Computational Overview of Mycobacterial Thymidine Monophosphate Kinase

Page: [1676 - 1681] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Tuberculosis (TB) ranks among the diseases with the highest morbidity rate with significantly high prevalence in developing countries. Globally, tuberculosis poses the most substantial burden of mortality. Further, a partially treated tuberculosis patient is worse than untreated; they may lead to standing out as a critical obstacle to global tuberculosis control. The emergence of multi-drug resistant (MDR) and extremely drug-resistant (XDR) strains, and co-infection of HIV further worsen the situation. The present review article discusses validated targets of the bacterial enzyme thymidine monophosphate kinase (TMPK). TMPKMTB enzyme belongs to the nucleoside monophosphate kinases (NMPKs) family. It is involved in phosphorylation of TMP to TDP, and TDP is phosphorylated to TTP. This review highlights structure elucidation of TMP enzymes and their inhibitors study on TMP scaffold, and it also discusses different techniques; including molecular docking, virtual screening, 3DPharmacophore, QSAR for finding anti-tubercular agents.

Keywords: Tuberculosis, QSAR, docking, pharmacophore, crystal, SAR.

[1]
Loddenkemper R, Lipman M, Zumla A. Clinical aspects of adult tuberculosis. Cold Spring Harb Perspect Med 2015; 6(1)a017848
[http://dx.doi.org/10.1101/cshperspect.a017848] [PMID: 25659379]
[2]
Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J Prev Med Hyg 2017; 58(1): E9-E12.
[PMID: 28515626]
[3]
Dupnik KM, Bean JM, Lee MH, et al. Blood transcriptomic markers of Mycobacterium tuberculosis load in sputum. Int J Tuberc Lung Dis 2018; 22(8): 950-8.
[http://dx.doi.org/10.5588/ijtld.17.0855] [PMID: 29991407]
[4]
Meyer AJ, Atuheire C, Worodria W, et al. Sputum quality and diagnostic performance of GeneXpert MTB/RIF among smear-negative adults with presumed tuberculosis in Uganda. PLoS One 2017; 12(7)e0180572
[http://dx.doi.org/10.1371/journal.pone.0180572] [PMID: 28686705]
[5]
Campo M, Kawamura LM. What is Tuberculosis (TB)? Am J Respir Crit Care Med 2017; 195(4): 7-P8.
[http://dx.doi.org/10.1164/rccm.1954P7] [PMID: 28199163]
[6]
Barr DA, Yates TA. Whole-genome sequencing identifies nosocomial transmission of extra-pulmonary Mycobacterium tuberculosis. QJM 2017; 110(9): 611-2.
[http://dx.doi.org/10.1093/qjmed/hcx115] [PMID: 28633485]
[7]
Said AM, Shehata SM, Lutfy SM, Elsammak A, El-Azony A, Roshdy M. Assessment of radiological pulmonary shadows in patients with extra pulmonary neoplasm. Egypt J Chest Dis Tuberc 2017; 66: 681-6.
[http://dx.doi.org/10.1016/j.ejcdt.2017.09.001]
[8]
Doherty TM. Real world TB vaccines: clinical trials in TB-endemic regions. Vaccine 2005; 23(17-18): 2109-14.
[http://dx.doi.org/10.1016/j.vaccine.2005.01.060] [PMID: 15755580]
[9]
Horton KC, MacPherson P, Houben RMGJ, White RG, Corbett EL. Sex differences in tuberculosis burden and notifications in low- and middle-income countries: a systematic review and meta-analysis. PLoS Med 2016; 13(9)e1002119
[http://dx.doi.org/10.1371/journal.pmed.1002119] [PMID: 27598345]
[10]
Corbett EL, Watt CJ, Walker N, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 2003; 163(9): 1009-21.
[http://dx.doi.org/10.1001/archinte.163.9.1009] [PMID: 12742798]
[11]
Eldholm V, Rieux A, Monteserin J, et al. Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis. eLife 2016; 5: 5.
[http://dx.doi.org/10.7554/eLife.16644] [PMID: 27502557]
[12]
Belay M, Bjune G, Abebe F. Prevalence of tuberculosis, HIV, and TB-HIV co-infection among pulmonary tuberculosis suspects in a predominantly pastoralist area, northeast Ethiopia. Glob Health Action 2015; 8: 27949.
[http://dx.doi.org/10.3402/gha.v8.27949] [PMID: 26689454]
[13]
Boulougoura A, Sereti I. HIV infection and immune activation: the role of coinfections. Curr Opin HIV AIDS 2016; 11(2): 191-200.
[http://dx.doi.org/10.1097/COH.0000000000000241] [PMID: 26720550]
[14]
Hickey AJ, Gounder L, Moosa M-YS, Drain PK. A systematic review of hepatic tuberculosis with considerations in human immunodeficiency virus co-infection. BMC Infect Dis 2015; 15: 209.
[http://dx.doi.org/10.1186/s12879-015-0944-6] [PMID: 25943103]
[15]
Song L, Merceron R, Gracia B, et al. Structure guided lead generation toward nonchiral M. tuberculosis thymidylate kinase inhibitors. J Med Chem 2018; 61(7): 2753-75.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01570] [PMID: 29510037]
[16]
Ferrari V, Serpi M. Nucleoside analogs and tuberculosis: new weapons against an old enemy. Future Med Chem 2015; 7(3): 291-314.
[http://dx.doi.org/10.4155/fmc.14.166] [PMID: 25826361]
[17]
Nayak N, Ramprasad J, Dalimba U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline-pyrazole hybrid derivatives. J Fluor Chem 2016; 183: 59-68.
[http://dx.doi.org/10.1016/j.jfluchem.2016.01.011]
[18]
Cui Q, Shin WS, Luo Y, Tian J, Cui H, Yin D. Thymidylate kinase: an old topic brings new perspectives. Curr Med Chem 2013; 20(10): 1286-305.
[http://dx.doi.org/10.2174/0929867311320100006] [PMID: 23394555]
[19]
Ostermann N, Schlichting I, Brundiers R, et al. Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Structure 2000; 8(6): 629-42.
[http://dx.doi.org/10.1016/S0969-2126(00)00149-0] [PMID: 10873853]
[20]
Li de la Sierra I, Munier-Lehmann H, Gilles AM, Bârzu O, Delarue M. X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 A resolution. J Mol Biol 2001; 311(1): 87-100.
[http://dx.doi.org/10.1006/jmbi.2001.4843] [PMID: 11469859]
[21]
Munier-Lehmann H, Chaffotte A, Pochet S, Labesse G. Thymidylate kinase of Mycobacterium tuberculosis: a chimera sharing properties common to eukaryotic and bacterial enzymes. Protein Sci 2001; 10(6): 1195-205.
[http://dx.doi.org/10.1110/ps.45701] [PMID: 11369858]
[22]
Fioravanti E, Haouz A, Ursby T, Munier-Lehmann H, Delarue M, Bourgeois D. Mycobacterium tuberculosis thymidylate kinase: structural studies of intermediates along the reaction pathway. J Mol Biol 2003; 327(5): 1077-92.
[http://dx.doi.org/10.1016/S0022-2836(03)00202-X] [PMID: 12662932]
[23]
Fioravanti E, Adam V, Munier-Lehmann H, Bourgeois D. The crystal structure of Mycobacterium tuberculosis thymidylate kinase in complex with 3′-azidodeoxythymidine monophosphate suggests a mechanism for competitive inhibition. Biochemistry 2005; 44(1): 130-7.
[http://dx.doi.org/10.1021/bi0484163] [PMID: 15628853]
[24]
Haouz A, Vanheusden V, Munier-Lehmann H, et al. Enzymatic and structural analysis of inhibitors designed against Mycobacterium tuberculosis thymidylate kinase. New insights into the phosphoryl transfer mechanism. J Biol Chem 2003; 278(7): 4963-71.
[http://dx.doi.org/10.1074/jbc.M209630200] [PMID: 12454011]
[25]
Vanheusden V, Munier-Lehmann H, Pochet S, Herdewijn P, Van Calenbergh S. Synthesis and evaluation of thymidine-5′-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. Bioorg Med Chem Lett 2002; 12(19): 2695-8.
[http://dx.doi.org/10.1016/S0960-894X(02)00551-6] [PMID: 12217356]
[26]
Kumar M, Sharma S, Srinivasan A, Singh TP, Kaur P. Structure-based in-silico rational design of a selective peptide inhibitor for thymidine monophosphate kinase of mycobacterium tuberculosis. J Mol Model 2011; 17(5): 1173-82.
[27]
Vanheusden V, Van Rompaey P, Munier-Lehmann H, Pochet S, Herdewijn P, Van Calenbergh S. Thymidine and thymidine-5′-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. Bioorg Med Chem Lett 2003; 13(18): 3045-8.
[http://dx.doi.org/10.1016/S0960-894X(03)00643-7] [PMID: 12941330]
[28]
Pochet S, Dugue L, Douguet D, Labesse G, Munier-Lehmann H. Nucleoside analogues as inhibitors of thymidylate kinases: possible therapeutic applications. ChemBioChem 2002; 3(1): 108-10.
[http://dx.doi.org/10.1002/1439-7633(20020104)3:1<108:AID-CBIC108>3.0.CO;2-B] [PMID: 17590962]
[29]
Van Rompaey P, Veerle V, Pochet S, et al. Thymidine (monophosphate) analogues as Mycobacterium tuberculosis thymidylate kinase inhibitors. Collect Symp Ser (Chemistry of Nucleic Acid Components) 2002; 5: 393-5.
[http://dx.doi.org/10.1135/css200205393]
[30]
Van Rompaey P, Nauwelaerts K, Vanheusden V, et al. Mycobacterium tuberculosis thymidine monophosphate kinase inhibitors: biological evaluation and conformational analysis of 2′- and 3′-modified thymidine analogues. Eur J Org Chem 2003; 2911-8.
[http://dx.doi.org/10.1002/ejoc.200300177]
[31]
Munier-Lehmann H, Pochet S, Dugue L, Dutruel O, Labesse G, Douget D. Design of Mycobacterium tuberculosis thymidine monophosphate kinase inhibitors. Nucleosides Nucleotides Nucleic Acids 2003; 22(5-8): 801-4.
[http://dx.doi.org/10.1081/NCN-120022638] [PMID: 14565282]
[32]
Vanheusden V, Munier-Lehmann H, Froeyen M, et al. Discovery of bicyclic thymidine analogues as selective and high-affinity inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. J Med Chem 2004; 47: 6187-94.
[33]
Van Daele I, Munier-Lehmann H, Froeyen M, Balzarini J, Van Calenbergh S. Rational design of 5′-thiourea-substituted alpha-thymidine analogues as thymidine monophosphate kinase inhibitors capable of inhibiting mycobacterial growth. J Med Chem 2007; 50(22): 5281-92.
[http://dx.doi.org/10.1021/jm0706158] [PMID: 17910427]
[34]
Gasse C, Douguet D, Huteau V, Marchal G, Munier-Lehmann H, Pochet S. Substituted benzyl-pyrimidines targeting thymidine monophosphate kinase of Mycobacterium tuberculosis: synthesis and in vitro anti-mycobacterial activity. Bioorg Med Chem 2008; 16(11): 6075-85.
[http://dx.doi.org/10.1016/j.bmc.2008.04.045] [PMID: 18467107]
[35]
Familiar O, Munier-Lehmann H, Aínsa JA, Camarasa M-J, Pérez-Pérez M-J. Design, synthesis and inhibitory activity against Mycobacterium tuberculosis thymidine monophosphate kinase of acyclic nucleoside analogues with a distal imidazoquinolinone. Eur J Med Chem 2010; 45(12): 5910-8.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.056] [PMID: 20951473]
[36]
Toti KS, Verbeke F, Risseeuw MDP, Frecer V, Munier-Lehmann H, Van Calenbergh S. Synthesis and evaluation of 5′-modified thymidines and 5-hydroxymethyl-2′-deoxyuridines as Mycobacterium tuberculosis thymidylate kinase inhibitors. Bioorg Med Chem 2013; 21(1): 257-68.
[http://dx.doi.org/10.1016/j.bmc.2012.10.018] [PMID: 23199481]
[37]
Van Calenbergh S, Pochet S, Munier-Lehmann H. Drug design and identification of potent leads against mycobacterium tuberculosis thymidine monophosphate kinase. Curr Top Med Chem 2012; 12(7): 694-705.
[http://dx.doi.org/10.2174/156802612799984580] [PMID: 22283813]
[38]
Adamska A, Rumijowska-Galewicz A, Ruszczynska A, et al. Anti-mycobacterial activity of thymine derivatives bearing boron clusters. Eur J Med Chem 2016; 121: 71-81.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.030] [PMID: 27236064]
[39]
Suthagar K, Jiao W, Munier-Lehmann H, Fairbanks AJ. Synthesis of sulfamide analogues of deoxthymidine monophosphate as potential inhibitors of mycobacterial cell wall biosynthesis. Carbohydr Res 2018; 457: 32-40.
[http://dx.doi.org/10.1016/j.carres.2018.01.001] [PMID: 29348046]
[40]
Alexandrova LA, Chekhov VO, Shmalenyuk ER, Kochetkov SN, El-Asrar RA, Herdewijn P. Synthesis and evaluation of C-5 modified 2′-deoxyuridine monophosphates as inhibitors of M. tuberculosis thymidylate synthase. Bioorg Med Chem 2015; 23(22): 7131-7.
[http://dx.doi.org/10.1016/j.bmc.2015.09.053] [PMID: 26482569]
[41]
Naik M, Raichurkar A, Bandodkar BS, et al. Structure guided lead generation for M. tuberculosis thymidylate kinase (Mtb TMK): discovery of 3-cyanopyridone and 1,6-naphthyridin-2-one as potent inhibitors. J Med Chem 2015; 58(2): 753-66.
[http://dx.doi.org/10.1021/jm5012947] [PMID: 25486447]
[42]
Aparna V, Jeevan J, Ravi M, Desiraju GR, Gopalakrishnan B. 3D-QSAR studies on antitubercular thymidine monophosphate kinase inhibitors based on different alignment methods. Bioorg Med Chem Lett 2006; 16(4): 1014-20.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.086] [PMID: 16290929]
[43]
Andrade CH, Pasqualoto KFM, Ferreira EI, Hopfinger AJ. Rational design and 3D-pharmacophore mapping of 5′-thiourea-substituted alpha-thymidine analogues as mycobacterial TMPK inhibitors. J Chem Inf Model 2009; 49(4): 1070-8.
[http://dx.doi.org/10.1021/ci8004622] [PMID: 19296716]
[44]
Andrade CH, Pasqualoto KFM, Ferreira EI, Hopfinger AJ. 3D-Pharmacophore mapping of thymidine-based inhibitors of TMPK as potential antituberculosis agents. J Comput Aided Mol Des 2010; 24(2): 157-72.
[http://dx.doi.org/10.1007/s10822-010-9323-y] [PMID: 20217185]
[45]
Pasqualoto KFM, Ferreira EI, Santos-Filho OA, Hopfinger AJ. Rational design of new antituberculosis agents: receptor-independent four-dimensional quantitative structure-activity relationship analysis of a set of isoniazid derivatives. J Med Chem 2004; 47(15): 3755-64.
[http://dx.doi.org/10.1021/jm049913k] [PMID: 15239654]
[46]
Frecer V, Seneci P, Miertus S. Computer-assisted combinatorial design of bicyclic thymidine analogs as inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase. J Comput Aided Mol Des 2011; 25(1): 31-49.
[http://dx.doi.org/10.1007/s10822-010-9399-4] [PMID: 21082329]
[47]
Chitre TS, Kathiravan MK, Bothara KG, Bhandari SV, Jalnapurkar RR. Pharmacophore optimization and design of competitive inhibitors of thymidine monophosphate kinase through molecular modeling studies. Chem Biol Drug Des 2011; 78(5): 826-34.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01200.x] [PMID: 21801308]
[48]
Chitre TS, Bothara KG. Pyrimidinedione: pharmacophore optimization of selective thymidine monophosphate kinase inhibitors using group QSAR studies as potential antitubercular agents. J Chem Pharm Res 2011; 3: 479-88.
[49]
Bueno RV, Toledo NR, Neves BJ, Braga RC, Andrade CH. Structural and chemical basis for enhanced affinity to a series of mycobacterial thymidine monophosphate kinase inhibitors: fragment-based QSAR and QM/MM docking studies. J Mol Model 2013; 19(1): 179-92.
[http://dx.doi.org/10.1007/s00894-012-1527-8] [PMID: 22846924]
[50]
Kumar A, Chaturvedi V, Bhatnagar S, Sinha S, Siddiqi MI. Knowledge based identification of potent antitubercular compounds using structure based virtual screening and structure interaction fingerprints. J Chem Inf Model 2009; 49(1): 35-42.
[http://dx.doi.org/10.1021/ci8003607] [PMID: 19063713]
[51]
Keita M, Kumar A, Dali B, et al. Quantitative structure–activity relationships and design of thymine-like inhibitors of thymidine monophosphate kinase of mycobacterium tuberculosis with favourable pharmacokinetic profiles. RSC Advances 2014; 4: 55853-66.
[http://dx.doi.org/10.1039/C4RA06917J]
[52]
Gopalakrishnan B, Aparna V, Jeevan J, Ravi M, Desiraju GR. A virtual screening approach for thymidine monophosphate kinase inhibitors as antitubercular agents based on docking and pharmacophore models. J Chem Inf Model 2005; 45(4): 1101-8.
[http://dx.doi.org/10.1021/ci050064z] [PMID: 16045305]
[53]
Bali M, Sood S, Singh PS. Study of pyridine based triazole derivatives as mycobacterium tuberculosis TMPK inhibitors. Int J Theor Appl Sci 2009; 1: 41.
[54]
Kumar M, Sharma S, Srinivasan A, Singh TP, Kaur P. Structure-based in-silico rational design of a selective peptide inhibitor for thymidine monophosphate kinase of mycobacterium tuberculosis. J Mol Model 2011; 17(5): 1173-82.
[http://dx.doi.org/10.1007/s00894-010-0821-6] [PMID: 20697760]
[55]
Ul-Haq Z, Uddin R, Gul S. Optimization of structure based virtual screening protocols against thymidine monophosphate kinase inhibitors as antitubercular agents. Mol Inform 2011; 30(10): 851-62.
[http://dx.doi.org/10.1002/minf.201100049] [PMID: 27468105]
[56]
Koseki Y, Kinjo T, Kobayashi M, Aoki S. Identification of novel antimycobacterial chemical agents through the in silico multi-conformational structure-based drug screening of a large-scale chemical library. Eur J Med Chem 2013; 60: 333-9.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.012] [PMID: 23314046]