Implications of VIP and PACAP in Parkinson’s Disease: What do we Know So Far?

Page: [1703 - 1715] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Parkinson’s disease is one of the most common neurodegenerative disorders and although its aetiology is not yet fully understood, neuroinflammation has been identified as a key factor in the progression of the disease. Vasoactive intestinal peptide and pituitary adenylate-cyclase activating polypeptide are two neuropeptides that exhibit anti-inflammatory and neuroprotective properties, modulating the production of cytokines and chemokines and the behaviour of immune cells. However, the role of chemokines and cytokines modulated by the endogenous receptors of the peptides varies according to the stage of the disease.

Methods: We present an overview of the relationship between some cytokines and chemokines with vasoactive intestinal peptide, pituitary adenylate cyclase activating polypeptide and their endogenous receptors in the context of Parkinson’s disease neuroinflammation and oxidative stress, as well as the modulation of microglial cells by the peptides in this context.

Results: The two peptides exhibit neuroprotective and anti-inflammatory properties in models of Parkinson’s disease, as they ameliorate cognitive functions, decrease the level of neuroinflammation and promote dopaminergic neuronal survival. The peptides have been tested in a variety of in vivo and in vitro models of Parkinson’s disease, demonstrating the potential for therapeutic application.

Conclusion: More studies are needed to establish the clinical use of vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide as safe candidates for treating Parkinson’s disease, as the use of the peptides in different stages of the disease could produce different results concerning effectiveness.

Keywords: Vasoactive intestinal peptide (VIP), pituitary adenylate-cyclase activating polypeptide (PACAP), Parkinson's disease, neuroinflammation, oxidative stress, neuropeptides, neurodegenerative disease.

[1]
Dugger, B.N.; Dickson, D.W. Pathology of neuro- degenerative diseases. Cold Spring Harb Persp. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[2]
Caggiu, E.; Arru, G.; Hosseini, S.; Niegowska, M.; Sechi, G.; Zarbo, I.R.; Sechi, L.A. Inflammation, infectious triggers and parkinson’s disease. Front. Neurol., 2019, 10, 122.
[http://dx.doi.org/10.3389/fneur.2019.00122] [PMID: 30837941]
[3]
Chen, S.; Liu, H.; Wu, Q.Q.; Xu, S.J.; Li, W.G.; Chen, T.; Li, C.; Ma, X.Y.; Xu, S.; Liu, Y.M. Effect of LRRK2 G2385R variant on subthalamic deep brain stimulation efficacy in parkinson’s disease in a Han Chinese population. Front. Neurol., 2019, 10, 1231.
[http://dx.doi.org/10.3389/fneur.2019.01231] [PMID: 31824408]
[4]
Paul, K.C.; Sinsheimer, J.S.; Cockburn, M.; Bronstein, J.M.; Bordelon, Y.; Ritz, B. NFE2L2, PPARGC1α and pesticides and parkinson’s disease risk and progression. Mech. Ageing Dev., 2018, 173, 1-8.
[http://dx.doi.org/10.1016/j.mad.2018.04.004] [PMID: 29630901]
[5]
Sanchez-Guajardo, V.; Barnum, C.J.; Tansey, M.G.; Romero-Ramos, M. Neuroimmunological processes in Parkinson’s disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro, 2013, 5(2), 113-139.
[http://dx.doi.org/10.1042/AN20120066] [PMID: 23506036]
[6]
Tulisiak, C.T.; Mercado, G.; Peelaerts, W.; Brundin, L.; Brundin, P. Can infections trigger alpha-synucleinopathies? Prog. Mol. Biol. Transl. Sci., 2019, 168, 299-322.
[http://dx.doi.org/10.1016/bs.pmbts.2019.06.002] [PMID: 31699323]
[7]
Sulzer, D.; Alcalay, R.N.; Garretti, F.; Cote, L.; Kanter, E.; Agin-Liebes, J.; Liong, C.; McMurtrey, C.; Hildebrand, W.H.; Mao, X.; Dawson, V.L.; Dawson, T.M.; Oseroff, C.; Pham, J.; Sidney, J.; Dillon, M.B.; Carpenter, C.; Weiskopf, D.; Phillips, E.; Mallal, S.; Peters, B.; Frazier, A.; Lindestam Arlehamn, C.S.; Sette, A. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature, 2017, 546(7660), 656-661.
[http://dx.doi.org/10.1038/nature22815] [PMID: 28636593]
[8]
Panicker, N.; Sarkar, S.; Harischandra, D.S.; Neal, M.; Kam, T.-I.; Jin, H.; Saminathan, H.; Langley, M.; Charli, A.; Samidurai, M.; Rokad, D.; Ghaisas, S.; Pletnikova, O.; Dawson, V.L.; Dawson, T.M.; Anantharam, V.; Kanthasamy, A.G.; Kanthasamy, A. Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. J. Exp. Med., 2019, 216(6), 1411-1430.
[http://dx.doi.org/10.1084/jem.20182191] [PMID: 31036561]
[9]
Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin. Cell Dev. Biol., 2019, 94, 112-120.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.004] [PMID: 31077796]
[10]
Brundin, P.; Melki, R. Prying into the prion hypothesis for parkinson’s disease. J. Neurosci., 2017, 37(41), 9808-9818.
[http://dx.doi.org/10.1523/JNEUROSCI.1788-16.2017] [PMID: 29021298]
[11]
Campos-Acuña, J.; Elgueta, D.; Pacheco, R. T-cell-driven inflammation as a mediator of the gut-brain axis involved in parkinson’s disease. Front. Immunol., 2019, 10, 239.
[http://dx.doi.org/10.3389/fimmu.2019.00239] [PMID: 30828335]
[12]
Joers, V.; Tansey, M.G.; Mulas, G.; Carta, A.R. Microglial phenotypes in parkinson’s disease and animal models of the disease. Prog. Neurobiol., 2017, 155, 57-75.
[http://dx.doi.org/10.1016/j.pneurobio.2016.04.006] [PMID: 27107797]
[13]
Gelders, G.; Baekelandt, V.; Van der Perren, A. Linking neuroinflammation and neurodegeneration in parkinson’s disease. J. Immunol. Res., 2018, 2018, 4784268.
[http://dx.doi.org/10.1155/2018/4784268] [PMID: 29850629]
[14]
Nasrolahi, A.; Safari, F.; Farhoudi, M.; Khosravi, A.; Farajdokht, F.; Bastaminejad, S.; Mahmoudi, J. Immune system and new avenues in parkinson’s disease research and treatment. 2019, Rev. Neurosci., 30(7), 709-727.
[http://dx.doi.org/10.1515/revneuro-2018-0105] [PMID: 30796849]
[15]
Delgado, M.; Ganea, D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids, 2013, 45(1), 25-39.
[http://dx.doi.org/10.1007/s00726-011-1184-8] [PMID: 22139413]
[16]
Couvineau, A.; Laburthe, M. VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins. Br. J. Pharmacol., 2012, 166(1), 42-50.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01676.x] [PMID: 21951273]
[17]
Henning, R.J.; Sawmiller, D.R. Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc. Res., 2001, 49(1), 27-37.
[http://dx.doi.org/10.1016/S0008-6363(00)00229-7] [PMID: 11121793]
[18]
Ganea, D.; Hooper, K.M.; Kong, W. The neuropeptide vasoactive intestinal peptide: direct effects on immune cells and involvement in inflammatory and autoimmune diseases. Acta Physiol. (Oxf.), 2015, 213(2), 442-452.
[http://dx.doi.org/10.1111/apha.12427] [PMID: 25422088]
[19]
Larsson, L.I.; Fahrenkrug, J.; Schaffalitzky De Muckadell, O.; Sundler, F.; Håkanson, R.; Rehfeld, J.R. Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc. Natl. Acad. Sci. USA, 1976, 73(9), 3197-3200.
[http://dx.doi.org/10.1073/pnas.73.9.3197] [PMID: 787988]
[20]
Delgado, M.; Pozo, D.; Ganea, D. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol. Rev., 2004, 56(2), 249-290.
[http://dx.doi.org/10.1124/pr.56.2.7] [PMID: 15169929]
[21]
Delgado, M.; Ganea, D. Vasoactive intestinal peptide inhibits IL-8 production in human monocytes. Biochem. Biophys. Res. Commun., 2003, 301(4), 825-832.
[http://dx.doi.org/10.1016/S0006-291X(03)00059-7] [PMID: 12589787]
[22]
Chen, L.; Yuan, W.; Chen, Z.; Wu, S.; Ge, J.; Chen, J.; Chen, Z. Vasoactive intestinal peptide represses activation of tumor-associated macrophages in gastric cancer via regulation of TNFα, IL-6, IL-12 and iNOS. Int. J. Oncol., 2015, 47(4), 1361-1370.
[http://dx.doi.org/10.3892/ijo.2015.3126] [PMID: 26314485]
[23]
Delgado, M.; Munoz-Elias, E.J.; Gomariz, R.P.; Ganea, D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. J. Immunol., 1999, 162(3), 1707-1716.
[PMID: 9973433]
[24]
Dickson, L.; Finlayson, K. VPAC and PAC receptors: from ligands to function. Pharmacol. Ther., 2009, 121(3), 294-316.
[http://dx.doi.org/10.1016/j.pharmthera.2008.11.006] [PMID: 19109992]
[25]
Desbuguois, B.; Laudat, M.H.; Laudat, P. Vasoactive intestinal polypeptide and glucagon: stimulation of adenylate cyclase activity via distinct receptors in liver and fat cell membranes. Biochem. Biophys. Res. Commun., 1973, 53(4), 1187-1194.
[http://dx.doi.org/10.1016/0006-291X(73)90590-1] [PMID: 4356054]
[26]
Lutz, E.M.; Sheward, W.J.; West, K.M.; Morrow, J.A.; Fink, G.; Harmar, A.J. The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett., 1993, 334(1), 3-8.
[http://dx.doi.org/10.1016/0014-5793(93)81668-P] [PMID: 8224221]
[27]
Couvineau, A.; Rouyer-Fessard, C.; Darmoul, D.; Maoret, J.J.; Carrero, I.; Ogier-Denis, E.; Laburthe, M. Human intestinal VIP receptor: cloning and functional expression of two cDNA encoding proteins with different N-terminal domains. Biochem. Biophys. Res. Commun., 1994, 200(2), 769-776.
[http://dx.doi.org/10.1006/bbrc.1994.1517] [PMID: 8179610]
[28]
Usdin, T.B.; Bonner, T.I.; Mezey, E. Two receptors for vasoactive intestinal polypeptide with similar specificity and complementary distributions. Endocrinology, 1994, 135(6), 2662-2680.
[http://dx.doi.org/10.1210/endo.135.6.7988457] [PMID: 7988457]
[29]
Vertongen, P.; Schiffmann, S.N.; Gourlet, P.; Robberecht, P. Autoradiographic visualization of the receptor subclasses for vasoactive intestinal polypeptide (VIP) in rat brain. Ann. N. Y. Acad. Sci., 1998, 865, 412-415.
[http://dx.doi.org/10.1111/j.1749-6632.1998.tb11206.x] [PMID: 9928040]
[30]
Vaudry, D.; Gonzalez, B.J.; Basille, M.; Yon, L.; Fournier, A.; Vaudry, H. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol. Rev., 2000, 52(2), 269-324.
[PMID: 10835102]
[31]
Harmar, A.J.; Sheward, W.J.; Morrison, C.F.; Waser, B.; Gugger, M.; Reubi, J.C. Distribution of the VPAC2 receptor in peripheral tissues of the mouse. Endocrinology, 2004, 145(3), 1203-1210.
[http://dx.doi.org/10.1210/en.2003-1058] [PMID: 14617572]
[32]
Delgado, M.; Ganea, D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit nuclear factor-κ B-dependent gene activation at multiple levels in the human monocytic cell line THP-1. J. Biol. Chem., 2001, 276(1), 369-380.
[http://dx.doi.org/10.1074/jbc.M006923200] [PMID: 11029467]
[33]
Liang, Y.; Chen, S.; Yang, Y.; Lan, C.; Zhang, G.; Ji, Z.; Lin, H. Vasoactive intestinal peptide alleviates osteoarthritis effectively via inhibiting NF-κB signaling pathway. J. Biomed. Sci., 2018, 25(1), 25.
[http://dx.doi.org/10.1186/s12929-018-0410-z] [PMID: 29540226]
[34]
Hamnett, R.; Crosby, P.; Chesham, J.E.; Hastings, M.H. Vasoactive intestinal peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4 signaling. Nat. Commun., 2019, 10(1), 542.
[http://dx.doi.org/10.1038/s41467-019-08427-3] [PMID: 30710088]
[35]
Henle, F.; Fischer, C.; Meyer, D.K.; Leemhuis, J. Vasoactive intestinal peptide and PACAP38 control N-methyl-D-aspartic acid-induced dendrite motility by modifying the activities of Rho GTPases and phosphatidylinositol 3-kinases. J. Biol. Chem., 2006, 281(34), 24955-24969.
[http://dx.doi.org/10.1074/jbc.M604114200] [PMID: 16803895]
[36]
Dickson, L.; Aramori, I.; McCulloch, J.; Sharkey, J.; Finlayson, K. A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology. Neuropharmacology, 2006, 51(6), 1086-1098.
[http://dx.doi.org/10.1016/j.neuropharm.2006.07.017] [PMID: 16930633]
[37]
MacKenzie, C.J.; Lutz, E.M.; Johnson, M.S.; Robertson, D.N.; Holland, P.J.; Mitchell, R. Mechanisms of phospholipase C activation by the vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating polypeptide type 2 receptor. Endocrinology, 2001, 142(3), 1209-1217.
[http://dx.doi.org/10.1210/endo.142.3.8013] [PMID: 11181537]
[38]
Miyata, A.; Arimura, A.; Dahl, R.R.; Minamino, N.; Uehara, A.; Jiang, L.; Culler, M.D.; Coy, D.H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun., 1989, 164(1), 567-574.
[http://dx.doi.org/10.1016/0006-291X(89)91757-9] [PMID: 2803320]
[39]
Hirabayashi, T.; Nakamachi, T.; Shioda, S. Discovery of PACAP and its receptors in the brain. J. Headache Pain, 2018, 19(1), 28.
[http://dx.doi.org/10.1186/s10194-018-0855-1] [PMID: 29619773]
[40]
Ohtsuka, M.; Fukumitsu, H.; Furukawa, S. PACAP decides neuronal laminar fate via PKA signaling in the developing cerebral cortex. Biochem. Biophys. Res. Commun., 2008, 369(4), 1144-1149.
[http://dx.doi.org/10.1016/j.bbrc.2008.03.028] [PMID: 18346455]
[41]
Reglodi, D.; Kiss, P.; Horvath, G.; Lubics, A.; Laszlo, E.; Tamas, A.; Racz, B.; Szakaly, P. Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney. Neuropeptides, 2012, 46(2), 61-70.
[http://dx.doi.org/10.1016/j.npep.2011.05.001] [PMID: 21621841]
[42]
Lee, E.H.; Seo, S.R. Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases. BMB Rep., 2014, 47(7), 369-375.
[http://dx.doi.org/10.5483/BMBRep.2014.47.7.086] [PMID: 24856828]
[43]
Armstrong, B.D.; Abad, C.; Chhith, S.; Cheung-Lau, G.; Hajji, O.E.; Nobuta, H.; Waschek, J.A. Impaired nerve regeneration and enhanced neuroinflammatory response in mice lacking pituitary adenylyl cyclase activating peptide. Neuroscience, 2008, 151(1), 63-73.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.084] [PMID: 18055122]
[44]
Brifault, C.; Gras, M.; Liot, D.; May, V.; Vaudry, D.; Wurtz, O. Delayed pituitary adenylate cyclase-activating polypeptide delivery after brain stroke improves functional recovery by inducing m2 microglia/macrophage polarization. Stroke, 2015, 46(2), 520-528.
[http://dx.doi.org/10.1161/STROKEAHA.114.006864] [PMID: 25550371]
[45]
Temerozo, J.R.; de Azevedo, S.S.D.; Insuela, D.B.R.; Vieira, R.C.; Ferreira, P.L.C.; Carvalho, V.F.; Bello, G.; Bou-Habib, D.C. The neuropeptides vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide control HIV-1 infection in macrophages through activation of protein kinases A and C. Front. Immunol., 2018, 9, 1336.
[http://dx.doi.org/10.3389/fimmu.2018.01336] [PMID: 29951068]
[46]
Starr, C.G.; Maderdrut, J.L.; He, J.; Coy, D.H.; Wimley, W.C. Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships. Peptides, 2018, 104, 35-40.
[http://dx.doi.org/10.1016/j.peptides.2018.04.006] [PMID: 29654809]
[47]
Xu, C.; Guo, Y.; Qiao, X.; Shang, X.; Niu, W.; Jin, M. Design, Recombinant Fusion Expression and Biological Evaluation of Vasoactive Intestinal Peptide Analogue as Novel Antimicrobial Agent. Molecules, 2017, 22(11), 1963-1963.
[http://dx.doi.org/10.3390/molecules22111963] [PMID: 29135962]
[48]
Shrivastava, R.; Shukla, N. Attributes of alternatively activated (M2) macrophages. Life Sci., 2019, 224, 222-231.
[http://dx.doi.org/10.1016/j.lfs.2019.03.062] [PMID: 30928403]
[49]
Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[50]
Yang, H-M.; Yang, S.; Huang, S-S.; Tang, B-S.; Guo, J-F. Microglial activation in the pathogenesis of huntington’s disease. Front. Aging Neurosci., 2017, 9, 193.
[http://dx.doi.org/10.3389/fnagi.2017.00193] [PMID: 28674491]
[51]
Ransohoff, R.M.; Schafer, D.; Vincent, A.; Blachère, N.E.; Bar-Or, A. Neuroinflammation: ways in which the immune system affects the brain. Neurotherapeutics, 2015, 12(4), 896-909.
[http://dx.doi.org/10.1007/s13311-015-0385-3] [PMID: 26306439]
[52]
Delgado, M.; Leceta, J.; Ganea, D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J. Leukoc. Biol., 2003, 73(1), 155-164.
[http://dx.doi.org/10.1189/jlb.0702372] [PMID: 12525573]
[53]
Gonzalez-Rey, E.; Delgado, M. Vasoactive intestinal peptide inhibits cyclooxygenase-2 expression in activated macrophages, microglia and dendritic cells. Brain Behav. Immun., 2008, 22(1), 35-41.
[http://dx.doi.org/10.1016/j.bbi.2007.07.004] [PMID: 17826030]
[54]
Delgado, M. Inhibition of interferon (IFN) γ-induced Jak-STAT1 activation in microglia by vasoactive intestinal peptide: inhibitory effect on CD40, IFN-induced protein-10 and inducible nitric-oxide synthase expression. J. Biol. Chem., 2003, 278(30), 27620-27629.
[http://dx.doi.org/10.1074/jbc.M303199200] [PMID: 12754213]
[55]
Mogi, M.; Harada, M.; Kondo, T.; Riederer, P.; Inagaki, H.; Minami, M.; Nagatsu, T. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci. Lett., 1994, 180(2), 147-150.
[http://dx.doi.org/10.1016/0304-3940(94)90508-8] [PMID: 7700568]
[56]
Delgado, M.; Ganea, D. Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of parkinson’s disease by blocking microglial activation. FASEB J., 2003, 17(8), 944-946.
[http://dx.doi.org/10.1096/fj.02-0799fje] [PMID: 12626429]
[57]
Delgado, M.; Ganea, D. Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB J., 2003, 17(13), 1922-1924.
[http://dx.doi.org/10.1096/fj.02-1029fje] [PMID: 12923064]
[58]
Yelkenli, İ.H.; Ulupinar, E.; Korkmaz, O.T.; Şener, E.; Kuş, G.; Filiz, Z.; Tunçel, N. Modulation of corpus striatal neurochemistry by astrocytes and vasoactive intestinal peptide (VIP) in parkinsonian rats. J. Mol. Neurosci., 2016, 59(2), 280-289.
[http://dx.doi.org/10.1007/s12031-016-0757-0] [PMID: 27115671]
[59]
Offen, D.; Sherki, Y.; Melamed, E.; Fridkin, M.; Brenneman, D.E.; Gozes, I. Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in parkinson’s disease. Brain Res., 2000, 854(1-2), 257-262.
[http://dx.doi.org/10.1016/S0006-8993(99)02375-6] [PMID: 10784133]
[60]
Maasz, G.; Zrinyi, Z.; Reglodi, D.; Petrovics, D.; Rivnyak, A.; Kiss, T.; Jungling, A.; Tamas, A.; Pirger, Z. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models. Dis. Model. Mech., 2017, 10(2), 127-139.
[http://dx.doi.org/10.1242/dmm.027185] [PMID: 28067625]
[61]
Reglődi, D.; Lubics, A.; Tamás, A.; Szalontay, L.; Lengvári, I. Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson’s disease. Behav. Brain Res., 2004, 151(1-2), 303-312.
[http://dx.doi.org/10.1016/j.bbr.2003.09.007] [PMID: 15084446]
[62]
Wang, G.; Pan, J.; Tan, Y-Y.; Sun, X-K.; Zhang, Y-F.; Zhou, H-Y.; Ren, R.J.; Wang, X-J.; Chen, S-D. Neuroprotective effects of PACAP27 in mice model of parkinson’s disease involved in the modulation of K(ATP) subunits and D2 receptors in the striatum. Neuropeptides, 2008, 42(3), 267-276.
[http://dx.doi.org/10.1016/j.npep.2008.03.002] [PMID: 18440632]
[63]
Shivers, K-Y.; Nikolopoulou, A.; Machlovi, S.I.; Vallabhajosula, S.; Figueiredo-Pereira, M.E. PACAP27 prevents parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim. Biophys. Acta, 2014, 1842(9), 1707-1719.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.020] [PMID: 24970746]
[64]
De Molliens, M.P.; Jamadagni, P.; Létourneau, M.; Devost, D.; Hébert, T.E.; Patten, S.A.; Fournier, A.; Chatenet, D. Design and biological assessment of membrane-tethering neuroprotective peptides derived from the pituitary adenylate cyclase-activating polypeptide type 1 receptor. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(11), 129398.
[http://dx.doi.org/10.1016/j.bbagen.2019.07.007] [PMID: 31306709]
[65]
Brown, D.; Tamas, A.; Reglödi, D.; Tizabi, Y. PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: implication for parkinson’s disease. J. Mol. Neurosci., 2013, 50(3), 600-607.
[http://dx.doi.org/10.1007/s12031-013-0015-7] [PMID: 23625270]
[66]
Brown, D.; Tamas, A.; Reglodi, D.; Tizabi, Y. PACAP protects against inflammatory-mediated toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson’s disease. Neurotox. Res., 2014, 26(3), 230-239.
[http://dx.doi.org/10.1007/s12640-014-9468-x] [PMID: 24740430]
[67]
Domschke, S.; Domschke, W.; Bloom, S.R.; Mitznegg, P.; Mitchell, S.J.; Lux, G.; Strunz, U. Vasoactive intestinal peptide in man: pharmacokinetics, metabolic and circulatory effects. Gut, 1978, 19(11), 1049-1053.
[http://dx.doi.org/10.1136/gut.19.11.1049] [PMID: 730072]
[68]
Dogrukol-Ak, D.; Banks, W.A.; Tuncel, N.; Tuncel, M. Passage of vasoactive intestinal peptide across the blood-brain barrier. Peptides, 2003, 24(3), 437-444.
[http://dx.doi.org/10.1016/S0196-9781(03)00059-7] [PMID: 12732342]
[69]
Dufes, C.; Olivier, J.C.; Gaillard, F.; Gaillard, A.; Couet, W.; Muller, J.M. Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Int. J. Pharm., 2003, 255(1-2), 87-97.
[http://dx.doi.org/10.1016/S0378-5173(03)00039-5] [PMID: 12672605]
[70]
Cui, X.; Cao, D.Y.; Wang, Z.M.; Zheng, A.P. Pharmacodynamics and toxicity of vasoactive intestinal peptide for intranasal administration. Pharmazie, 2013, 68(1), 69-74.
[PMID: 23444784]
[71]
Nonaka, N.; Farr, S.A.; Nakamachi, T.; Morley, J.E.; Nakamura, M.; Shioda, S.; Banks, W.A. Intranasal administration of PACAP: uptake by brain and regional brain targeting with cyclodextrins. Peptides, 2012, 36(2), 168-175.
[http://dx.doi.org/10.1016/j.peptides.2012.05.021] [PMID: 22687366]
[72]
Patel, M.M.; Patel, B.M. Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[73]
Rousselet, E.; Callebert, J.; Parain, K.; Joubert, C.; Hunot, S.; Hartmann, A.; Jacque, C.; Perez-Diaz, F.; Cohen-Salmon, C.; Launay, J.M.; Hirsch, E.C. Role of TNF-α receptors in mice intoxicated with the parkin- sonian toxin MPTP. Exp. Neur., 2002, 177(1), 183-192.
[http://dx.doi.org/10.1006/exnr.2002.7960] [PMID: 12429221]
[74]
Castaño, A.; Herrera, A.J.; Cano, J.; Machado, A. The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone and not mimicked by rh-TNF-α, IL-1β and IFN-γ. J. Neurochem., 2002, 81(1), 150-157.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00799.x] [PMID: 12067227]
[75]
Fernandes, A.; Miller-Fleming, L.; Pais, T.F. Microglia and inflammation: conspiracy, controversy or control? Cell. Mol. Life Sci., 2014, 71(20), 3969-3985.
[http://dx.doi.org/10.1007/s00018-014-1670-8] [PMID: 25008043]
[76]
Mocellin, S.; Panelli, M.; Wang, E.; Rossi, C.R.; Pilati, P.; Nitti, D.; Lise, M.; Marincola, F.M. IL-10 stimulatory effects on human NK cells explored by gene profile analysis. Genes Immun., 2004, 5(8), 621-630.
[http://dx.doi.org/10.1038/sj.gene.6364135] [PMID: 15573087]
[77]
Mosser, D.M.; Zhang, X. Interleukin-10: new perspectives on an old cytokine. Immunol. Rev., 2008, 226, 205-218.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00706.x] [PMID: 19161426]
[78]
Yilmaz, R.; Strafella, A.P.; Bernard, A.; Schulte, C.; van den Heuvel, L.; Schneiderhan-Marra, N.; Knorpp, T.; Joos, T.O.; Leypoldt, F.; Geritz, J. Serum inflammatory profile for the discrimination of clinical subtypes in parkinson’s disease. Front. Neurol., 2018, 9, 1123.
[http://dx.doi.org/10.3389/fneur.2018.01123] [PMID: 30622507]
[79]
Rentzos, M.; Nikolaou, C.; Andreadou, E.; Paraskevas, G.P.; Rombos, A.; Zoga, M.; Tsoutsou, A.; Boufidou, F.; Kapaki, E.; Vassilopoulos, D. Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol. Scand., 2009, 119(5), 332-337.
[http://dx.doi.org/10.1111/j.1600-0404.2008.01103.x] [PMID: 18976327]
[80]
Ha, S.J.; Lee, C.H.; Lee, S.B.; Kim, C.M.; Jang, K.L.; Shin, H.S.; Sung, Y.C. A novel function of IL-12p40 as a chemotactic molecule for macrophages. J. Immunol., 1999, 163(5), 2902-2908.
[PMID: 10453037]
[81]
Olson, K.E.; Bade, A.N.; Schutt, C.R.; Dong, J.; Shandler, S.J.; Boska, M.D.; Mosley, R.L.; Gendelman, H.E.; Liu, Y. Manganese-enhanced magnetic resonance imaging for detection of vasoactive intestinal peptide receptor 2 agonist therapy in a model of parkinson’s disease. Neurotherapeutics, 2016, 13(3), 635-646.
[http://dx.doi.org/10.1007/s13311-016-0449-z] [PMID: 27329163]
[82]
Olson, K.E.; Kosloski-Bilek, L.M.; Anderson, K.M.; Diggs, B.J.; Clark, B.E.; Gledhill, J.M., Jr; Shandler, S.J.; Mosley, R.L.; Gendelman, H.E. selective vip receptor agonists facilitate immune transformation for dopaminergic neuroprotection in MPTP-intoxicated mice. J. Neurosci., 2015, 35(50), 16463-16478.
[http://dx.doi.org/10.1523/JNEUROSCI.2131-15.2015] [PMID: 26674871]
[83]
Tan, Y.V.; Abad, C.; Wang, Y.; Lopez, R.; Waschek, J. VPAC2 (vasoactive intestinal peptide receptor type 2) receptor deficient mice develop exacerbated experimental autoimmune encephalomyelitis with increased Th1/Th17 and reduced Th2/Treg responses. Brain Behav. Immun., 2015, 44, 167-175.
[http://dx.doi.org/10.1016/j.bbi.2014.09.020] [PMID: 25305591]
[84]
Yadav, M.; Rosenbaum, J.; Goetzl, E.J. Cutting edge: vasoactive intestinal peptide (VIP) induces differentiation of Th17 cells with a distinctive cytokine profile. J. Immunol., 2008, 180(5), 2772-2776.
[http://dx.doi.org/10.4049/jimmunol.180.5.2772] [PMID: 18292497]
[85]
Liu, Z.; Huang, Y.; Cao, B.B.; Qiu, Y.H.; Peng, Y.P. Th17 cells induce dopaminergic neuronal death via LFA-1/ICAM-1 interaction in a mouse model of parkinson’s disease. Mol. Neurobiol., 2017, 54(10), 7762-7776.
[http://dx.doi.org/10.1007/s12035-016-0249-9] [PMID: 27844285]
[86]
Beringer, A.; Noack, M.; Miossec, P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol. Med., 2016, 22(3), 230-241.
[http://dx.doi.org/10.1016/j.molmed.2016.01.001] [PMID: 26837266]
[87]
Miossec, P.; Kolls, J.K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov., 2012, 11(10), 763-776.
[http://dx.doi.org/10.1038/nrd3794] [PMID: 23023676]
[88]
Schropp, V.; Rohde, J.; Rovituso, D.M.; Jabari, S.; Bharti, R.; Kuerten, S. Contribution of LTi and TH17 cells to B cell aggregate formation in the central nervous system in a mouse model of multiple sclerosis. J. Neuroinflammation, 2019, 16(1), 111.
[http://dx.doi.org/10.1186/s12974-019-1500-x] [PMID: 31138214]
[89]
Dutta, D.; Kundu, M.; Mondal, S.; Roy, A.; Ruehl, S.; Hall, D.A.; Pahan, K. RANTES-induced invasion of Th17 cells into substantia nigra potentiates dopaminergic cell loss in MPTP mouse model of parkinson’s disease. Neurobiol. Dis., 2019, 132, 104575.
[http://dx.doi.org/10.1016/j.nbd.2019.104575] [PMID: 31445159]
[90]
Liu, Z.; Qiu, A-W.; Huang, Y.; Yang, Y.; Chen, J-N.; Gu, T-T.; Cao, B-B.; Qiu, Y-H.; Peng, Y-P. IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of parkinson’s disease. Brain Behav. Immun., 2019, 81, 630-645.
[http://dx.doi.org/10.1016/j.bbi.2019.07.026] [PMID: 31351185]
[91]
Giancola, F.; Torresan, F.; Repossi, R.; Bianco, F.; Latorre, R.; Ioannou, A.; Guarino, M.; Volta, U. Claven- zani, P.; Mazzoni, M. Downregulation of neuronal vasoactive intestinal polypeptide in Parkinson’s disease and chronic constipation. Neurogastroenterol. Motil., 2016, 29(5), e12995.
[http://dx.doi.org/10.1111/nmo.12995] [PMID: 27891695]
[92]
Jégou, S.; Javoy-Agid, F.; Delbende, C.; Tranchand-Bunel, D.; Coy, D.H.; Agid, Y.; Vaudry, H. Regional distribution of vasoactive intestinal peptide in brains from normal and parkinsonian subjects. Peptides, 1988, 9(4), 787-793.
[http://dx.doi.org/10.1016/0196-9781(88)90123-4] [PMID: 3226955]
[93]
Liu, J-Q.; Chu, S-F.; Zhou, X.; Zhang, D-Y.; Chen, N-H. Role of chemokines in Parkinson’s disease. Brain Res. Bull., 2019, 152, 11-18.
[http://dx.doi.org/10.1016/j.brainresbull.2019.05.020] [PMID: 31136787]
[94]
Zhao, Y.; Liu, M.; Chan, X.Y.; Tan, S.Y.; Subramaniam, S.; Fan, Y.; Loh, E.; Chang, K.T.E.; Tan, T.C.; Chen, Q. Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice. Blood, 2017, 130(18), 1995-2005.
[http://dx.doi.org/10.1182/blood-2017-04-778779] [PMID: 28851698]
[95]
Luo, Y.; Henricksen, L.A.; Giuliano, R.E.; Prifti, L.; Callahan, L.M.; Federoff, H.J. VIP is a transcriptional target of Nurr1 in dopaminergic cells. Exp. Neurol., 2007, 203(1), 221-232.
[http://dx.doi.org/10.1016/j.expneurol.2006.08.005] [PMID: 16999955]
[96]
Zetterström, R.H.; Williams, R.; Perlmann, T.; Olson, L. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res. Mol. Brain Res., 1996, 41(1-2), 111-120.
[http://dx.doi.org/10.1016/0169-328X(96)00074-5] [PMID: 8883941]
[97]
de Vera, I.M.; Giri, P.K.; Munoz-Tello, P.; Brust, R.; Fuhrmann, J.; Matta-Camacho, E.; Shang, J.; Campbell, S.; Wilson, H.D.; Granados, J.; Gardner, W.J., Jr; Creamer, T.P.; Solt, L.A.; Kojetin, D.J. Identification of a binding site for unsaturated fatty acids in the orphan nuclear receptor Nurr1. ACS Chem. Biol., 2016, 11(7), 1795-1799.
[http://dx.doi.org/10.1021/acschembio.6b00037] [PMID: 27128111]
[98]
Hammond, S.L.; Popichak, K.A.; Li, X.; Hunt, L.G.; Richman, E.H.; Damale, P.U.; Chong, E.K.P.; Backos, D.S.; Safe, S.; Tjalkens, R.B. The nurr1 ligand,1,1-bis(3′-Indolyl)-1-(p-chlorophenyl)methane, modulates glial reactivity and is neuroprotective in MPTP-Induced parkinsonism. J. Pharmacol. Exp. Ther., 2018, 365(3), 636-651.
[http://dx.doi.org/10.1124/jpet.117.246389] [PMID: 29626009]
[99]
Hedya, S.A.; Safar, M.M.; Bahgat, A.K. Cilostazol mediated nurr1 and autophagy enhancement: neuroprotective activity in rat rotenone PD model. Mol. Neurobiol., 2018, 55(9), 7579-7587.
[http://dx.doi.org/10.1007/s12035-018-0923-1] [PMID: 29429051]
[100]
Qian, Y.; Chen, X-X.; Wang, W.; Li, J-J.; Wang, X-P.; Tang, Z-W.; Xu, J.T.; Lin, H.; Yang, Z-Y.; Li, L-Y. Transplantation of nurr1-overexpressing neural stem cells and microglia for treating parkinsonian rats. CNS Neurosci. Ther., 2020, 26(1), 55-65.
[http://dx.doi.org/10.1111/cns.13149] [PMID: 31087449]
[101]
Bruning, J.M.; Wang, Y.; Oltrabella, F.; Tian, B.; Kholodar, S.A.; Liu, H.; Bhattacharya, P.; Guo, S.; Holton, J.M.; Fletterick, R.J.; Jacobson, M.P.; England, P.M. Covalent modification and regulation of the nuclear receptor nurr1 by a dopamine metabolite. Cell Chem. Biol., 2019, 26(5), 674-685.
[http://dx.doi.org/10.1016/j.chembiol.2019.02.002] [PMID: 30853418]
[102]
Bisaglia, M.; Mammi, S.; Bubacco, L. Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J. Biol. Chem., 2007, 282(21), 15597-15605.
[http://dx.doi.org/10.1074/jbc.M610893200] [PMID: 17395592]
[103]
Kuhn, D.M.; Arthur, R.E., Jr; Thomas, D.M., Jr; Elferink, L.A. Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to parkinson’s disease. J. Neurochem., 1999, 73(3), 1309-1317.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0731309.x] [PMID: 10461926]
[104]
Popichak, K.A.; Hammond, S.L.; Moreno, J.A.; Afzali, M.F.; Backos, D.S.; Slayden, R.D.; Safe, S.; Tjalkens, R.B. Compensatory expression of Nur77 and Nurr1 regulates NF-κB-dependent inflammatory signaling in astrocytes. Mol. Pharmacol., 2018, 94(4), 1174-1186.
[http://dx.doi.org/10.1124/mol.118.112631] [PMID: 30111648]
[105]
Wei, X.; Gao, H.; Zou, J.; Liu, X.; Chen, D.; Liao, J.; Xu, Y.; Ma, L.; Tang, B.; Zhang, Z.; Cai, X.; Jin, K.; Xia, Y.; Wang, Q. Contra-directional coupling of Nur77 and Nurr1 in neurodegeneration: a novel mechanism for memantine-induced anti-inflammation and anti-mitochondrial impairment. Mol. Neurobiol., 2016, 53(9), 5876-5892.
[http://dx.doi.org/10.1007/s12035-015-9477-7] [PMID: 26497037]