID: 20357803]
[42]
Hecht, M.L.; Stallforth, P.; Silva, D.V.; Adibekian, A.; Seeberger, P.H. Recent advances in carbohydrate-based vaccines. Curr. Opin. Chem. Biol., 2009, 13(3), 354-359.
[http://dx.doi.org/10.1016/j.cbpa.2009.05.127] [PMID: 19560394]
[43]
Yang, Y.; Zhao, Y.T.; Yan, T.T.; Yu, M.; Sha, Y.L.; Zhao, Z.H.; Li, Z.J. Design and fabrication of multivalent gal-containing quantum dots and study of its interactions with Asialoglycoprotein Receptor (ASGP-R). Tetrahedron Lett., 2010, 51(32), 4182-4185.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.002]
[44]
Ibatullin, F.M.; Shabalin, K.A.; Jänis, J.V.; Shavva, A.G. Reaction of 1,2-trans-glycosyl acetates with thiourea: a new entry to 1-thiosugars. Tetrahedron Lett., 2003, 44(43), 7961-7964.
[http://dx.doi.org/10.1016/j.tetlet.2003.08.120]
[45]
Chandra, S.; Yadav, R.N.; Paniagua, A.; Banik, B.K. Indium salts-catalyzed O and S-glycosylation of bromo sugar with benzyl glycolate: an unprecedented hydrogenolysis. Tetrahedron Lett., 2016, 57(13), 1425-1429.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.039]
[46]
Dardonville, C.; Rinaldi, E.; Barrett, M.P.; Brun, R.; Gilbert, I.H.; Hanau, S. Selective inhibition of Trypanosoma brucei 6-phosphogluconate dehydrogenase by high-energy intermediate and transition-state analogues. J. Med. Chem., 2004, 47(13), 3427-3437.
[http://dx.doi.org/10.1021/jm031066i] [PMID: 15189039]
[47]
Montoro, R.; Wirth, T. Direct bromination and iodination of non-activated alkanes by hypohalite reagents. Synthesis (Stuttg), 2005, 9, 1473-1478.
[http://dx.doi.org/10.1055/s-2005-865322]