Abstract
Background: Microbial degradation of highly stable textile dyes, using lignin peroxidase,
is an eco-friendly, less expensive and much advantageous in comparison to the
chemical method.
Objective: Biodegradation potential of lignin peroxidase (LiP), from Pseudomonas fluorescens
LiP-RL5, was enhanced after optimization and purification so as to use it as a potential
bioresource for the treatment of textile effluent.
Methods: LiP producing bacterial isolate was primarily screened by methylene blue assay
followed by LiP assay. The standard protocol was used for purification of lignin peroxidase
and purified LiP was finally used for degradation of textile dyes.
Results: 57 bacterial isolates were screened for lignin peroxidase activity. Isolate LiP-RL5
showed maximum activity (19.8 ±0.33 %) in terms of methylene blue reduction in comparison
to others. Biochemical and molecular characterization of LiP-RL5 showed 99 % similarity
with P. fluorescens. Lignin peroxidase activity was increased by 50 % after optimization
of cultural conditions. Maximum enhancement in the activity was achieved when peptone
was used as a nitrogen source. LiP from P. fluorescens LiP-RL5 was further purified up to 2
folds. SDS-PAGE analysis revealed a single protein band of approximately 40 kDa. Enzyme
also showed high catalytic efficiency with Km= 6.94 mM and Vmax= 78.74 μmol/ml/min. Purified
enzyme was able to decolorize the simulated textile effluent up to 45.05 ±0.28 % after
40 minutes.
Conclusion: High catalytic efficiency of purified LiP from P. fluorescens LiP-RL5 suggests
its utility as a potential candidate for biodegradation of toxic dyes in the industrial effluent,
which could be successfully utilized for wastewater treatment at commercial level.
Keywords:
Bioremediation, P. fluorescens, lignin peroxidase, methylene blue, decolorization, textile effluent.
Graphical Abstract
[1]
Bridge G, Watson S. The Blackwell City Reader. John Wiley & Sons 2010; pp. 75-6.
[2]
Brinzila CI, Ciobanu R, Brillas E. Effect of experimental parameters on crystal violet mineralization by electro-fenton process. Environ Eng Manag J 2011; 1: 11.
[12]
Patil SR. Production and purification of lignin peroxidase from Bacillus megaterium and its application in bioremidation. J Microbiol 2014; 2: 22-8.
[13]
Sasidhara R, Thirunalasundar T. Lignolytic and lignocellulosic enzymes of Ganoderma lucidum in 999liquid medium. Eur J Exp Biol 2014; 4: 375-9.
[15]
Shamseldin A, Ahmed AA. Isolation and identification of newly effective bacterial strains exhibiting great ability of lignin and Rice straw biodegradation. Int J Curr Microbiol Appl Sci 2015; 4: 1039-49.
[16]
Singh P, Jain P, Verma R, Jagdish RS. Characterization of lignin peroxidase from Paecilomy species for depolarization of paper and pulp mill effluent. J Sci Ind Res (India) 2016; 75: 500-5.
[24]
Abraham KG. Extraction of lignin peroxidase enzyme from bacteria isolated from the mangrove wood. Indian Journal of Research 2016; 5: 7-9.
[25]
Crawford DL, Muralidhara R. Bacterial extracellular lignin peroxidase United States Patent 5200338 2004.
[27]
Sasikumar V, Priya V, Shiv CS, Sathish DS. Isolation and preliminary screening of lignin degrading microbes. Journal of Academic & Industrial Research 2014; 3: 291-4.
[30]
Yadav M, Singh SK, Yadav KS, Singh KD. Purification of lignin peroxidase from Hexagona tenuis MTCC-1119 and its kinetic properties in aqueous medium containing miscible organic solvent. Indian J Chem 2010; 49: 487-98.
[34]
Kheiralla ZH, Badr El-Din MS, Saad MA, Douaa HA. Optimization of cultural conditions for lignin peroxidase production by Phanerochaete chrysosporium and Pleurotus ostreatus Academic Journal of Biotechnology 2013; 1087.
[37]
Sivakami V, Ramachandran B, Srivathsan J, Kesavaperumal G, Smily B, Kumar DM. Production and optimization of laccase and lignin peroxidase by newly isolated Pleurotus ostreatus LIG 19. Journal of Microbiology & Biotechnology Research 2012; 2: 875-81.
[39]
Hariharan S, Nambisan P. Optimization of lignin peroxidase, and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. Bioresource 2013; 8: 250-71.