Radiolabeled Peptide Probes for Liver Cancer Imaging

Page: [6968 - 6986] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Liver cancer/Hepatocellular Carcinoma (HCC) is a leading cause of cancer death and represents an important cause of mortality worldwide. Several biomarkers are overexpressed in liver cancer, such as Glypican 3 (GPC3) and Epidermal Growth Factor Receptor (EGFR). These biomarkers play important roles in the progression of tumors and could serve as imaging and therapeutic targets for this disease. Peptides with adequate stability, receptor binding properties, and biokinetic behavior have been intensively studied for liver cancer imaging. A great variety of them have been radiolabeled with clinically relevant radionuclides for liver cancer diagnosis, and many are promising imaging and therapeutic candidates for clinical translation. Herein, we summarize the advancement of radiolabeled peptides for the targeted imaging of liver cancer.

Keywords: Liver cancer, GPC3, EGFR, c-Met, VEGF, radiolabeled peptides.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med., 2019, 380(15), 1450-1462.
[http://dx.doi.org/10.1056/NEJMra1713263] [PMID: 30970190]
[3]
Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[4]
Sayan, M.; Yegya-Raman, N.; Greco, S.H.; Gui, B.; Zhang, A.; Chundury, A.; Grandhi, M.S.; Hochster, H.S.; Kennedy, T.J.; Langan, R.C.; Malhotra, U.; Rustgi, V.K.; Shah, M.M.; Spencer, K.R.; Carpizo, D.R.; Nosher, J.L.; Jabbour, S.K. Rethinking the role of radiation therapy in the treatment of unresectable hepatocellular carcinoma: a data driven treatment algorithm for optimizing outcomes. Front. Oncol., 2019, 9, 345.
[http://dx.doi.org/10.3389/fonc.2019.00345] [PMID: 31275846]
[5]
Zhuang, P.Y.; Wang, J.D.; Tang, Z.H.; Zhou, X.P.; Yang, Y.; Quan, Z.W.; Liu, Y.B.; Shen, J. Peritumoral Neuropilin-1 and VEGF receptor-2 expression increases time to recurrence in hepatocellular carcinoma patients undergoing curative hepatectomy. Oncotarget, 2014, 5(22), 11121-11132.
[http://dx.doi.org/10.18632/oncotarget.2553] [PMID: 25333267]
[6]
Farazi, P.A.; DePinho, R.A. The genetic and environmental basis of hepatocellular carcinoma. Discov. Med., 2006, 6(35), 182-186.
[PMID: 17234139]
[7]
Gomaa, A.I.; Khan, S.A.; Toledano, M.B.; Waked, I.; Taylor-Robinson, S.D. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J. Gastroenterol., 2008, 14(27), 4300-4308.
[http://dx.doi.org/10.3748/wjg.14.4300] [PMID: 18666317]
[8]
Romagnoli, R.; Mazzaferro, V.; Bruix, J. Surgical resection for hepatocellular carcinoma: Moving from what can be done to what is worth doing. Hepatology, 2015, 62(2), 340-342.
[http://dx.doi.org/10.1002/hep.27831] [PMID: 25846953]
[9]
Forner, A.; Vilana, R.; Ayuso, C.; Bianchi, L.; Solé, M.; Ayuso, J.R.; Boix, L.; Sala, M.; Varela, M.; Llovet, J.M.; Brú, C.; Bruix, J. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective validation of the noninvasive diagnostic criteria for hepatocel-lular carcinoma. Hepatology, 2008, 47(1), 97-104.
[http://dx.doi.org/10.1002/hep.21966] [PMID: 18069697]
[10]
Maluccio, M.; Covey, A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J. Clin., 2012, 62(6), 394-399.
[http://dx.doi.org/10.3322/caac.21161] [PMID: 23070690]
[11]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[12]
Hindupur, S.K.; Colombi, M.; Fuhs, S.R.; Matter, M.S.; Guri, Y.; Adam, K.; Cornu, M.; Piscuoglio, S.; Ng, C.K.Y.; Betz, C.; Liko, D.; Quagliata, L.; Moes, S.; Jenoe, P.; Terracciano, L.M.; Heim, M.H.; Hunter, T.; Hall, M.N. The protein histidine phosphatase LHPP is a tumour suppressor. Nature, 2018, 555(7698), 678-682.
[http://dx.doi.org/10.1038/nature26140] [PMID: 29562234]
[13]
Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2018, 15(10), 599-616.
[http://dx.doi.org/10.1038/s41571-018-0073-4] [PMID: 30061739]
[14]
Pinna, A.D.; Yang, T.; Mazzaferro, V.; De Carlis, L.; Zhou, J.; Roayaie, S.; Shen, F.; Sposito, C.; Cescon, M.; Di Sandro, S.; Yi-Feng, H. Liver transplantation and hepatic resection can achieve cure for hepatocellular carcinoma. Ann. Surg., 2019, 269(4)e59
[http://dx.doi.org/10.1097/SLA.0000000000002889] [PMID: 30080736]
[15]
Bruix, J.; Fuster, J. A snapshot of the effective indications and results of surgery for hepatocellular carcinoma in tertiary referral centers: is it adherent to the EASL/AASLD recommendations? an observational study of the HCC East-West study group. Ann. Surg., 2015, 262(1)e30
[http://dx.doi.org/10.1097/SLA.0000000000000381] [PMID: 24374519]
[16]
Wang, J.H.; Wang, C.C.; Hung, C.H.; Chen, C.L.; Lu, S.N. Survival comparison between surgical resection and radiofrequency ablation for patients in BCLC very early/early stage hepatocellular carcinoma. J. Hepatol., 2012, 56(2), 412-418.
[http://dx.doi.org/10.1016/j.jhep.2011.05.020] [PMID: 21756858]
[17]
Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2012, 379(9822), 1245-1255.
[http://dx.doi.org/10.1016/S0140-6736(11)61347-0] [PMID: 22353262]
[18]
Ng, K.K.; Lo, C.M.; Chan, S.C.; Chok, K.S.; Cheung, T.T.; Fan, S.T. Liver transplantation for hepatocellular carcinoma: the Hong Kong experience. J. Hepatobiliary Pancreat. Sci., 2010, 17(5), 548-554.
[http://dx.doi.org/10.1007/s00534-009-0165-8] [PMID: 19760139]
[19]
Poon, R.T.; Fan, S.T. Hepatectomy for hepatocellular carcinoma: patient selection and postoperative outcome. Liver Transpl., 2004, 10(2)(Suppl. 1), S39-S45.
[http://dx.doi.org/10.1002/lt.20040] [PMID: 14762838]
[20]
Qi, X.; Ng, K.T.; Lian, Q.Z.; Liu, X.B.; Li, C.X.; Geng, W.; Ling, C.C.; Ma, Y.Y.; Yeung, W.H.; Tu, W.W.; Fan, S.T.; Lo, C.M.; Man, K. Clinical significance and therapeutic value of glutathione peroxidase 3 (GPx3) in hepatocellular carcinoma. Oncotarget, 2014, 5(22), 11103-11120.
[http://dx.doi.org/10.18632/oncotarget.2549] [PMID: 25333265]
[21]
Ling, S.; Tian, Y.; Zhang, H.; Jia, K.; Feng, T.; Sun, D.; Gao, Z.; Xu, F.; Hou, Z.; Li, Y.; Wang, L. Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel 7402/5 fluorouracil cells. Mol. Med. Rep., 2014, 10(6), 2891-2897.
[http://dx.doi.org/10.3892/mmr.2014.2614] [PMID: 25310259]
[22]
Jackson, I.M.; Scott, P.J.H.; Thompson, S. Clinical applications of radiolabeled peptides for PET. Semin. Nucl. Med., 2017, 47(5), 493-523.
[http://dx.doi.org/10.1053/j.semnuclmed.2017.05.007] [PMID: 28826523]
[23]
Krenning, E.P.; Bakker, W.H.; Breeman, W.A.; Koper, J.W.; Kooij, P.P.; Ausema, L.; Lameris, J.S.; Reubi, J.C.; Lamberts, S.W. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet, 1989, 1(8632), 242-244.
[http://dx.doi.org/10.1016/S0140-6736(89)91258-0] [PMID: 2563413]
[24]
Tatarinov, Ius Detection of embryo-specific alpha-globulin in the blood serum of a patient with primary liver cancer. Vopr. Med. Khim., 1964, 10, 90-91.
[PMID: 14207501]
[25]
Chayvialle, J.A.; Ganguli, P.C. Radioimmunoassay of alpha-fetoprotein in human plasma. Lancet, 1973, 1(7816), 1355-1357.
[http://dx.doi.org/10.1016/S0140-6736(73)91676-0] [PMID: 4122743]
[26]
Waldmann, T.A.; McIntire, K.R. The use of a radioimmunoassay for alpha-fetoprotein in the diagnosis of malignancy. cancer, 1974, 34(4), 1510-1515.
[http://dx.doi.org/10.1002/1097-0142(197410)34:8+<1510::aid-cncr2820340824>3.0.co;2-y] [PMID: 4138906]
[27]
Tafreshi, N.K.; Enkemann, S.A.; Bui, M.M.; Lloyd, M.C.; Abrahams, D.; Huynh, A.S.; Kim, J.; Grobmyer, S.R.; Carter, W.B.; Vagner, J.; Gillies, R.J.; Morse, D.L. A mammaglobin-A targeting agent for noninvasive detection of breast cancer metastasis in lymph nodes. Cancer Res., 2011, 71(3), 1050-1059.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3091] [PMID: 21169406]
[28]
Attwa, M.H.; El-Etreby, S.A. Guide for diagnosis and treatment of hepatocellular carcinoma. World J. Hepatol., 2015, 7(12), 1632-1651.
[http://dx.doi.org/10.4254/wjh.v7.i12.1632] [PMID: 26140083]
[29]
Mirschberger, C.; Schiller, C.B.; Schräml, M.; Dimoudis, N.; Friess, T.; Gerdes, C.A.; Reiff, U.; Lifke, V.; Hoelzlwimmer, G.; Kolm, I.; Hopfner, K.P.; Niederfellner, G.; Bossenmaier, B. RG7116, a therapeutic antibody that binds the inactive HER3 receptor and is optimized for immune effector activation. Cancer Res., 2013, 73(16), 5183-5194.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0099] [PMID: 23780344]
[30]
Ho, M.; Kim, H. Glypican-3: a new target for cancer immunotherapy. Eur. J. Cancer, 2011, 47(3), 333-338.
[http://dx.doi.org/10.1016/j.ejca.2010.10.024] [PMID: 21112773]
[31]
Galluzzi, L.; Kepp, O.; Vander Heiden, M.G.; Kroemer, G. Metabolic targets for cancer therapy. Nat. Rev. Drug Discov., 2013, 12(11), 829-846.
[http://dx.doi.org/10.1038/nrd4145] [PMID: 24113830]
[32]
Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol., 2012, 6(2), 155-176.
[http://dx.doi.org/10.1016/j.molonc.2012.02.004] [PMID: 22440008]
[33]
Ahlgren, S. Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine. J. Nucl. Med., 2009, 50(5), 781-789.
[http://dx.doi.org/10.2967/jnumed.108.056929] [PMID: 19372467]
[34]
Berndorff, D.; Borkowski, S.; Moosmayer, D.; Viti, F.; Muller-Tiemann, B.; Sieger, S.; Friebe, M.; Hilger, C.S.; Zardi, L.; Neri, D.; Dinkelborg, L.M. Imaging of tumor angiogenesis using 99mTc-labeled human recombinant anti-ED-B fibronectin antibody fragments. J. Society Nucl. Med., 2006, 47(10), 1707-1716.
[PMID: 17015908]
[35]
Wallberg, H.; Orlova, A.; Altai, M.; Hosseinimehr, S.J.; Widstrom, C.; Malmberg, J.; Stahl, S.; Tolmachev, V. Molecular design and optimization of 99mTc-labeled recombinant affibody molecules improves their biodistribution and imaging properties. J. Nucl. Med., 2011, 52(3), 461-469.
[http://dx.doi.org/10.2967/jnumed.110.083592] [PMID: 21321280]
[36]
Langer, M.; Beck-Sickinger, A.G. Peptides as carrier for tumor diagnosis and treatment. Curr. Med. Chem. Anticancer Agents, 2001, 1(1), 71-93.
[http://dx.doi.org/10.2174/1568011013354877] [PMID: 12678771]
[37]
Filmus, J.; Capurro, M.; Rast, J. Glypicans. Genome Biol., 2008, 9(5), 224.
[http://dx.doi.org/10.1186/gb-2008-9-5-224] [PMID: 18505598]
[38]
Haruyama, Y.; Kataoka, H. Glypican-3 is a prognostic factor and an immunotherapeutic target in hepatocellular carcinoma. World J. Gastroenterol., 2016, 22(1), 275-283.
[http://dx.doi.org/10.3748/wjg.v22.i1.275] [PMID: 26755876]
[39]
Wu, Y.; Liu, H.; Ding, H. GPC-3 in hepatocellular carcinoma: current perspectives. J. Hepatocell. Carcinoma, 2016, 3, 63-67.
[http://dx.doi.org/10.2147/JHC.S116513] [PMID: 27878117]
[40]
Li, N.; Gao, W.; Zhang, Y.F.; Ho, M. Glypicans as cancer therapeutic targets. Trends Cancer, 2018, 4(11), 741-754.
[http://dx.doi.org/10.1016/j.trecan.2018.09.004] [PMID: 30352677]
[41]
Capurro, M.; Wanless, I.R.; Sherman, M.; Deboer, G.; Shi, W.; Miyoshi, E.; Filmus, J. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology, 2003, 125(1), 89-97.
[http://dx.doi.org/10.1016/S0016-5085(03)00689-9] [PMID: 12851874]
[42]
Hsu, H.C.; Cheng, W.; Lai, P.L. Cloning and expression of a developmentally regulated transcript MXR7 in hepatocellular carcinoma: biological significance and temporospatial distribution. Cancer Res., 1997, 57(22), 5179-5184.
[PMID: 9371521]
[43]
Liu, X.; Wang, S.K.; Zhang, K.; Zhang, H.; Pan, Q.; Liu, Z.; Pan, H.; Xue, L.; Yen, Y.; Chu, P.G. Expression of glypican 3 enriches hepatocellular carcinoma development-related genes and associates with carcinogenesis in cirrhotic livers. Carcinogenesis, 2015, 36(2), 232-242.
[http://dx.doi.org/10.1093/carcin/bgu245] [PMID: 25542894]
[44]
Midorikawa, Y.; Ishikawa, S.; Iwanari, H.; Imamura, T.; Sakamoto, H.; Miyazono, K.; Kodama, T.; Makuuchi, M.; Aburatani, H. Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling. Int. J. Cancer, 2003, 103(4), 455-465.
[http://dx.doi.org/10.1002/ijc.10856] [PMID: 12478660]
[45]
Hippo, Y.; Watanabe, K.; Watanabe, A.; Midorikawa, Y.; Yamamoto, S.; Ihara, S.; Tokita, S.; Iwanari, H.; Ito, Y.; Nakano, K.; Nezu, J.; Tsunoda, H.; Yoshino, T.; Ohizumi, I.; Tsuchiya, M.; Ohnishi, S.; Makuuchi, M.; Hamakubo, T.; Kodama, T.; Aburatani, H. Identi-fication of soluble NH2-terminal fragment of glypican-3 as a serological marker for early-stage hepatocellular carcinoma. Cancer Res., 2004, 64(7), 2418-2423.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2191] [PMID: 15059894]
[46]
Jin, M.; Zhou, X.; Yearsley, M.; Frankel, W.L. Liver metastases of neuroendocrine tumors rarely show overlapping immunoprofile with hepatocellular carcinomas. Endocr. Pathol., 2016, 27(3), 253-258.
[http://dx.doi.org/10.1007/s12022-016-9442-7] [PMID: 27300354]
[47]
Gao, W.; Kim, H.; Feng, M.; Phung, Y.; Xavier, C.P.; Rubin, J.S.; Ho, M. Inactivation of Wnt signaling by a human antibody that recognizes the heparan sulfate chains of glypican-3 for liver cancer therapy. Hepatology, 2014, 60(2), 576-587.
[http://dx.doi.org/10.1002/hep.26996] [PMID: 24492943]
[48]
Miao, H.L.; Pan, Z.J.; Lei, C.J.; Wen, J.Y.; Li, M.Y.; Liu, Z.K.; Qiu, Z.D.; Lin, M.Z.; Chen, N.P.; Chen, M. Knockdown of GPC3 inhibits the proliferation of Huh7 hepatocellular carcinoma cells through down-regulation of YAP. J. Cell. Biochem., 2013, 114(3), 625-631.
[http://dx.doi.org/10.1002/jcb.24404] [PMID: 23060277]
[49]
Capurro, M.; Martin, T.; Shi, W.; Filmus, J. Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling. J. Cell Sci., 2014, 127(Pt 7), 1565-1575.
[http://dx.doi.org/10.1242/jcs.140871] [PMID: 24496449]
[50]
Zittermann, S.I.; Capurro, M.I.; Shi, W.; Filmus, J. Soluble glypican 3 inhibits the growth of hepatocellular carcinoma in vitro and in vivo. Int. J. Cancer, 2010, 126(6), 1291-1301.
[http://dx.doi.org/10.1002/ijc.24941] [PMID: 19816934]
[51]
Feng, M.; Gao, W.; Wang, R.; Chen, W.; Man, Y.G.; Figg, W.D.; Wang, X.W.; Dimitrov, D.S.; Ho, M. Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA, 2013, 110(12), E1083-E1091.
[http://dx.doi.org/10.1073/pnas.1217868110] [PMID: 23471984]
[52]
Nakatsura, T.; Yoshitake, Y.; Senju, S.; Monji, M.; Komori, H.; Motomura, Y.; Hosaka, S.; Beppu, T.; Ishiko, T.; Kamohara, H.; Ash-ihara, H.; Katagiri, T.; Furukawa, Y.; Fujiyama, S.; Ogawa, M.; Nakamura, Y.; Nishimura, Y. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem. Biophys. Res. Commun., 2003, 306(1), 16-25.
[http://dx.doi.org/10.1016/S0006-291X(03)00908-2] [PMID: 12788060]
[53]
Chen, L.; Wu, L.L.; Zhang, Z.L.; Hu, J.; Tang, M.; Qi, C.B.; Li, N.; Pang, D.W. Biofunctionalized magnetic nanospheres-based cell sorting strategy for efficient isolation, detection and subtype analyses of heterogeneous circulating hepatocellular carcinoma cells. Biosens. Bioelectron., 2016, 85, 633-640.
[http://dx.doi.org/10.1016/j.bios.2016.05.071] [PMID: 27240010]
[54]
Wang, X.Y.; Degos, F.; Dubois, S.; Tessiore, S.; Allegretta, M.; Guttmann, R.D.; Jothy, S.; Belghiti, J.; Bedossa, P.; Paradis, V. Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum. Pathol., 2006, 37(11), 1435-1441.
[http://dx.doi.org/10.1016/j.humpath.2006.05.016] [PMID: 16949914]
[55]
Kandil, D.H.; Cooper, K. Glypican-3: a novel diagnostic marker for hepatocellular carcinoma and more. Adv. Anat. Pathol., 2009, 16(2), 125-129.
[http://dx.doi.org/10.1097/PAP.0b013e3181992455] [PMID: 19550373]
[56]
Chen, I.P.; Ariizumi, S.; Nakano, M.; Yamamoto, M. Positive glypican-3 expression in early hepatocellular carcinoma predicts recur-rence after hepatectomy. J. Gastroenterol., 2014, 49(1), 117-125.
[http://dx.doi.org/10.1007/s00535-013-0793-2] [PMID: 23532638]
[57]
Wang, H.L.; Anatelli, F.; Zhai, Q.J.; Adley, B.; Chuang, S.T.; Yang, X.J. Glypican-3 as a useful diagnostic marker that distinguishes hepatocellular carcinoma from benign hepatocellular mass lesions. Arch. Pathol. Lab. Med., 2008, 132(11), 1723-1728.
[http://dx.doi.org/10.1043/1543-2165-132.11.1723] [PMID: 18976006]
[58]
Zhou, F.; Shang, W.; Yu, X.; Tian, J. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med. Res. Rev., 2018, 38(2), 741-767.
[http://dx.doi.org/10.1002/med.21455] [PMID: 28621802]
[59]
Song, X.; Shang, W.; Peng, L.; Jiang, H.; Wang, K.; Fang, C.; Tian, J. Novel GPC3-binding WS2-Ga3+-PEG-peptide nanosheets for in vivo bimodal imaging-guided photothermal therapy. Nanomedicine (Lond.), 2018, 13(14), 1681-1693.
[http://dx.doi.org/10.2217/nnm-2017-0367] [PMID: 30091395]
[60]
Yang, X.; Liu, H.; Sun, C.K.; Natarajan, A.; Hu, X.; Wang, X.; Allegretta, M.; Guttmann, R.D.; Gambhir, S.S.; Chua, M.S.; Cheng, Z.; So, S.K. Imaging of hepatocellular carcinoma patient-derived xenografts using 89Zr-labeled anti-glypican-3 monoclonal antibody. Biomaterials, 2014, 35(25), 6964-6971.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.089] [PMID: 24836949]
[61]
Sham, J.G.; Kievit, F.M.; Grierson, J.R.; Miyaoka, R.S.; Yeh, M.M.; Zhang, M.; Yeung, R.S.; Minoshima, S.; Park, J.O. Glypican-3-targeted 89Zr PET imaging of hepatocellular carcinoma. J. Nucl. Med., 2014, 55(6), 799-804.
[http://dx.doi.org/10.2967/jnumed.113.132118] [PMID: 24627434]
[62]
Sham, J.G.; Kievit, F.M.; Grierson, J.R.; Chiarelli, P.A.; Miyaoka, R.S.; Zhang, M.; Yeung, R.S.; Minoshima, S.; Park, J.O. Glypican-3-targeting F(ab’)2 for 89Zr PET of hepatocellular carcinoma. J. Nucl. Med., 2014, 55(12), 2032-2037.
[http://dx.doi.org/10.2967/jnumed.114.145102 ] [PMID: 25359880]
[63]
Wang, Z.; Han, Y.J.; Huang, S.; Wang, M.; Zhou, W.L.; Li, H.S.; Wang, Q.S.; Wu, H.B. Imaging the expression of glypican-3 in hepatocellular carcinoma by PET. Amino Acids, 2018, 50(2), 309-320.
[http://dx.doi.org/10.1007/s00726-017-2517-z] [PMID: 29204748]
[64]
Zhu, D.; Qin, Y.; Wang, J.; Zhang, L.; Zou, S.; Zhu, X.; Zhu, L. Novel glypican-3-binding peptide for in vivo hepatocellular carcinoma fluorescent imaging. Bioconjug. Chem., 2016, 27(3), 831-839.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00030] [PMID: 26850086]
[65]
Lee, Y.L.; Ahn, B.C.; Lee, Y.; Lee, S.W.; Cho, J.Y.; Lee, J. Targeting of hepatocellular carcinoma with glypican-3- targeting peptide ligand. J. Eur. Pept. Sci., 2011, 17(11), 763-769.
[http://dx.doi.org/10.1002/psc.1400P] [PMID: 21976137]
[66]
Zhang, Q.; Han, Z.; Tao, J.; Zhao, M.; Zhang, W.; Li, P.; Tang, L.; Gu, Y. An innovative peptide with high affinity to GPC3 for hepa-tocellular carcinoma diagnosis. Biomater. Sci., 2018, 7(1), 159-167.
[http://dx.doi.org/10.1039/C8BM01016A] [PMID: 30417190]
[67]
Qin, Z.; Wang, J.; Wang, Y.; Wang, G.; Wang, X.; Zhou, Z.; Liu, G.; Gao, S.; Zhu, L. Identification of a glypican-3-binding peptide for in vivo non-invasive human hepatocellular carcinoma detection. Macromol. Biosci., 2017, 17(4)
[http://dx.doi.org/10.1002/mabi.201600335] [PMID: 27862961]
[68]
Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell, 2002, 110(6), 669-672.
[http://dx.doi.org/10.1016/S0092-8674(02)00966-2] [PMID: 12297041]
[69]
Herbst, R.S.; Hong, W.K. IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody for treatment of head and neck cancer. Semin. Oncol., 2002, 29(5)(Suppl. 14), 18-30.
[http://dx.doi.org/10.1016/S0093-7754(02)70087-0] [PMID: 12422310]
[70]
Neal, D.E.; Mellon, K. Epidermal growth factor receptor and bladder cancer: a review. Urol. Int., 1992, 48(4), 365-371.
[http://dx.doi.org/10.1159/000282357] [PMID: 1357809]
[71]
Kim, Y.B.; Kim, G.E.; Cho, N.H.; Pyo, H.R.; Shim, S.J.; Chang, S.K.; Park, H.C.; Suh, C.O.; Park, T.K.; Kim, B.S. Overexpression of cyclooxygenase-2 is associated with a poor prognosis in patients with squamous cell carcinoma of the uterine cervix treated with radiation and concurrent chemotherapy. Cancer, 2002, 95(3), 531-539.
[http://dx.doi.org/10.1002/cncr.10684] [PMID: 12209745]
[72]
Alper, O.; Bergmann-Leitner, E.S.; Bennett, T.A.; Hacker, N.F.; Stromberg, K.; Stetler-Stevenson, W.G. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J. Natl. Cancer Inst., 2001, 93(18), 1375-1384.
[http://dx.doi.org/10.1093/jnci/93.18.1375] [PMID: 11562388]
[73]
Salomon, D.S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal growth factor-related peptides and their receptors in human ma-lignancies. Crit. Rev. Oncol. Hematol., 1995, 19(3), 183-232.
[http://dx.doi.org/10.1016/1040-8428(94)00144-I] [PMID: 7612182]
[74]
Slichenmyer, W.J.; Fry, D.W. Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin. Oncol., 2001, 28(5)(Suppl. 16), 67-79.
[http://dx.doi.org/10.1016/S0093-7754(01)90284-2] [PMID: 11706398]
[75]
Liu, X.; Wang, P.; Zhang, C.; Ma, Z. Epidermal growth factor receptor (EGFR): a rising star in the era of precision medicine of lung cancer. Oncotarget, 2017, 8(30), 50209-50220.
[http://dx.doi.org/10.18632/oncotarget.16854] [PMID: 28430586]
[76]
Abedi, S.M.; Mardanshahi, A.; Shahhosseini, R.; Hosseinimehr, S.J. Nuclear medicine for imaging of epithelial ovarian cancer. Future Oncol., 2016, 12(9), 1165-1177.
[http://dx.doi.org/10.2217/fon.16.19] [PMID: 26984362]
[77]
Liu, S.; Edwards, D.S. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2235-2268.
[http://dx.doi.org/10.1021/cr980436l] [PMID: 11749481]
[78]
Mishani, E.; Hagooly, A. Strategies for molecular imaging of epidermal growth factor receptor tyrosine kinase in cancer. J. Nucl. Med., 2009, 50(8), 1199-1202.
[http://dx.doi.org/10.2967/jnumed.109.062117 ] [PMID: 19617320]
[79]
Song, S.; Liu, D.; Peng, J.; Deng, H.; Guo, Y.; Xu, L.X.; Miller, A.D.; Xu, Y. Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo. FASEB J., 2009, 23(5), 1396-1404.
[http://dx.doi.org/10.1096/fj.08-117002] [PMID: 19124558]
[80]
Kazemi, Z.; Zahmatkesh, M.H.; Abedi, S.M.; Hosseinimehr, S.J. Biological Evaluation of 99mTc-HYNIC-EDDA/tricine-(Ser)-D4 peptide for tumor targeting. Curr. Radiopharm., 2017, 10(2), 123-130.
[http://dx.doi.org/10.2174/1874471010666170519165430] [PMID: 28530534]
[81]
Zahmatkesh, M.H.; Abedi, S.M.; Hosseinimehr, S.J. 99mTc-HYNIC-D4 peptide: a new small radiolabeled peptide for non small cell lung tumor targeting. Anticancer. Agents Med. Chem., 2017, 17(5), 734-740.
[http://dx.doi.org/10.2174/1871520616666160907142130] [PMID: 27604575]
[82]
Haddad Zahmatkesh, M.; Abedi, S.M.; Hosseinimehr, S.J. Preparation and biological evaluation of 99mTc-HYNIC-(Ser)3-D4 peptide for targeting and imaging of non-small-cell lung cancer. Future Oncol., 2017, 13(10), 893-905.
[http://dx.doi.org/10.2217/fon-2016-0426] [PMID: 28110557]
[83]
Li, Z.; Zhao, R.; Wu, X.; Sun, Y.; Yao, M.; Li, J.; Xu, Y.; Gu, J. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J., 2005, 19(4), 1978-1985.
[http://dx.doi.org/10.2217/fon-2016-0426] [PMID: 28110557]
[84]
Song, S.; Liu, D.; Peng, J.; Sun, Y.; Li, Z.; Gu, J.R.; Xu, Y. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. Int. J. Pharm., 2008, 363(1-2), 155-161.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.012] [PMID: 18692120]
[85]
Master, A.; Malamas, A.; Solanki, R.; Clausen, D.M.; Eiseman, J.L.; Sen Gupta, A. A cell-targeted photodynamic nanomedicine strategy for head and neck cancers. Mol. Pharm., 2013, 10(5), 1988-1997.
[http://dx.doi.org/10.1021/mp400007k] [PMID: 23531079]
[86]
Talekar, M.; Ganta, S.; Singh, A.; Amiji, M.; Kendall, J.; Denny, W.A.; Garg, S. Phosphatidylinositol 3-kinase inhibitor (PIK75) con-taining surface functionalized nanoemulsion for enhanced drug delivery, cytotoxicity and pro-apoptotic activity in ovarian cancer cells. Pharm. Res., 2012, 29(10), 2874-2886.
[http://dx.doi.org/10.1007/s11095-012-0793-6] [PMID: 22653667]
[87]
Ren, H.; Gao, C.; Zhou, L.; Liu, M.; Xie, C.; Lu, W. EGFR-targeted poly(ethylene glycol)-distearoylphosphatidyl-ethanolamine micelle loaded with paclitaxel for laryngeal cancer: preparation, characterization and in vitro evaluation. Drug Deliv., 2015, 22(6), 785-794.
[http://dx.doi.org/10.3109/10717544.2014.896057] [PMID: 24670093]
[88]
Grünwald, G.K.; Vetter, A.; Klutz, K.; Willhauck, M.J.; Schwenk, N.; Senekowitsch-Schmidtke, R.; Schwaiger, M.; Zach, C.; Wagner, E.; Göke, B.; Holm, P.S.; Ogris, M.; Spitzweg, C. EGFR-targeted adenovirus dendrimer coating for improved systemic delivery of the theranostic NIS gene. Mol. Ther. Nucleic Acids, 2013.
[http://dx.doi.org/10.1038/mtna.2013.58] [PMID: 24193032]
[89]
Rahmanian, N.; Hosseinimehr, S.J.; Khalaj, A.; Noaparast, Z.; Abedi, S.M.; Sabzevari, O. 99mTc-radiolabeled GE11-modified peptide for ovarian tumor targeting. Daru, 2017, 25(1), 13.
[http://dx.doi.org/10.1186/s40199-017-0179-8] [PMID: 28464952]
[90]
Yu, H.M.; Chen, J.H.; Lin, K.L.; Lin, W.J. Synthesis of (68)Ga-labeled NOTA-RGD-GE11 heterodimeric peptide for dual integrin and epidermal growth factor receptor-targeted tumor imaging. J. Labelled Comp. Radiopharm., 2015, 58(7), 299-303.
[http://dx.doi.org/10.1002/jlcr.3296] [PMID: 25997858]
[91]
Chen, C.J.; Chan, C.H.; Lin, K.L.; Chen, J.H.; Tseng, C.H.; Wang, P.Y.; Chien, C.Y.; Yu, H.M.; Lin, W.J. 68Ga-labelled NOTA-RGD-GE11 peptide for dual integrin and EGFR-targeted tumour imaging. Nucl. Med. Biol., 2019, 68-69, 22-30.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.11.003] [PMID: 30578136]
[92]
Striese, F.; Sihver, W.; Gao, F.; Bergmann, R.; Walther, M.; Pietzsch, J.; Steinbach, J.; Pietzsch, H.J. Exploring pitfalls of 64Cu-labeled EGFR-targeting peptide GE11 as a potential PET tracer. Amino Acids, 2018, 50(10), 1415-1431.
[http://dx.doi.org/10.1007/s00726-018-2616-5] [PMID: 30039310]
[93]
Kumar, S.R.; Quinn, T.P.; Deutscher, S.L. Evaluation of an 111In-radiolabeled peptide as a targeting and imaging agent for ErbB-2 receptor expressing breast carcinomas. Clin. Cancer Res., 2007, 13(20), 6070-6079.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0160] [PMID: 17947470]
[94]
Kumar, S.R.; Gallazzi, F.A.; Ferdani, R.; Anderson, C.J.; Quinn, T.P.; Deutscher, S.L. In vitro and in vivo evaluation of 6 4Cu-radiolabeled KCCYSL peptides for targeting epidermal growth factor receptor-2 in breast carcinomas. Cancer Biother. Radiopharm., 2010, 25(6), 693-703.
[http://dx.doi.org/10.1089/cbr.2010.0820] [PMID: 21204764]
[95]
Choi, K.J.; Baik, I.H.; Ye, S.K.; Lee, Y.H. Molecular targeted therapy for hepatocellular carcinoma: present status and future directions. Biol. Pharm. Bull., 2015, 38(7), 986-991.
[http://dx.doi.org/10.1248/bpb.b15-00231] [PMID: 26133708]
[96]
Bouattour, M.; Raymond, E.; Qin, S.; Cheng, A.L.; Stammberger, U.; Locatelli, G.; Faivre, S. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology, 2018, 67(3), 1132-1149.
[http://dx.doi.org/10.1002/hep.29496] [PMID: 28862760]
[97]
Ma, P.C.; Tretiakova, M.S.; MacKinnon, A.C.; Ramnath, N.; Johnson, C.; Dietrich, S.; Seiwert, T.; Christensen, J.G.; Jagadeeswaran, R.; Krausz, T.; Vokes, E.E.; Husain, A.N.; Salgia, R. Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer, 2008, 47(12), 1025-1037.
[http://dx.doi.org/10.1002/gcc.20604] [PMID: 18709663]
[98]
Okuma, H.S.; Kondo, S. Trends in the development of MET inhibitors for hepatocellular carcinoma. Future Oncol., 2016, 12(10), 1275-1286.
[http://dx.doi.org/10.2217/fon.16.3] [PMID: 26984595]
[99]
Qi, X.S.; Guo, X.Z.; Han, G.H.; Li, H.Y.; Chen, J. MET inhibitors for treatment of advanced hepatocellular carcinoma: A review. World J. Gastroenterol., 2015, 21(18), 5445-5453.
[http://dx.doi.org/10.3748/wjg.v21.i18.5445] [PMID: 25987766]
[100]
Giordano, S.; Columbano, A. Met as a therapeutic target in HCC: facts and hopes. J. Hepatol., 2014, 60(2), 442-452.
[http://dx.doi.org/10.1016/j.jhep.2013.09.009] [PMID: 24045150]
[101]
Goyal, L.; Muzumdar, M.D.; Zhu, A.X. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin. Cancer Res., 2013, 19(9), 2310-2318.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2791] [PMID: 23388504]
[102]
Fasolo, A.; Sessa, C.; Gianni, L.; Broggini, M. Seminars in clinical pharmacology: an introduction to MET inhibitors for the medical oncologist. Ann. Oncol., 2013, 24(1), 14-20.
[http://dx.doi.org/10.1093/annonc/mds520] [PMID: 23110808]
[103]
Trusolino, L.; Bertotti, A.; Comoglio, P.M. MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol., 2010, 11(12), 834-848.
[http://dx.doi.org/10.1038/nrm3012] [PMID: 21102609]
[104]
Jagoda, E.M.; Lang, L.; Bhadrasetty, V.; Histed, S.; Williams, M.; Kramer-Marek, G.; Mena, E.; Rosenblum, L.; Marik, J.; Tinianow, J.N.; Merchant, M.; Szajek, L.; Paik, C.; Cecchi, F.; Raffensperger, K.; Jose-Dizon, J.M.; Bottaro, D.P.; Choyke, P. Immuno-PET of the hepatocyte growth factor receptor Met using the 1-armed antibody onartuzumab. J. Nucl. Med., 2012, 53(10), 1592-1600.
[http://dx.doi.org/10.2967/jnumed.111.102293] [PMID: 22917884]
[105]
Terwisscha van Scheltinga, A.G.; Lub-de Hooge, M.N.; Hinner, M.J.; Verheijen, R.B.; Allersdorfer, A.; Hulsmeyer, M.; Nagengast, W.B.; Schroder, C.P.; Kosterink, J.G.; de Vries, E.G.; Audoly, L.; Olwill, S.A. In vivo visualization of MET tumor expression and an-ticalin biodistribution with the MET-specific anticalin 89Zr-PRS-110 PET tracer. J. Nucl. Med., 2014, 55(4), 665-671.
[http://dx.doi.org/10.2967/jnumed.113.124941] [PMID: 24614223]
[106]
Zhao, P.; Grabinski, T.; Gao, C.; Skinner, R.S.; Giambernardi, T.; Su, Y.; Hudson, E.; Resau, J.; Gross, M.; Vande Woude, G.F.; Hay, R.; Cao, B. Identification of a met-binding peptide from a phage display library. Clin. Cancer Res., 2007, 13(20), 6049-6055.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0035 ] [PMID: 17947467]
[107]
Li, W.; Zheng, H.; Xu, J.; Cao, S.; Xu, X.; Xiao, P. Imaging c-Met expression using 18F-labeled binding peptide in human cancer xenografts. PLoS One, 2018, 13(6)e0199024
[http://dx.doi.org/10.1371/journal.pone.0199024] [PMID: 29894497]
[108]
Arulappu, A.; Battle, M.; Eisenblaetter, M.; McRobbie, G.; Khan, I.; Monypenny, J.; Weitsman, G.; Galazi, M.; Hoppmann, S.; Gazinska, P.; Wulaningsih, W.; Dalsgaard, G.T.; Macholl, S.; Ng, T. c-Met PET imaging detects early-stage locoregional recurrence of basal-like breast cancer. J. Nucl. Med., 2016, 57(5), 765-770.
[http://dx.doi.org/10.2967/jnumed.115.164384] [PMID: 26635342]
[109]
Kim, K.; Hur, Y.; Ryu, E.K.; Rhim, J.H.; Choi, C.Y.; Baek, C.M.; Lee, J.H.; Chung, J. A neutralizable epitope is induced on HGF upon its interaction with its receptor cMet. Biochem. Biophys. Res. Commun., 2007, 354(1), 115-121.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.164] [PMID: 17214965]
[110]
Kim, E.M.; Park, E.H.; Cheong, S.J.; Lee, C.M.; Jeong, H.J.; Kim, D.W.; Lim, S.T.; Sohn, M.H. In vivo imaging of mesenchymal-epithelial transition factor (c-Met) expression using an optical imaging system. Bioconjug. Chem., 2009, 20(7), 1299-1306.
[http://dx.doi.org/10.1021/bc8005539] [PMID: 19534520]
[111]
Kim, E.M.; Joung, M.H.; Lee, C.M.; Jeong, H.J.; Lim, S.T.; Sohn, M.H.; Kim, D.W. Synthesis of Tc-99m labeled 1,2,3-triazole-4-yl c-met binding peptide as a potential c-met receptor kinase positive tumor imaging agent. Bioorg. Med. Chem. Lett., 2010, 20(14), 4240-4243.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.036] [PMID: 20538463]
[112]
Han, Z.; Xiao, Y.; Wang, K.; Yan, J.; Xiao, Z.; Fang, F.; Jin, Z.; Liu, Y.; Sun, X.; Shen, B. Development of a SPECT tracer to image c-Met expression in a xenograft model of non-small cell lung cancer. J. Nucl. Med., 2018, 59(11), 1686-1691.
[http://dx.doi.org/10.2967/jnumed.117.206730] [PMID: 29777004]
[113]
Katsila, T.; Siskos, A.P.; Tamvakopoulos, C. Peptide and protein drugs: the study of their metabolism and catabolism by mass spec-trometry. Mass Spectrom. Rev., 2012, 31(1), 110-133.
[http://dx.doi.org/10.1002/mas.20340] [PMID: 21698655]
[114]
Ebenhan, T.; Schoeman, I.; Rossouw, D.D.; Grobler, A.; Marjanovic-Painter, B.; Wagener, J.; Kruger, H.G.; Sathekge, M.M.; Zeevaart, J.R. Evaluation of a flexible NOTA-RGD kit solution using Gallium-68 from different 68Ge/68Ga-Generators: pharmacokinetics and biodistribution in nonhuman primates and demonstration of solitary pulmonary nodule imaging in humans. Mol. Imaging Biol., 2017, 19(3), 469-482.
[http://dx.doi.org/10.1007/s11307-016-1014-1] [PMID: 27743211]
[115]
Burggraaf, J.; Kamerling, I.M.; Gordon, P.B.; Schrier, L.; de Kam, M.L.; Kales, A.J.; Bendiksen, R.; Indrevoll, B.; Bjerke, R.M.; Moestue, S.A.; Yazdanfar, S.; Langers, A.M.; Swaerd-Nordmo, M.; Torheim, G.; Warren, M.V.; Morreau, H.; Voorneveld, P.W.; Buckle, T.; van Leeuwen, F.W.; Ødegårdstuen, L.I.; Dalsgaard, G.T.; Healey, A.; Hardwick, J.C. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat. Med., 2015, 21(8), 955-961.
[http://dx.doi.org/10.1038/nm.3641] [PMID: 26168295]
[116]
Greten, T.F.; Korangy, F.; Manns, M.P.; Malek, N.P. Molecular therapy for the treatment of hepatocellular carcinoma. Br. J. Cancer, 2009, 100(1), 19-23.
[http://dx.doi.org/10.1038/sj.bjc.6604784] [PMID: 19018262]
[117]
Chuma, M.; Terashita, K.; Sakamoto, N. New molecularly targeted therapies against advanced hepatocellular carcinoma: from molecular pathogenesis to clinical trials and future directions. Hepatol. Res., 2015, 45(10), E1-E11.
[http://dx.doi.org/10.1111/hepr.12459] [PMID: 25472913]
[118]
Lee, Y.H.; Seo, D.; Choi, K.J.; Andersen, J.B.; Won, M.A.; Kitade, M.; Gómez-Quiroz, L.E.; Judge, A.D.; Marquardt, J.U.; Raggi, C.; Conner, E.A.; MacLachlan, I.; Factor, V.M.; Thorgeirsson, S.S. Antitumor effects in hepatocarcinoma of isoform-selective inhibition of HDAC2. Cancer Res., 2014, 74(17), 4752-4761.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3531] [PMID: 24958469]
[119]
Jain, R.K.; Tong, R.T.; Munn, L.L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res., 2007, 67(6), 2729-2735.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4102] [PMID: 17363594]
[120]
Lichtenberger, B.M.; Tan, P.K.; Niederleithner, H.; Ferrara, N.; Petzelbauer, P.; Sibilia, M. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell, 2010, 140(2), 268-279.
[http://dx.doi.org/10.1016/j.cell.2009.12.046] [PMID: 20141840]
[121]
Fukumura, D.; Xu, L.; Chen, Y.; Gohongi, T.; Seed, B.; Jain, R.K. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res., 2001, 61(16), 6020-6024.
[PMID: 11507045]
[122]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[123]
Dvorak, H.F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol., 2002, 20(21), 4368-4380.
[http://dx.doi.org/10.1200/JCO.2002.10.088] [PMID: 12409337]
[124]
Fukumura, D.; Kashiwagi, S.; Jain, R.K. The role of nitric oxide in tumour progression. Nat. Rev. Cancer, 2006, 6(7), 521-534.
[http://dx.doi.org/10.1038/nrc1910] [PMID: 16794635]
[125]
Fan, F.; Wey, J.S.; McCarty, M.F.; Belcheva, A.; Liu, W.; Bauer, T.W.; Somcio, R.J.; Wu, Y.; Hooper, A.; Hicklin, D.J.; Ellis, L.M. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene, 2005, 24(16), 2647-2653.
[http://dx.doi.org/10.1038/sj.onc.1208246] [PMID: 15735759]
[126]
Wu, Y.; Hooper, A.T.; Zhong, Z.; Witte, L.; Bohlen, P.; Rafii, S.; Hicklin, D.J. The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. Int. J. Cancer, 2006, 119(7), 1519-1529.
[http://dx.doi.org/10.1002/ijc.21865] [PMID: 16671089]
[127]
Carrillo de Santa Pau, E.; Arias, F.C.; Caso Peláez, E.; Muñoz Molina, G.M.; Sánchez Hernández, I.; Muguruza Trueba, I.; Moreno Balsalobre, R.; Sacristán López, S.; Gómez Pinillos, A.; del Val Toledo Lobo, M. Prognostic significance of the expression of vascular endothelial growth factors A, B, C, and D and their receptors R1, R2, and R3 in patients with nonsmall cell lung cancer. Cancer, 2009, 115(8), 1701-1712.
[http://dx.doi.org/10.1002/cncr.24193] [PMID: 19197998]
[128]
Wey, J.S.; Fan, F.; Gray, M.J.; Bauer, T.W.; McCarty, M.F.; Somcio, R.; Liu, W.; Evans, D.B.; Wu, Y.; Hicklin, D.J.; Ellis, L.M. Vascular endothelial growth factor receptor-1 promotes migration and invasion in pancreatic carcinoma cell lines. Cancer, 2005, 104(2), 427-438.
[http://dx.doi.org/10.1002/cncr.21145] [PMID: 15952180]
[129]
Giordano, R.J.; Cardó-Vila, M.; Salameh, A.; Anobom, C.D.; Zeitlin, B.D.; Hawke, D.H.; Valente, A.P.; Almeida, F.C.; Nör, J.E.; Sidman, R.L.; Pasqualini, R.; Arap, W. From combinatorial peptide selection to drug prototype (I): targeting the vascular endothelial growth factor receptor pathway. Proc. Natl. Acad. Sci. USA, 2010, 107(11), 5112-5117.
[http://dx.doi.org/10.1073/pnas.0915141107] [PMID: 20190181]
[130]
Rezazadeh, F.; Sadeghzadeh, N.; Abedi, S.M.; Abediankenari, S. 99mTc labeled D(LPR): A novel retro-inverso peptide for VEGF re-ceptor-1 targeted tumor imaging. Nucl. Med. Biol., 2018, 62-63, 54-62.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.05.005] [PMID: 29885559]
[131]
Pallai, P.V.; Richman, S.; Struthers, R.S.; Goodman, M. Approaches to the synthesis of retro-inverso peptides. Int. J. Pept. Protein Res., 1983, 21(1), 84-92.
[http://dx.doi.org/10.1111/j.1399-3011.1983.tb03081.x] [PMID: 6826285]
[132]
Chorev, M. The partial retro-inverso modification: a road traveled together. Biopolymers, 2005, 80(2-3), 67-84.
[http://dx.doi.org/10.1002/bip.20219] [PMID: 15729688]
[133]
Ma, Y.; Liang, S.; Guo, J.; Guo, R.; Wang, H. (18) F labeled RGD-A7R peptide for dual integrin and VEGF-targeted tumor imaging in mice bearing U87MG tumors. J. Labelled Comp. Radiopharm., 2014, 57(11), 627-631.
[http://dx.doi.org/10.1002/jlcr.3222] [PMID: 25294311]
[134]
Lo, A.; Lin, C.T.; Wu, H.C. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol. Cancer Ther., 2008, 7(3), 579-589.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2359] [PMID: 18347144]
[135]
Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Durfee, P.N.; Buley, M.D.; Lino, C.A.; Padilla, D.P.; Phillips, B.; Carter, M.B.; Willman, C.L.; Brinker, C.J. Caldeira, Jdo.C.; Chackerian, B.; Wharton, W.; Peabody, D.S. Cell-specific delivery of diverse cargos by bacteri-ophage MS2 virus-like particles. ACS Nano, 2011, 5(7), 5729-5745.
[http://dx.doi.org/10.1021/nn201397z] [PMID: 21615170]
[136]
Li, Y.; Hu, Y.; Xiao, J.; Liu, G.; Li, X.; Zhao, Y.; Tan, H.; Shi, H.; Cheng, D. Investigation of SP94 peptide as a specific probe for hepatocellular carcinoma imaging and therapy. Sci. Rep., 2016, 6, 33511.
[http://dx.doi.org/10.1038/srep33511] [PMID: 27649935]
[137]
Du, Y.Z.; Cai, L.L.; Liu, P.; You, J.; Yuan, H.; Hu, F.Q. Tumor cells-specific targeting delivery achieved by A54 peptide functionalized polymeric micelles. Biomaterials, 2012, 33(34), 8858-8867.
[http://dx.doi.org/10.1016/j.biomaterials.2012.08.043] [PMID: 22959183]
[138]
Gan, Z.F.; Jiang, J.S.; Yang, Y.; Du, B.; Qian, M.; Zhang, P. Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J. Biomed. Mater. Res. A, 2008, 84(1), 10-18.
[http://dx.doi.org/10.1002/jbm.a.31181] [PMID: 17600321]
[139]
Yang, Y.; Jiang, J.S.; Du, B.; Gan, Z.F.; Qian, M.; Zhang, P. Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting. J. Mater. Sci. Mater. Med., 2009, 20(1), 301-307.
[http://dx.doi.org/10.1007/s10856-008-3577-0] [PMID: 18791664]
[140]
Du, B.; Han, H.; Wang, Z.; Kuang, L.; Wang, L.; Yu, L.; Wu, M.; Zhou, Z.; Qian, M. targeted drug delivery to hepatocarcinoma in vivo by phage-displayed specific binding peptide. Mol. Cancer Res., 2010, 8(2), 135-144.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0339] [PMID: 20145035]
[141]
Jing, R.; Zhou, X.; Zhao, J.; Wei, Y.; Zuo, B.; You, A.; Rao, Q.; Gao, X.; Yang, R.; Chen, L.; Lu, Z.; Zhou, Q.; Zhang, N.; Yin, H. Fluorescent peptide highlights micronodules in murine hepatocellular carcinoma models and humans in vitro. Hepatology, 2018, 68(4), 1391-1411.
[http://dx.doi.org/10.1002/hep.29829] [PMID: 29405333]
[142]
Ma, Y.; Yang, M.; Gao, H.; Niu, G.; Yan, Y.; Lang, L.; Kiesewetter, D.O.; Chen, X. Evaluation of fluorine-labeled gastrin-releasing peptide receptor (GRPR) agonists and antagonists by LC/MS. Amino Acids, 2012, 43(4), 1625-1632.
[http://dx.doi.org/10.1007/s00726-012-1238-6] [PMID: 22354143]
[143]
Niedermoser, S.; Chin, J.; Wangler, C.; Kostikov, A.; Bernard-Gauthier, V.; Vogler, N.; Soucy, J.P.; McEwan, A.J.; Schirrmacher, R.; Wangler, B. In vivo evaluation of (1)(8)F-SiFAlin-modified TATE: a potential challenge for (6)(8)Ga-DOTATATE, the clinical Gold standard for somatostatin receptor imaging with PET. J. Nucl. Med., 2015, 56(7), 1100-1105.
[http://dx.doi.org/10.2967/jnumed.114.149583] [PMID: 25977461]
[144]
Hosseinimehr, S.J.; Tolmachev, V.; Orlova, A. Liver uptake of radiolabeled targeting proteins and peptides: considerations for targeting peptide conjugate design. Drug Discov. Today, 2012, 17(21-22), 1224-1232.
[http://dx.doi.org/10.1016/j.drudis.2012.07.002] [PMID: 22781499]
[145]
Fani, M.; Maecke, H.R.; Okarvi, S.M. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics, 2012, 2(5), 481-501.
[http://dx.doi.org/10.7150/thno.4024] [PMID: 22737187]
[146]
Al-Nahhas, A.; Win, Z.; Szyszko, T.; Singh, A.; Nanni, C.; Fanti, S.; Rubello, D. Gallium-68 PET: a new frontier in receptor cancer imaging. Anticancer Res., 2007, 27(6B), 4087-4094.
[PMID: 18225576]
[147]
Chen, K.; Conti, P.S. Target-specific delivery of peptide-based probes for PET imaging. Adv. Drug Deliv. Rev., 2010, 62(11), 1005-1022.
[http://dx.doi.org/10.1016/j.addr.2010.09.004] [PMID: 20851156]
[148]
Shah, M.; Da Silva, R.; Gravekamp, C.; Libutti, S.K.; Abraham, T.; Dadachova, E. Targeted radionuclide therapies for pancreatic cancer. Cancer Gene Ther., 2015, 22(8), 375-379.
[http://dx.doi.org/10.1038/cgt.2015.32] [PMID: 26227823]
[149]
Jin, Y.; Wang, K.; Tian, J. Preoperative examination and intraoperative identification of hepatocellular carcinoma using a targeted bimodal imaging probe. Bioconjug. Chem., 2018, 29(4), 1475-1484.
[http://dx.doi.org/10.1038/cgt.2015.32] [PMID: 26227823]