Design and Development of 4-Bit Gray Code Counter Circuit Using Reversible Logic Gate

Page: [124 - 127] Pages: 4

  • * (Excluding Mailing and Handling)

Abstract

Aim: This paper proposed the design and development of 4-Bit Gray Code Counter Circuit Using Reversible Logic Gate.

Methods: The 4-Bit Gray Code Counter Circuit can be design using SAM gate, Feynman gate (FG), double Feynman gate (DFG) and NOT gate. The proposed circuit is the combined application of 4-bit binary asynchronous counter and 4-bit binary to gray code converter circuit.

Results: The proposed gray code counter is designed using four no. of SAM gate, three no. of DFG, one FG and seven reversible NOT gate. The QC, GO and CI of proposed circuit are correspondingly 30, 4 and 7.

Conclusion: The novel reversible gray code counter have been designed using existing reversible logic gate. The proposed gray code counter is designed using four no. of SAM gate, three no. of DFG, one FG and seven reversible NOT gate. The QC, GO and CI of proposed circuit are correspondingly 30, 4 and 7.

Keywords: Quantum computing, gray code, reversible logic gate, quantum cost, garbage output, constant input.

Graphical Abstract

[1]
Haghparast, M.; Bolhassani, A. .Optimized parity preserving quantum reversible full adder/subtractor Journal of Circuits, Systems, and Computers, 2016, 14, 1650019(12 Pages)..
[http://dx.doi.org/10.1142/S0219749916500192]
[2]
Maity, H.; Barik, A.K.; Biswas, A.; Bhattacharjee, A.K.; Pal, A. Design of quantum cost, 
age output and delay optimized bcd to excess-3 and 2’s complement code converter; J.Circuit Syst. Comput., 2018, 27, p. 1850184 (11 pages)..
[http://dx.doi.org/ 10.1142/S0218126618501840]
[3]
Bennett, C.H. Logical Reversibility of Computation. IBM J. Res. Develop., 1973, 17, 525-532.
[http://dx.doi.org/10.1147/rd.176.0525]
[4]
Haghparast, M.; Mohammadi, M.; Navi, K.; Eshghi, M. Optimized reversible multiplier circuit. J. Circuits Syst. Comput., 2009, 18, 311-323.
[http://dx.doi.org/10.1142/S0218126609005083]
[5]
Majid, H.; Navi, K. Novel reversible fault tolerant error coding and detection circuits. Int. J. Quant. Inf., 2011, 9, 723-738.
[http://dx.doi.org/10.1142/S0219749911007447]
[6]
Feynman, R. Quantum Mechanical Computers. Optics News, 1985, 11(2), 11-20.
[7]
Peres, A. Reversible logic and quantum computers. Phys. Rev. A Gen. Phys., 1985, 32(6), 3266-3276.
[http://dx.doi.org/10.1103/PhysRevA.32.3266 ]
[8]
Maity, H.; Biswas, A.; Bhattacharjee, A.K.; Pal, A. Quantum cost optimized design of 4-bit reversible universal shift register using reduced number of logic gate. Inter. J. Quant. Info., 2018, 16, 1850016 (8 pages)..
[http://dx.doi.org/10.1142/S0219749918500168]
[9]
Maity, H.; Biswas, A.; Bhattacharjee, A.K.; Pal, A. Conf. on Device for Integrated Circuits (DevIC 2017), Kalyani, 2017, pp. 44- 47..
[10]
Fredkin, E.; Toffoli, T. Conservative Logic. Int. J. Theor. Phys., 1982, 21, 219-253.
[http://dx.doi.org/10.1007/BF01857727]
[11]
Md. SelimAl Mamun and Syed Monowar Hossain. Design of reversible random access memory. Int. J. Comput. Appl., 2012, 56(15), 18-23.
[12]
Parhami, B. Fault-tolerant reversible circuits Conf. on Fortieth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA29 Oct.-1 Nov. 2006, pp. 1726-1729..
[13]
Maity, H.; Biswas, A.; Pal, A.; Bhattacharjee, A.K. Design of BCD to excess-3 code converter circuit with optimized quantum cost, 
age output and constant input using reversible gate. Inter J. Quant. Inf., 2018, 16(7), 1850061-5.
[http://dx.doi.org/10.1142/S0219749918500612]
[14]
Maity, H.; Banerjee, S.; Biswas, A.; Pal, A.; Bhattacharjee, A.K. Design of reversible shift register using reduced number of logic gate. Micro Nanosyst., 2019, 12(1), 33-37.
[http://dx.doi.org/10.2174/1876402911666190617112734]
[15]
Maity, H.; Biswas, A.; Bhattacharjee, A.K.; Pal, A. The quantum cost optimized design of 2:4 decoder using new reversible gate. Micro Nanosyst., 2019, 12(3), 146-148.
[http://dx.doi.org/10.2174/2213476X06666190916141330]
[16]
Maity, H.; Biswwas, A.; Bhattacharjee, A.K.; Pal, A. The quantum cost, 
age outputs and constant input optimized implementation of 2:4 decoder using peres gate. IEEE Int. Conf. Dev. Integr. Cir. (DevIC 2019), Kalyani India2019, pp. 9-11.
[http://dx.doi.org/10.1109/DEVIC.2019.8783274]
[17]
Maity, H.; Biswwas, A.; Pal, A.; Bhattacharjee, A.K. quantum cost optimized design of reversible 2’s complement code converter 1st 2018. IEEE Electron Device Kolkata Conference (2018 IEEE EDKCON), Kolkata, India, 24-25 November, 2018, pp. 122-125..
[http://dx.doi.org/10.1109/EDKCON.2018.8770220]
[18]
Agarwal, A.; Maity, H.; Biswwas, A.; Mandal, S.S.; Rai, A. .Design of 4-bit reversible johnson counter with optimized quantum cost, delay, and number of gate. 1st Intern. Conf. Emer. Trends. Eng. Sci. (ETES-2018), Lecture Notes in Networks and Systems (Springer), Asansol, India2018 23 -24March; pp. 539-544.