Carbon Nanocomposites: The Potential Heterogeneous Catalysts for Organic Transformations

Page: [332 - 350] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

One of the major challenges in chemistry confronted by the chemists is the replacement of conventional homogeneous catalysts by heterogeneous catalysts for the development of green, sustainable and economical chemical processes. Recently, carbón-based nanocomposites have attracted the attention of scientists due to their unique physical and chemical properties such as large surface area and pore volume, chemical inertness, high stability and high electrical conductivity. These NCs have been employed in energy storage, electronic devices, sensors, environmental remediation etc. Owing to the wide availability and low cost, carbón-based materials have been utilized as supports for transition metals and other materials. The carbón-based NCs offer a number of advantages such as high stability, easy recovery, reusability with often minimal leaching of metal ions, and green and sustainable approaches to heterogeneous catalysis for various organic transformations. Hence, they can be used as the substitute for the existing catalyst used for heterogeneous catalysis in industries. In this review, various processing methods for carbón-based nanocomposites and their applications as heterogeneous catalysts for organic transformations like hydrogenation, oxidation, coupling, and multicomponent reactions, have been discussed.

Keywords: Carbon nanotubes, graphene, heterogeneous catalysis, nanocomposites, nanoparticles, organic transformation.

Graphical Abstract

[1]
Rao, X.; Liu, C.; Zhang, Y.; Gao, Z.; Jin, Z. Pd/C-catalyzed ligand-free and aerobic Suzuki reaction in water. Chin. J. Catal., 2014, 35, 357-361.
[http://dx.doi.org/10.1016/S1872-2067(12)60754-2]
[2]
Li, R.; Zhang, P.; Huang, Y.; Zhang, P.; Zhong, H.; Chen, Q.W. Pd-Fe3O4@C hybrid nanoparticles: preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. J. Mater. Chem., 2012, 22, 22750-22755.
[http://dx.doi.org/10.1039/c2jm35252d]
[3]
Yin, L.; Liebscher, J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev., 2007, 107(1), 133-173.
[http://dx.doi.org/10.1021/cr0505674] [PMID: 17212474]
[4]
Bonis, A.D.; D’Orsi, R.; Funicello, M.; Lupattelli, P.; Santagata, A.; Teghil, R.; Chiummiento, L. First application of homogeneous Pd nanoparticles prepared by pulsed laser ablation in liquid to a Suzuki-type reaction. Catal. Commun., 2017, 100, 164-168.
[http://dx.doi.org/10.1016/j.catcom.2017.06.052]
[5]
Kaboudin, B.; Salemi, H.; Mostafalu, R.; Kazemi, F.; Yokomatsu, T. Pd(II)-β-cyclodextrin complex: synthesis, characterization and efficient nanocatalyst for the selective Suzuki-Miyaura coupling reaction in water. J. Organomet. Chem., 2016, 818, 195-199.
[http://dx.doi.org/10.1016/j.jorganchem.2016.06.007]
[6]
Tahmasebi, S.; Mokhtari, J.; Naimi-Jamal, M.R.; Khosravi, A.; Panahi, L. Application of Cu2(BDC)2DABCO encapsulated palladium nanoparticle in Suzuki coupling. J. Organomet. Chem., 2017, 853, 35-41.
[http://dx.doi.org/10.1016/j.jorganchem.2017.10.011]
[7]
Chen, Y.; Wang, M.G.; Zhang, L.; Liu, Y.; Han, J. Poly(o-aminothiophenol)-stabilized Pd nanoparticles as efficient heterogenous catalysts for Suzuki cross-coupling reactions. RSC Adv, 2017, 7, 47104-47110.
[http://dx.doi.org/10.1039/C7RA09947A]
[8]
Mondal, P.; Bhanja, P.; Khatun, R.; Bhaumik, A.; Das, D.; Manirul Islam, S. Palladium nanoparticles embedded on mesoporous TiO2 material (Pd@MTiO2) as an efficient heterogeneous catalyst for Suzuki-Coupling reactions in water medium. J. Colloid Interface Sci., 2017, 508, 378-386.
[http://dx.doi.org/10.1016/j.jcis.2017.08.046] [PMID: 28843927]
[9]
Maleki, A. One-pot three-component synthesis of pyrido [20,10:2,3]-imidazo[4,5-c]isoquinolines using Fe3O4@SiO2-OSO3H as an efficient heterogeneous nanocatalyst. RSC Adv, 2014, 4, 64169-64173.
[http://dx.doi.org/10.1039/C4RA10856F]
[10]
Maleki, A.; Panahzadeh, M.; Eivazzadeh-keihan, R. Agar: A natural and environmentally-friendly support composed of copper oxide nanoparticles for the green synthesis of 1,2,3–triazoles. Green Chem. Lett. Rev., 2019, 12(4), 395-406.
[http://dx.doi.org/10.1080/17518253.2019.1679263]
[11]
Maleki, A.; Azizi, M.; Emdadi, Z. A novel poly(ethyleneoxide)-based magnetic nanocomposite catalyst for highly efficient multicomponent synthesis of pyran derivatives. Green Chem. Lett. Rev., 2018, 11(4), 573-582.
[http://dx.doi.org/10.1080/17518253.2018.1547795]
[12]
Maleki, A.; Zand, P.; Mohseni, Z. Fe3O4@PEG-SO3H rod-like morphology along with the spherical nanoparticles: novel green nanocomposite design, preparation, characterization and catalytic application. RSC Adv, 2016, 6, 110928-110932.
[http://dx.doi.org/10.1039/C6RA24029A]
[13]
Maleki, A. One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tet. Lett., 2013, 54, 2055-2059.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.123]
[14]
Maleki, A. Synthesis of imidazo[1,2-a]pyridines using Fe3O4@SiO2 as an efficient nanomagnetic catalyst via a one-pot multicomponent reaction. Helv. Chim. Acta, 2014, 97, 587-593.
[http://dx.doi.org/10.1002/hlca.201300244]
[15]
Yang, P.B.; Ma, Y.; Bian, F.L. Palladium supported on metformin-functionalized magnetic polymer nanocomposites: a highly efficient and reusable catalyst for the Suzuki-Miyaura coupling reaction. ChemCatChem, 2016, 8, 1-24.
[http://dx.doi.org/10.1002/cctc.201600994]
[16]
Liu, H.; Chou, Y.; Wang, Y.; Zhang, H.; Cheng, T.; Liu, G. Multistep organic transformations over base-rhodium/diamine-bifunctionalized mesostructured silica nanoparticles. ChemCatChem, 2017, 9, 1-8.
[http://dx.doi.org/10.1002/cctc.201700436]]
[17]
Hajipour, A.R.; Sadeghi, A.R.; Khorsandi, Z. Pd nanoparticles immobilized on magnetic chitosan as a novel reusable catalyst for green Heck and Suzuki cross-coupling reaction: in water at room temperature. Appl. Organomet. Chem., 2017, 11, 4112-4122.
[http://dx.doi.org/10.1002/aoc.4112]]
[18]
Chen, J.; Zhang, J.; Zhu, D.J.; Li, T. Porphyrin-based polymer-supported palladium as an excellent and recyclable catalyst for Suzuki-Miyaura coupling reaction in water. Appl. Organomet. Chem., 2017, 8, 3996-4002.
[http://dx.doi.org/10.1002/aoc.3996]]
[19]
Khan, W.S.; Hamadneh, N.N.; Khan, W.A. Science and applications of tailored nanostructures. One Central Press, UK, 2016, 46, 50-66.
[20]
Hussain, C.M.; Mishra, A.K., Eds.; Ambika; Singh, P.P. Nanotechnology in Environmental Sciences; Wiley VCH Verlag: Weinheim, Germany, 2018, Vol. 2, pp. 805-816.
[21]
Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett., 2008, 8(10), 3498-3502.
[http://dx.doi.org/10.1021/nl802558y] [PMID: 18788793]
[22]
Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R.D.; Colombo, L.; Ruoff, R.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett., 2009, 9(12), 4359-4363.
[http://dx.doi.org/10.1021/nl902623y] [PMID: 19845330]
[23]
Lee, E.; Hong, J.Y.; Kang, H.; Jang, J. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation. J. Hazard. Mater., 2012, 219-220, 13-18.
[http://dx.doi.org/10.1016/j.jhazmat.2011.12.033] [PMID: 22497717]
[24]
Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett., 2007, 91(16)163513
[http://dx.doi.org/10.1063/1.2789673]
[25]
Yang, M.Q.; Zhang, N.; Pagliaro, M.; Xu, Y.J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev., 2014, 43(24), 8240-8254.
[http://dx.doi.org/10.1039/C4CS00213J] [PMID: 25200332]
[26]
Chang, H.; Wu, H. Graphene-based nanocomposites: preparation, function-alization, and energy and environmental applications. Energy Environ. Sci., 2013, 6, 3483-3507.
[http://dx.doi.org/10.1039/c3ee42518e]
[27]
Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev., 2012, 112(3), 1555-1614.
[http://dx.doi.org/10.1021/cr100454n] [PMID: 22107071]
[28]
Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: possibilities and challenges. Adv. Mater., 2012, 24(2), 229-251.
[http://dx.doi.org/10.1002/adma.201102752] [PMID: 21972044]
[29]
Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 2015, 7(1), 15-37.
[http://dx.doi.org/10.1039/C4NR03008G] [PMID: 25407808]
[30]
Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S.A.C. Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces, 2014, 6(19), 16449-16465.
[http://dx.doi.org/10.1021/am502925j] [PMID: 25215903]
[31]
Wang, A.; Wang, C.; Fu, L.; Wong-Ng, W.; Lan, Y. Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett., 2017, 9(4), 47.
[http://dx.doi.org/10.1007/s40820-017-0148-2] [PMID: 30393742]
[32]
Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res., 2009, 12(1), 1-39.
[http://dx.doi.org/10.1590/S1516-14392009000100002]
[33]
Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev., 2012, 112(11), 6156-6214.
[http://dx.doi.org/10.1021/cr3000412] [PMID: 23009634]
[34]
Gadipelli, S.; Guo, Z.X. Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci., 2015, 69, 1-60.
[http://dx.doi.org/10.1016/j.pmatsci.2014.10.004]
[35]
Zhang, M.; Li, Y.; Su, Z.; Wei, G. Recent advances in the synthesis and applications of graphene-polymer nanocomposites. Polym. Chem., 2015, 6, 6107-6124.
[http://dx.doi.org/10.1039/C5PY00777A]
[36]
Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnology, 2016, 14(1), 73.
[http://dx.doi.org/10.1186/s12951-016-0225-6] [PMID: 27776555]
[37]
Reddy, B.S. Advances in Nanocomposites: Synthesis, Characterization and Industrial Applications; Reddy, B., Ed.; IntechOpen, 2011.
[38]
Jadhav, A.P.; Kim, C.W.; Cha, H.G.; Pawar, A.U.; Jadhav, N.A.; Pal, U.; Kang, Y.S. Effect of different surfactants on the size control and optical properties of Y2O3: Eu3+ nanoparticles prepared by coprecipitation method. J. Phys. Chem. C, 2009, 113, 16652-16657.
[http://dx.doi.org/10.1021/jp9059399]
[39]
Singh, P.P. Ambika. Ceramic Materials: Preparation, Properties and Applications; Mishra, A.K., Ed.; Pan Stanford Publisher: Singapore, 2018, pp. 1-31.
[40]
Byrappa, K.; Yoshimura, M. Handbook of Hydrothermal Technology; Elsevier Science, 2012.
[41]
Chiu, C.T.; Chen, D.H. One-step hydrothermal synthesis of three-dimen-sional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors. Nanotechnology, 2018, 29(17)175602
[http://dx.doi.org/10.1088/1361-6528/aaaff5] [PMID: 29451127]
[42]
Mittal, V.; Mittal, V., Eds.; Optimization of Polymer Nanocomposite Properties; Weinheim: Wiley VCH Verlag, Weinheim, Germany, . , 2010.
[43]
Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/polymer nanocomposites. Macromolecules, 2010, 43, 6515-6530.
[http://dx.doi.org/10.1021/ma100572e]
[44]
Pavlidou, S.; Papaspyrides, C.D. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci., 2008, 33, 1119-1198.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008]
[45]
Abedi, S.; Abdouss, M.A. Review of clay-supported Ziegler-Natta catalysts for production of polyolefin/clay nanocomposites through in situ polymerization. Appl. Catal. A Gen., 2014, 475, 386-409.
[http://dx.doi.org/10.1016/j.apcata.2014.01.028]
[46]
Haldorai, Y.; Shim, J.J.; Lim, K.T. Synthesis of polymer-inorganic filler nanocomposites in supercritical CO2. J. Supercrit. Fluids, 2012, 71, 45-63.
[http://dx.doi.org/10.1016/j.supflu.2012.07.007]
[47]
Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B. Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J. Mater. Chem., 2012, 22, 8767-8771.
[http://dx.doi.org/10.1039/c2jm00055e]
[48]
Nadagouda, M.N.; Speth, T.F.; Varma, R.S. Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res., 2011, 44(7), 469-478.
[http://dx.doi.org/10.1021/ar1001457] [PMID: 21526846]
[49]
Abdelaziz, R.; Disci-Zayed, D.; Hedayati, M.K.; Pöhls, J.H.; Zillohu, A.U.; Erkartal, B.; Chakravadhanula, V.S.K.; Duppel, V.; Kienle, L.; Elbahri, M. Green chemistry and nanofabrication in a levitated Leidenfrost drop. Nat. Commun., 2013, 4, 2400.
[http://dx.doi.org/10.1038/ncomms3400] [PMID: 24169567]
[50]
Vinayan, B.P.; Nagar, R.; Ramaprabhu, S. Solar light assisted green synthesis of palladium nanoparticle decorated nitrogen doped graphene for hydrogen storage application. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 11192-11199.
[http://dx.doi.org/10.1039/c3ta12016c]
[51]
Machadoa, B.F.; Serp, P. Graphene-based materials for catalysis. Catal. Sci. Technol., 2012, 2, 54-75.
[http://dx.doi.org/10.1039/C1CY00361E]
[52]
Meijere, A.; Diedrich, F. Metal-catalyzed Cross-coupling Reactions; Wiley-VCH, Verlag, Weinheim; , 2004.
[53]
Ganapathy, D.; Sekar, G. Palladium nanoparticles stabilized by metal-carbon covalent bond: an efficient and reusable nanocatalyst in cross-coupling reactions. Catal. Commun., 2013, 39, 50-54.
[http://dx.doi.org/10.1016/j.catcom.2013.04.028]
[54]
Jo, Y.; Kim, J.Y.; Oh, I.K.; Choi, H.C.; Lee, S. Ligand-free palladium catalytic system supported by CNT and its application to the Mizoroki Heck reactions. Bull. Korean Chem. Soc., 2010, 31, 1735-1738.
[http://dx.doi.org/10.5012/bkcs.2010.31.6.1735]
[55]
Janowska, I.; Chizari, K.; Olivier, J.H.; Ziessel, R.; Ledoux, M.J.; Pham-Huu, C. A new recyclable Pd catalyst supported on vertically aligned carbon nanotubes for microwaves-assisted Heck reactions. C. R. Chim., 2011, 14, 663-670.
[http://dx.doi.org/10.1016/j.crci.2011.04.007]
[56]
Cano, M.; Benito, A.; Maser, W.K.; Urriolabeitia, E.P. One-step microwave synthesis of palladium-carbon nanotube hybrids with improved catalytic performance. Carbon, 2011, 49, 652-658.
[http://dx.doi.org/10.1016/j.carbon.2010.10.012]
[57]
Gopiraman, M.; Karvembu, R.; Kim, I.S. Highly active, selective, and reusable RuO2/SWCNT catalyst for Heck olefination of aryl halides. ACS Catal., 2014, 4, 2118-2129.
[http://dx.doi.org/10.1021/cs500460m]
[58]
Zheng, X.; Zhao, J.; Xu, M.; Zeng, M. Preparation of porous chitosan/reduced graphene oxide microspheres supported Pd nanoparticles catalysts for Heck coupling reactions. Carbohydr. Polym., 2020, 230115583
[http://dx.doi.org/10.1016/j.carbpol.2019.115583] [PMID: 31887932]
[59]
Wang, P.; Zhang, G.; Jiao, H.; Liu, L.; Deng, X.; Chen, Y.; Zheng, X. Pd/graphene nanocomposite as highly active catalyst for the Heck reactions. Appl. Catal. A Gen., 2015, 489, 188-192.
[http://dx.doi.org/10.1016/j.apcata.2014.10.044]
[60]
Pourjavadi, A.; Safaie, N.; Hosseini, S.H.; Bennett, C. Graphene oxide/poly(imidazole/imidazolium) nanocomposite: an effective support for immobilization of large amounts of Pd nanoparticles. J. Ind. Eng. Chem., 2016, 38, 82-92.
[http://dx.doi.org/10.1016/j.jiec.2016.04.009]
[61]
Shendage, S.S.; Nagarkar, J.M. Electrochemically codeposited reduced graphene oxide and palladium nanoparticles: an efficient heterogeneous catalyst for Heck coupling reaction. Coll. Interface Sci. Comm., 2014, 1, 47-49.
[http://dx.doi.org/10.1016/j.colcom.2014.06.008]
[62]
Lakshminarayana, B.; Mahendar, L.; Ghosal, P.; Satyanarayana, G.; Subrahmanyam, C. Nano-sized recyclable PdO supported carbon nanostructures for Heck reaction: Influence of carbon materials. Chem. Sel., 2017, 2(9), 2703-2710.
[http://dx.doi.org/10.1002/slct.201602051]
[63]
Zhu, Y.; Bai, J.; Wang, J.; Li, C. Novel carbon nanofiber-supported Ni(0) nanoparticles catalyse the Heck reaction under ligand-free conditions. RSC Adv, 2016, 6, 29437-29440.
[http://dx.doi.org/10.1039/C6RA01918H]
[64]
Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles. J. Organomet. Chem., 1999, 576, 147-168.
[http://dx.doi.org/10.1016/S0022-328X(98)01055-9]
[65]
Sedghi, R.; Heidari, B.; Shahmohamadi, H.; Zarshenas, P.; Varma, R.S. Pd nanocatalyst adorned on magnetic chitosan@N-heterocyclic carbene: eco-compatible Suzuki cross-coupling reaction. Molecules, 2019, 24(17), 3048.
[http://dx.doi.org/10.3390/molecules24173048] [PMID: 31443412]
[66]
Siamaki, A.R.; Lin, Y.; Woodberry, K.; Connell, J.W.; Gupton, B.F. Palladium nanoparticles supported on carbon nanotubes from solventless preparations: versatile catalysts for ligand free Suzuki cross coupling reactions. J. Mater. Chem., 2013, 1, 12909-12918.
[http://dx.doi.org/10.1039/c3ta12512b]
[67]
Cao, Y. Catalytic activity of SWNTs/Pd catalyst in Suzuki reaction. Adv. Mat. Res., 2011, 284-286, 2404-2408.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.284-286.2404]
[68]
Sokolov, V.I.; Rakov, E.G.; Bumagin, N.A.; Vinogradov, M.G. New method to prepare nanopalladium clusters immobilized on carbon nanotubes: a very efficient catalyst for forming carbon-carbon bonds and hydrogenation. Fuller. Nanotub. Carbon Nanostruct., 2010, 18, 558-563.
[http://dx.doi.org/10.1080/1536383X.2010.488077]
[69]
Rafiee, F.; Khavari, P.; Payami, Z.; Ansari, N. Palladium nanoparticles immobilized on the magnetic few layer graphene support as a highly efficient catalyst for ligand free Suzuki cross coupling and homo coupling reactions. J. Organomet. Chem., 2019, 883, 78-85.
[http://dx.doi.org/10.1016/j.jorganchem.2019.01.014]
[70]
Wang, J.; Bai, J.; Liang, H.; Li, C. Photothermal catalytic effect of Pd-TiO2/CNFs composite catalyst in Suzuki coupling reaction. Colloids Surf. A Physicochem. Eng. Asp., 2019, 572, 283-289.
[http://dx.doi.org/10.1016/j.colsurfa.2019.04.031]
[71]
Hemmati, S.; Mehrazin, L.; Pirhayati, M.; Veis, H. Immobilization of palladium nanoparticles on Metformin-functionalized graphene oxide as a heterogeneous and recyclable nanocatalyst for Suzuki coupling reactions and reduction of 4-nitrophenol. Polyhed., 2019, 158, 414-422.
[http://dx.doi.org/10.1016/j.poly.2018.11.038]
[72]
Kulkarni, P.A.; Shendage, S.S.; Awale, A.G. Carbon-Carbon bond formation reaction with Pd/reduced graphene oxide composite. Orient. J. Chem., 2018, 34(2), 881-886.
[http://dx.doi.org/10.13005/ojc/340236]
[73]
Fu, W.; Zhang, Z.; Zhuang, P.; Shen, J.; Ye, M. One-pot hydrothermal synthesis of magnetically recoverable palladium/reduced graphene oxide nanocomposites and its catalytic applications in cross-coupling reactions. J. Colloid Interface Sci., 2017, 497, 83-92.
[http://dx.doi.org/10.1016/j.jcis.2017.02.063] [PMID: 28273514]
[74]
Hu, J.; Wang, Y.; Han, M.; Zhou, Y.; Jiang, X.; Sun, P. A facile preparation of palladium nanoparticles supported on magnetite/s-graphene and their catalytic application in Suzuki-Miyaura reaction. Catal. Sci. Technol., 2012, 2, 2332-2340.
[http://dx.doi.org/10.1039/c2cy20263h]
[75]
Elazab, H.A.; Siamaki, A.R.; Moussa, S.; Gupton, B.F.; El-Shall, M.S. Highly efficient and magnetically recyclable graphene-supported Pd/Fe3O4 nanoparticle catalysts for Suzuki and Heck cross-coupling reactions. Appl. Catal. A Gen., 2015, 491, 58-69.
[http://dx.doi.org/10.1016/j.apcata.2014.11.033]
[76]
Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res., 2010, 3, 429-437.
[http://dx.doi.org/10.1007/s12274-010-0002-z]
[77]
Duan, X.; Liu, J.; Hao, J.; Wu, L.; He, B.; Qiu, Y.; Zhang, J.; He, Z.; Xi, J.; Wang, S. Magnetically recyclable nanocatalyst with synergetic catalytic effect and its application for 4-nitrophenol reduction and Suzuki coupling reactions. Carbon, 2018, 130, 806-813.
[http://dx.doi.org/10.1016/j.carbon.2018.01.038]
[78]
Sun, J.; Fu, Y.; He, G.; Sun, X.; Wang, X. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. App. Catal. B: Env., 2015, 165, 661-667.
[http://dx.doi.org/10.1016/j.apcatb.2014.10.072]
[79]
Mondal, P.; Salam, N.; Mondal, A.; Ghosh, K.; Tuhina, K.; Islam, S.M. A highly active recyclable gold-graphene nanocomposite material for oxidative esterification and Suzuki cross-coupling reactions in green pathway. J. Colloid Interface Sci., 2015, 459, 97-106.
[http://dx.doi.org/10.1016/j.jcis.2015.07.072] [PMID: 26275502]
[80]
Beletskaya, I.P.; Cheprakov, A.V. The heck reaction as a sharpening stone of palladium catalysis. Chem. Rev., 2000, 100(8), 3009-3066.
[http://dx.doi.org/10.1021/cr9903048] [PMID: 11749313]
[81]
Abbasi, S.; Hekmati, M. Functionalization of multi‐walled carbon nanotubes with pramipexole for immobilization of palladium nanoparticles and investigation of catalytic activity in the Sonogashira coupling reaction. Appl. Organomet. Chem., 2017, 31e3600
[http://dx.doi.org/10.1002/aoc.3600]
[82]
Santra, S.; Ranjan, P.; Bera, P.; Ghosh, P.; Mandal, S.K. Anchored palladium nanoparticles onto single walled carbon nanotubes: Efficient recyclable catalyst for N-containing heterocycles. RSC Adv, 2012, 2, 7523-7533.
[http://dx.doi.org/10.1039/c2ra20281f]
[83]
Naeimi, H.; Kiani, F. Functionalized graphene oxide anchored to Ni complex as an effective recyclable heterogeneous catalyst for Sonogashira coupling reactions. J. Organomet. Chem., 2019, 885, 65-72.
[http://dx.doi.org/10.1016/j.jorganchem.2019.01.013]
[84]
Diyarbakir, S.; Can, H.; Metin, Ö. Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions. ACS Appl. Mater. Interfaces, 2015, 7(5), 3199-3206.
[http://dx.doi.org/10.1021/am507764u] [PMID: 25594280]
[85]
Peshkov, V.A.; Pereshivko, O.P.; Van der Eycken, E.V. A walk around the A3-coupling. Chem. Soc. Rev., 2012, 41(10), 3790-3807.
[http://dx.doi.org/10.1039/c2cs15356d] [PMID: 22422343]
[86]
Salam, N.; Sinha, A.; Roy, A.S.; Mondal, P.; Jana, N.R.; Islam, S.K.M. Synthesis of silver-graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Adv, 2014, 4, 10001-10012.
[http://dx.doi.org/10.1039/c3ra47466f]
[87]
Huo, X.; Liu, J.; Wang, B.; Zhang, H.; Yang, Z.; She, X.; Xi, P. A one-step method to produce graphene-Fe3O4 composites and their excellent catalytic activities for three-component coupling of aldehyde, alkyne and amine. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 651-656.
[http://dx.doi.org/10.1039/C2TA00485B]
[88]
Gopiraman, M.; Deng, D.; Babu, S.G.; Hayashi, T.; Karvembu, R.; Kim, I.S. Sustainable and versatile CuO/GNS nanocatalyst for highly efficient base free coupling reactions. ACS Sustain. Chem.& Eng., 2015, 3, 2478-2488.
[http://dx.doi.org/10.1021/acssuschemeng.5b00542]
[89]
Dasireddy, V.D.B.; Likozar, B. Selective photocatalytic oxidation of benzene to phenol using carbon nanotube (CNT)-supported Cu and TiO2 heterogeneous catalysts. J. Taiwan Inst. Chem. Eng., 2018, 82, 331-341.
[http://dx.doi.org/10.1016/j.jtice.2017.11.011]
[90]
Maleki, A. Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason. Sonochem., 2018, 40(Pt A), 460-464..
[http://dx.doi.org/10.1016/j.ultsonch.2017.07.020] [PMID: 28946446]
[91]
Niasari, M.S.; Esmaeili, E.; Seyghalkar, H.; Bazarganipour, M. Cobalt(II) schiff base complex on multi-wall carbon nanotubes (MWNTs) by covalently grafted method: synthesis, characterization and liquid phase epoxidation of cyclohexene by air. Inorg. Chim. Acta, 2011, 375, 11-19.
[http://dx.doi.org/10.1016/j.ica.2011.03.056]
[92]
Alves, L.; Ballesteros, B.; Boronat, M.; Cabrero-Antonino, J.R.; Concepción, P.; Corma, A.; Correa-Duarte, M.A.; Mendoza, E. Synthesis and stabilization of subnanometric gold oxide nanoparticles on multiwalled carbon nanotubes and their catalytic activity. J. Am. Chem. Soc., 2011, 133(26), 10251-10261.
[http://dx.doi.org/10.1021/ja202862k] [PMID: 21634434]
[93]
Shen, J.; Ye, S.; Xu, X.; Liang, J.; He, G.; Chen, H. Reduced graphene oxide based NiCo layered double hydroxide nanocomposites: An efficient catalyst for epoxidation of styrene. Inorg. Chem. Commun., 2019, 104, 219-222.
[http://dx.doi.org/10.1016/j.inoche.2019.03.044]
[94]
Kazemnejadi, M.; Mahmoudi, B.; Sharafi, Z.; Nasseri, M.A.; Allahresani, A.; Esmaeilpour, M. Synthesis and characterization of a new poly α-amino acid Co(II)-complex supported on magnetite graphene oxide as an efficient heterogeneous magnetically recyclable catalyst for efficient free-coreductant gram-scale epoxidation of olefins with molecular oxygen. J. Organomet. Chem., 2019, 896, 59-69.
[http://dx.doi.org/10.1016/j.jorganchem.2019.05.030]
[95]
Masteri-Farahani, M.; Modarres, M. Clicked graphene oxide supported venturello catalyst: a new hybrid nanomaterial as catalyst for the selective epoxidation of olefins. Mater. Chem. Phys., 2017, 199, 522-527.
[http://dx.doi.org/10.1016/j.matchemphys.2017.07.028]
[96]
Hosseini, S.M.; Monfared, H.H.; Abbasi, V.; Khoshroo, M.R. Selective oxidation of hydrocarbons under air using recoverable silver ferrite-graphene (AgFeO2-G) nanocomposite: a good catalyst for green chemistry. Inorg. Chem. Commun., 2016, 67, 72-79.
[http://dx.doi.org/10.1016/j.inoche.2016.03.011]
[97]
Balasubramanyan, S.; Arayathody, S.; Sugunan, S.; Narayana, B.N. Selective liquid phase oxidation of cyclohexene over magnetic Fe3O4/graphene oxide nanocomposite. Mater. Chem. Phys., 2018, 211, 23-33.
[http://dx.doi.org/10.1016/j.matchemphys.2018.02.006]
[98]
Verma, S.; Nasir Baig, R.B.; Nadagouda, M.N.; Varma, R.S. Hydroxylation of benzene via C-H activation using bimetallic CuAg@g-C3N4. ACS Sustain. Chem.& Eng., 2017, 5(5), 3637-3640.
[http://dx.doi.org/10.1021/acssuschemeng.7b00772] [PMID: 30245941]
[99]
Yanga, X.; Wanga, X.; Qiu, J. Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets. Appl. Catal. A Gen., 2010, 382, 131-137.
[http://dx.doi.org/10.1016/j.apcata.2010.04.046]
[100]
Shanahan, A.E.; Sullivan, J.A.; McNamara, M.; Byrne, H.J. Preparation and characterization of a composite of gold nanoparticles and single-walled carbon nanotubes and its potential for heterogeneous catalysis. N. Carbon Mater., 2011, 26, 347-355.
[http://dx.doi.org/10.1016/S1872-5805(11)60087-5]
[101]
Rodrigues, E.G.; Pereira, M.F.R.; Delgado, J.J.; Chen, X.; Orfao, J.J.M. Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes. Catal. Commun., 2011, 16, 64-69.
[http://dx.doi.org/10.1016/j.catcom.2011.09.009]
[102]
Rodrigues, E.G.; Carabineiro, S.A.C.; Delgado, J.J.; Chen, X.; Pereira, M.F.R.; Orfao, J.J.M. Gold supported on carbon nanotubes for the selective oxidation of glycerol. J. Catal., 2012, 285, 83-91.
[http://dx.doi.org/10.1016/j.jcat.2011.09.016]
[103]
Gopiraman, M.; Babu, S.G.; Khatri, Z.; Kai, W.; Kim, Y.A.; Endo, M. Dry synthesis of easily tunable nano ruthenium supported on graphene: Novel nanocatalysts for aerial oxidation of alcohols and transfer hydrogenation of ketones. J. Phys. Chem. C, 2013, 117, 23582-23596.
[http://dx.doi.org/10.1021/jp402978q]
[104]
Gopiraman, M.; Babu, S.G.; Karvembu, R.; Kim, I.S. Nanostructured RuO2 on MWCNTs: efficient catalyst for transfer hydrogenation of carbonyl compounds and aerial oxidation of alcohols. App. Catal A: Gen., 2014, 484, 84-96.
[http://dx.doi.org/10.1016/j.apcata.2014.06.032]
[105]
Gopiraman, M.; Babu, S.G.; Khatri, Z.; Kai, W.; Kim, Y.A.; Endo, M.; Karvembu, R.; Kim, I.S. Facile and homogeneous decoration of RuO2 nanorods on graphene nanoplatelets for transfer hydrogenation of carbonyl compounds. Catal. Sci. Technol., 2013, 3, 1485-1489.
[http://dx.doi.org/10.1039/c3cy20735h]
[106]
Jha, A.; Mhamane, D.; Suryawanshi, A.; Joshi, S.M.; Shaikh, P.; Biradar, N.; Ogale, S.C.; Rode, C.V. Triple nanocomposites of CoMn2O4, Co3O4 and reduced graphene oxide for oxidation of aromatic alcohols. Catal. Sci. Technol., 2014, 4, 1771-1778.
[http://dx.doi.org/10.1039/c3cy01025b]
[107]
Assal, M.E.; Shaik, M.R.; Khan, M.K.M.; Alzahrani, A.Y.; Al-Warthan, A.; Siddiqui, M.R.H.; Adil, S.F. Mixed zinc/manganese on highly reduced graphene oxide: A highly active nanocomposite catalyst for aerial oxidation of benzylic alcohols. Catalysts, 2017, 7(12), 391.
[http://dx.doi.org/10.3390/catal7120391]
[108]
Assal, M.E.; Shaik, M.R.; Khan, M.K.M.; Alzahrani, A.Y.; Al-Warthan, A.; Alharthi, A.I.; Varala, R.; Siddiqui, M.R.H.; Adil, S.F. Ag2O nanoparticles/MnCO3,-MnO2 or -Mn2O3/highly reduced graphene oxide composites as an efficient and recyclable oxidation catalyst. Arab. J. Chem., 2019, 12, 54-68.
[http://dx.doi.org/10.1016/j.arabjc.2018.03.021]
[109]
Mirzaee, S.A.; Jaafarzadeh, N.; Gomes, H.T.; Jorfi, S.; Ahmadi, M. Magnetic titanium/carbon nanotube nanocomposite catalyst for oxidative degradation of bisphenol A from high saline polycarbonate plant effluent using catalytic wet peroxide oxidation. Chem. Eng. J., 2019, 370, 372-386.
[http://dx.doi.org/10.1016/j.cej.2019.03.202]
[110]
Ovejero, G.; Sotelo, J.L.; Rodriguez, A.; Diaz, C.; Sanz, R.; Garcia, J. Platinum catalyst on multiwalled carbon nanotubes for the catalytic wet air oxidation of phenol. Ind. Eng. Chem. Res., 2007, 46, 6449-6455.
[http://dx.doi.org/10.1021/ie070204p]
[111]
Othman, I.; Haija, M.A.; Ismail, I.; Zain, J.H.; Banat, F. Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/rGO) for phenol degradation. Mater. Chem. Phys., 2019.238121931
[http://dx.doi.org/10.1016/j.matchemphys.2019.121931]
[112]
Patnaik, S.; Das, K.K.; Mohanty, A.; Parida, K. Enhanced photo catalytic reduction of Cr(VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation. Catal. Today, 2018, 315, 52-66.
[http://dx.doi.org/10.1016/j.cattod.2018.04.008]
[113]
Rehman, G.U.; Tahir, M.; Goh, P.S.; Ismail, A.F.; Samavati, A.; Zulhairun, A.K. Rezaei-DashtArzhandi, Facile synthesis of GO and g-C3N4 nanosheets encapsulated magnetite ternary nanocomposite for superior photocatalytic degradation of phenol. Environ. Pollut., 2019, 253, 1066-1078.
[http://dx.doi.org/10.1016/j.envpol.2019.07.013] [PMID: 31434184]
[114]
Balakumar, V.; Prakash, P. A facile in situ synthesis of highly active and reusable ternary Ag-PPy-GO nanocomposite for catalytic oxidation of hydroquinone in aqueous solution. J. Catal., 2016, 344, 795-805.
[http://dx.doi.org/10.1016/j.jcat.2016.08.010]
[115]
Wang, Y.; Sun, H.; Ang, H.M.; Tade, M.O.; Wang, S. Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals. Chem. Eng. J., 2014, 245, 1-9.
[http://dx.doi.org/10.1016/j.cej.2014.02.013]
[116]
Gopiraman, M.; Bang, H.; Babu, S.G.; Wei, K.; Karvembu, R.; Kim, I.S. Catalytic N-oxidation of tertiary amines on RuO2 NPs anchored graphene nanoplatelets. Catal. Sci. Technol., 2014, 4, 2099-2106.
[http://dx.doi.org/10.1039/c3cy00963g]
[117]
Zhanga, X.; Guoa, Y.C.; Zhanga, Z.C.; Gaoa, J.S.; Xu, C.M. High performance of carbon nanotubes confining gold nanoparticles for selective hydrogenation of 1,3-butadiene and cinnamaldehyde. J. Catal., 2012, 292, 213-226.
[http://dx.doi.org/10.1016/j.jcat.2012.05.017]
[118]
Guo, Z.; Chen, Y.; Li, L.; Wang, X.; Haller, G.L.; Yang, Y. Carbon nanotube-supported Pt-based bimetallic catalysts prepared by a microwave-assisted polyol reduction method and their catalytic applications in the selective hydrogenation. J. Catal., 2010, 276, 314-326.
[http://dx.doi.org/10.1016/j.jcat.2010.09.021]
[119]
Teddy, J.; Falqui, A.; Corrias, A.; Carta, D.; Lecante, P.; Gerber, I.; Serp, P. Influence of particles alloying on the performances of Pt-Ru/CNT catalysts for selective hydrogenation. J. Catal., 2011, 278, 59-70.
[http://dx.doi.org/10.1016/j.jcat.2010.11.016]
[120]
Yoon, B.; Wai, C.M. Sonochemical one-pot synthesis of carbon nanotube-supported rhodium nanoparticles for room-temperature hydrogenation of arenes. J. Phys. Chem. C, 2009, 113, 19782-19788.
[http://dx.doi.org/10.1021/jp809366w]
[121]
Yoon, B.; Wai, C.M. One-step synthesis of size-tunable rhodium nanoparticles on carbon nanotubes: a study of particle size effect on hydrogenation of xylene. J. Phys. Chem. C, 2010, 114, 11364-11369.
[http://dx.doi.org/10.1021/jp101368p]
[122]
Yoon, B.; Pan, H.B.; Wai, C.M. Relative catalytic activities of carbon nanotube-supported metallic nanoparticles for room temperature hydrogenation of benzene. J. Phys. Chem. C, 2009, 113, 1520-1525.
[http://dx.doi.org/10.1021/jp809366w]
[123]
Li, C.; Shao, Z.; Pang, M.; Williams, C.T.; Liang, C. Carbon nanotubes supported Pt catalysts for phenylacetylene hydrogenation: effects of oxygen containing surface groups on Pt dispersion and catalytic performance. Catal. Today, 2012, 186, 69-75.
[http://dx.doi.org/10.1016/j.cattod.2011.09.005]
[124]
Li, C.; Shao, Z.; Pang, M.; Williams, C.T.; Zhang, X.; Liang, C. Carbon nanotubes supported mono- and bimetallic Pt and Ru catalysts for selective hydrogenation of phenylacetylene. Ind. Eng. Chem. Res., 2012, 51, 4934-4941.
[http://dx.doi.org/10.1021/ie202342a]
[125]
Pan, H.B.; Wai, C.M. Facile sonochemical synthesis of carbon nanotube-supported bimetallic Pt-Rh nanoparticles for room temperature hydrogenation of arenes. New J. Chem., 2011, 35, 1649-1660.
[http://dx.doi.org/10.1039/c1nj20028c]
[126]
Stein, M.; Wieland, J.; Steurer, P.; Tclle, F.; Mlhaupt, R.; Breit, B. Iron nanoparticles supported on chemically-derived graphene: Catalytic hydrogenation with magnetic catalyst separation. Adv. Synth. Catal., 2011, 353, 523-527.
[http://dx.doi.org/10.1002/adsc.201000877]
[127]
Wang, X.; Fu, J.; Wang, M.; Wang, Y.; Chen, Z.; Zhang, J.; Yuan, P.; Sun, Q.; Jia, Y.; Yan, W.; Chen, Z.; Xu, Q. Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. J. Mater. Sci., 2014, 49, 5056-5065.
[http://dx.doi.org/10.1007/s10853-014-8212-5]
[128]
Sun, Z.; Zhao, Y.; Xie, Y.; Tao, R.; Zhang, H.; Huang, C.; Liu, Z. The solvent-free selective hydrogenation of nitrobenzene to aniline: an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chem., 2010, 12, 1007-1011.
[http://dx.doi.org/10.1039/c002391d]
[129]
Jin, S.; Qian, W.; Liu, Y.; Wei, F.; Wang, D.; Zhang, J. Granulated carbon nanotubes as the catalyst support for Pt for the hydrogenation of nitrobenzene. Aust. J. Chem., 2010, 63, 131-134.
[http://dx.doi.org/10.1071/CH09162]
[130]
Cano, M.; Villuendas, P.; Benito, A.M.; Urriolabeitia, E.P.; Maser, W.K. Carbon nanotube-supported gold nanoparticles as efficient catalyst for the selective hydrogenation of nitroaromatic derivatives to anilines. Mater. Today Comm., 2015, 3, 104-113.
[http://dx.doi.org/10.1016/j.mtcomm.2015.02.002]
[131]
Zhang, P.; Shao, C.; Zhang, Z.; Zhang, M.; Mu, J.; Guo, Z.; Liu, Y. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale, 2011, 3(8), 3357-3363.
[http://dx.doi.org/10.1039/c1nr10405e] [PMID: 21761072]
[132]
Feng, Y.; Jiao, T.; Yin, J.; Zhang, L.; Zhang, L.; Zhou, J.; Peng, Q. Facile preparation of carbon nanotube-Cu2O nanocomposites as new catalyst materials for reduction of p-nitrophenol. Nanoscale Res. Lett., 2019, 14(1), 78.
[http://dx.doi.org/10.1186/s11671-019-2914-1] [PMID: 30838470]
[133]
Kolya, H.; Kuila, T.; Kim, N.H.; Lee, J.H. Bioinspired silver nanoparticles/reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol, organic dyes and act as energy storage electrode material. Compos., Part B Eng., 2019, 173106924
[http://dx.doi.org/10.1016/j.compositesb.2019.106924]
[134]
Liang, X.; Chen, X.; Xiang, Z.; Yan, R.; Xi, H.; Bian, T.; Zhang, J.; Zhao, J.; Cai, Qi.; Wang, H. Design and synthesis of surface-controlled CuOx/rGO nanocomposites with unusually high efficiency in catalytic conversion of organic reactants in the presence of NaBH4. Appl. Surf. Sci., 2018, 459, 716-722.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.079]
[135]
Naghdi, S.; Sajjadi, M.; Nasrollahzadeh, M.; Yop, R.K.; Sajadi, S.M.; Jaleh, B. Cuscuta reflexa leaf extract mediated green synthesis of the Cu nanoparticles on graphene oxide/manganese dioxide nanocomposite and its catalytic activity toward reduction of nitroarenes and organic dyes. J. Taiwan Inst. Chem. Engineer., 2018, 86, 158-173.
[http://dx.doi.org/10.1016/j.jtice.2017.12.017]
[136]
Jebaranjitham, J.N.; Mageshwari, C.; Saravanan, R.; Mu, N. Fabrication of amine functionalized graphene oxide-AgNPs nanocomposite with improved dispersibility for reduction of 4-nitrophenol. Compos., Part B Eng., 2019, 171, 302-309.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.018]
[137]
Hamed, S.; Soleimani, A.E. Green synthesis of Ag/Fe3O4/RGO nanocomposites by Punica granatum peel extract: catalytic activity for reduction of organic pollutants. Int. J. Hydrogen Energy, 2019, 44, 2711-2730.
[http://dx.doi.org/10.1016/j.ijhydene.2018.12.012]
[138]
Das, T.K.P. Bhawal, Ganguly, S.; Mondal, S.; Das, N.C. A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surf. Interfaces, 2018, 13, 79-91.
[http://dx.doi.org/10.1016/j.surfin.2018.08.004]
[139]
Ghorbani, N.A.; Namazi, H. Polydopamine-graphene/Ag-Pd nanocomposite as sustainable catalyst for reduction of nitrophenol compounds and dyes in environment. Mater. Chem. Phys., 2019, 234, 38-47.
[http://dx.doi.org/10.1016/j.matchemphys.2019.05.085]
[140]
Vats, T.; Dutt, S.; Kumar, R.; Siril, P.F. Facile synthesis of pristine graphene-palladium nanocomposites with extraordinary catalytic activities using swollen liquid crystals. Sci. Rep., 2016, 6, 33053.
[http://dx.doi.org/10.1038/srep33053] [PMID: 27619321]
[141]
Zhou, P.; Li, D.; Chen, S.J.S.; Zhang, Z. Catalytic transfer hydrogenation of nitro compounds into amines over magnetic graphene oxide supported Pd nanoparticles. Int. J. Hyd. Ener., 2016, 41(34), 15218-15224.
[http://dx.doi.org/10.1016/j.ijhydene.2016.06.257]
[142]
Sun, T.; Zhang, Z.; Xiao, J.; Chen, C.; Xiao, F.; Wang, S.; Liu, Y. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Sci. Rep., 2013, 3, 2527.
[http://dx.doi.org/10.1038/srep02527] [PMID: 23982312]
[143]
Goswami, A.; Kadam, R.G.; Sofer, J.T.Z.; Bousa, D.; Varma, R.S.; Gawande, M.B.; Zboril, R. Fe(0)-embedded thermally reduced graphene oxide as efficient nanocatalyst for reduction of nitro compounds to amines. Chem. Eng. J., 2020, 382122469
[http://dx.doi.org/10.1016/j.cej.2019.122469]
[144]
Atarod, M.; Nasrollahzadeh, M.; Sajadi, S.M. Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J. Colloid Interface Sci., 2016, 465, 249-258.
[http://dx.doi.org/10.1016/j.jcis.2015.11.060] [PMID: 26674242]
[145]
Nasrollahzadeh, M.; Sajadi, S.M.; Rostami-Vartooni, A.; Alizadeh, M.; Bagherzadeh, M. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. J. Colloid Interface Sci., 2016, 466, 360-368.
[http://dx.doi.org/10.1016/j.jcis.2015.12.036] [PMID: 26752431]
[146]
Sun, J.; Fu, Y.; He, G.; Sun, X.; Wang, X. Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite. Catal. Sci. Technol., 2014, 4, 1742-1748.
[http://dx.doi.org/10.1039/C4CY00048J]
[147]
Khodadadi, B.; Bordbar, M.; Nasrollahzadeh, M. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: catalytic activity for reduction of organic dyes. J. Colloid Interface Sci., 2017, 490, 1-10.
[http://dx.doi.org/10.1016/j.jcis.2016.11.032] [PMID: 27870949]
[148]
Bordbar, M.; Mortazavimanesh, N. Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time. Environ. Sci. Pollut. Res. Int., 2017, 24(4), 4093-4104.
[http://dx.doi.org/10.1007/s11356-016-8183-y] [PMID: 27933496]
[149]
Nguyen, T.B.; Huang, C.P.; Doong, R. Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites. App. Catal. B: Env., 2019, 240, 337-347.
[http://dx.doi.org/10.1016/j.apcatb.2018.08.035]
[150]
Lv, J.J.; Wang, A.J.; Ma, X.; Xiang, R.Y.; Chen, J.R.; Feng, J.J. One-pot synthesis of porous Pt-Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 290-296.
[http://dx.doi.org/10.1039/C4TA05034G]
[151]
Goksu, H.; Ho, S.F.; Metin, O.; Korkmaz, K.; Garcia, A.M.; Gultekin, M.S.; Sun, S. Tandem dehydrogenation of ammonia borane and hydrogenation of nitro/nitrile compounds catalyzed by graphene-supported NiPd alloy nanoparticles. ACS Catal., 2014, 4, 1777-1782.
[http://dx.doi.org/10.1021/cs500167k]
[152]
Gao, X.; Zhao, H.; Liu, Y.G.; Ren, Z.P.; Lin, C.; Tao, J.; Zhai, Y. Facile synthesis of PdNiP/Reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol. Mater. Chem. Phys., 2019, 222, 391-397.
[http://dx.doi.org/10.1016/j.matchemphys.2018.10.037]
[153]
Xia, J.; He, G.; Zhang, L.; Sun, X.; Wang, X. Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions. App. Catal. B: Env., 2016, 180, 408-415.
[http://dx.doi.org/10.1016/j.apcatb.2015.06.043]
[154]
Saravanamoorthy, S.; Chung, I.M.; Ramkumar, V.; Ramaganth, B.; Gopiraman, M. Highly active and reducing agent-free preparation of cost-effective NiO-based carbon nanocomposite and its application in reduction reactions under mild conditions. J. Ind. Eng. Chem., 2018, 60, 91-101.
[http://dx.doi.org/10.1016/j.jiec.2017.10.006]
[155]
Khanderi, J.; Hoffmann, R.C.; Engstler, J.; Schneider, J.J.; Arras, J.; Claus, P.; Cherkashinin, G. Binary Au/MWCNT and ternary Au/ZnO/MWCNT nanocomposites: synthesis, characterisation and catalytic performance. Chemistry, 2010, 16(7), 2300-2308.
[http://dx.doi.org/10.1002/chem.200901987] [PMID: 20029915]
[156]
Guo, X.F.; Jang, D.Y.; Jang, H.G.; Kim, G.J. Hydrogenation and dehydrogenation reactions catalyzed by CNTs supported palladium catalysts. Catal. Today, 2012, 186, 109-114.
[http://dx.doi.org/10.1016/j.cattod.2011.11.001]
[157]
Lee, J.K.; Kim, M.J. Hydrogenation of aryl ketones using palladium nanoparticles on single-walled carbon nanotubes in an ionic liquid. Tetrahedron Lett., 2011, 52, 499-501.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.081]
[158]
Nie, R.; Yang, H.; Zhang, H.; Yu, X.; Lu, X.; Zhou, D.; Xia, Q. Mild-temperature hydrodeoxygenation of vanillin over porous nitrogen-doped carbon black supported nickel nanoparticles. Green Chem., 2017, 19, 3126-3134.
[http://dx.doi.org/10.1039/C7GC00531H]
[159]
Aghayan, M.M.; Kalantari, M.; Boukherroub, R. Palladium oxide nanoparticles supported on graphene oxide: a convenient heterogeneous catalyst for reduction of various carbonyl compounds using triethylsilane. Appl. Organomet. Chem., 2019, 33(4), 1-11.
[160]
Chen, Z.; Guan, Z.; Li, M.; Yang, Q.; Li, C. Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation. Angew. Chem. Int. Ed. Engl., 2011, 50(21), 4913-4917.
[http://dx.doi.org/10.1002/anie.201006870] [PMID: 21370365]
[161]
Yang, T.; Lou, L.L.; Yu, W.; Feng, Y.; Li, H.; Yu, K.; Liu, S. 3D ordered macroporous alumina-carbon nanocomposite supported platinum nanoparticles as effective and reusable catalysts for asymmetric hydrogenation. ChemCatChem, 2017, 9, 458-464.
[http://dx.doi.org/10.1002/cctc.201601179]
[162]
Cai, W.; Xiong, R.; Mao, C.; Xiao, M.; Liu, Y.; Kankala, R.K.; Zhang, X. Preparation of alumina-carbon composites with phloroglucinol-formaldehyde resin and their application in asymmetric hydrogenation. Chin. Chem. Lett., 2020, 31, 1322-1326.
[http://dx.doi.org/10.1016/j.cclet.2019.09.029]
[163]
Mao, C.; Zhang, J.; Xiao, M.; Liu, Y.; Zhang, X. Carbon-silica composites supported Pt as catalyst for asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate. Curr. Appl. Phys., 2018, 18, 1480-1485.
[http://dx.doi.org/10.1016/j.cap.2018.09.001]
[164]
Safari, J.; Zarnegar, Z. Biginelli reaction on Fe3O4-MWCNT nanocomposite: Excellent reactivity and facile recyclability of the catalyst combined with ultrasound irradiation. RSC Adv, 2013, 3, 17962-17967.
[http://dx.doi.org/10.1039/c3ra43014f]
[165]
Maleki, A.; Paydar, R. Bionanostructure-catalyzed one-pot three-component synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions. React. Funct. Polym., 2016, 109, 120-124.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2016.10.013]
[166]
Maleki, A.; Rahimi, J. Synthesis of dihydroquinazolinone and octahydroquinazolinone and benzimidazoloquinazolinone derivatives catalyzed by an efficient magnetically recoverable GO-based nanocomposite. J. Porous Mater., 2018, 25, 1789-1796.
[http://dx.doi.org/10.1007/s10934-018-0592-5]
[167]
Maleki, A.; Paydar, R. Graphene oxide-chitosan bionanocomposite: A highly efficient nanocatalyst for the one-pot three-component synthesis of trisubstituted imidazoles under solvent-free conditions. RSC Adv, 2015, 5, 33177-33184.
[http://dx.doi.org/10.1039/C5RA03355A]
[168]
Maleki, A.; Hajizadeh, Z.; Abbasi, H. Surface modification of graphene oxide by citric acid and its application as a heterogeneous nanocatalyst in organic condensation reaction. Carbon Lett., 2018, 27, 42-49.
[169]
Dumee, L.; Hill, M.R.; Duke, M.; Velleman, L.; Sears, K.; Schutz, J.; Finn, N.; Gray, S. Activation of gold decorated carbon nanotube hybrids for targeted gas adsorption and enhanced catalytic oxidation. J. Mater. Chem., 2012, 22, 9374-9378.
[http://dx.doi.org/10.1039/c2jm16458b]
[170]
Gopiraman, M.; Babu, S.G.; Khatri, Z.; Kai, W.; Kim, Y.A.; Endo, M. An efficient, reusable copper-oxide/carbon-nanotube catalyst for N-arylation of imidazole. Carbon, 2013, 62, 135-148.
[http://dx.doi.org/10.1016/j.carbon.2013.06.005]
[171]
Kang, J.; Zhang, S.; Zhang, Q.; Wang, Y. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angew. Chem. Int. Ed. Engl., 2009, 48(14), 2565-2568.
[http://dx.doi.org/10.1002/anie.200805715] [PMID: 19248073]
[172]
Amina; Si, X.; Wu, K.; Si, Y.; Yousaf, B. Mechanistic insights into the reactive radicals-assisted degradation of sulfamethoxazole via calcium peroxide activation by manganese-incorporated iron oxide-graphene nanocomposite: formation of radicals and degradation pathway. Chem. Eng. J., 2020, 384123360
[http://dx.doi.org/10.1016/j.cej.2019.123360]]
[173]
Kamal, A.; Srinivasulu, V.; Murty, J.N.S.R.C.; Shankaraiah, N.; Nagesh, N.; Reddy, T.S.; Rao, A.V.S. Copper oxide nanoparticles supported on graphene oxide-catalyzed S-arylation: an efficient and ligand-free synthesis of aryl sulfides. Adv. Synth. Catal., 2013, 355, 2297-2307.
[http://dx.doi.org/10.1002/adsc.201300416]
[174]
Babu, S.G.; Gopiraman, M.; Deng, D.; Wei, K.; Karvembu, R.; Kim, I.S. Robust Au-Ag/graphene bimetallic nanocatalyst for multifunctional activity with high synergism. Chem. Enginee. J., 2016, 3, 146-159.
[http://dx.doi.org/10.1016/j.cej.2016.04.101]
[175]
Sengupta, D.; Bhowmik, K.; De, G.; Basu, B. Ni nanoparticles on RGO as reusable heterogeneous catalyst: effect of Ni particle size and intermediate composite structures in C-S cross-coupling reaction. Beilstein J. Org. Chem., 2017, 13, 1796-1806.
[http://dx.doi.org/10.3762/bjoc.13.174] [PMID: 28904623]
[176]
Yuan, G.; Gopiraman, M.; Cha, H.J.; Soo, H.D.; Chung, I.M.; Kim, I.S. Interconnected ruthenium dioxide nanoparticles anchored on graphite oxide: Highly efficient candidate for solvent free oxidative synthesis of imines. J. Ind. Eng. Chem., 2017, 46, 279-288.
[http://dx.doi.org/10.1016/j.jiec.2016.10.040]
[177]
Fakhri, P.; Jaleh, B.; Nasrollahzadeh, M. Synthesis and characterization of copper nanoparticles supported on reduced graphene oxide as a highly active and recyclable catalyst for the synthesis of formamides and primary amines. J. Mol. Catal. Chem., 2014, 383-384, 17-22.
[http://dx.doi.org/10.1016/j.molcata.2013.10.027]
[178]
Bulushev, D.A.; Chuvilin, A.L.; Sobolev, V.I.; Stolyarov, S.G.; Shubin, Y.V.; Asanov, I.P. Copper on carbon materials: stabilization by nitrogen doping. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 10574-10583.
[http://dx.doi.org/10.1039/C7TA02282D]
[179]
Guo, F.; Lu, J.; Liu, Q.; Zhang, P.; Zhang, A.; Cai, Y.; Wang, Q. Degradation of Acid Orange 7 by peroxymonosulfate activated with the recyclable nanocomposites of g-C3N4 modified magnetic carbon. Chemosphere, 2018, 205, 297-307.
[http://dx.doi.org/10.1016/j.chemosphere.2018.04.139] [PMID: 29704837]
[180]
Qin, H.; Xiao, R.; Chen, J. Catalytic wet peroxide oxidation of benzoic acid over Fe/AC catalysts: effect of nitrogen and sulfur co-doped activated carbon. Sci. Total Environ., 2018, 626, 1414-1420.
[http://dx.doi.org/10.1016/j.scitotenv.2018.01.206] [PMID: 29898548]