Therapeutic Nanoemulsion: Concept to Delivery

Page: [1145 - 1166] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Nanoemulsions (NEs) or nanometric-scaled emulsions are transparent or translucent, optically isotropic and kinetically stable heterogeneous system of two different immiscible liquids namely, water and oil stabilized with an amphiphilic surfactant having droplet size ranges up to 100 nm. They offer a variety of potential interests for certain applications: improved deep-rooted stability; excellent optical clarity; and, enhanced bioavailability due to its nanoscale of particles. Though there is still comparatively narrow insight apropos design, development, and optimization of NEs, which mainly stems from the fact that conventional characteristics of emulsion development and stabilization only partly apply to NEs. The contemporary article focuses on the nanoemulsion dosage form journey from concept to key application in drug delivery. In addition, industrial scalability of the nanoemulsion, as well as its presence in commercial and clinical practice, are also addressed.

Keywords: Nanoemulsions, Nanometric-scaled emulsions, kinetically stable, Bioavailability, Drug delivery, amphiphilic surfactant.

[1]
Silva DG, Sarruf FD, Oliveira LCDD, et al. Influence of particle size on appearance and in vitro efficacy of sunscreens. Braz J Pharm Sci 2013; 49(2): 251-61.
[http://dx.doi.org/10.1590/S1984-82502013000200007]
[2]
Barkat MA, Harshita , Ahmad I, et al. Nanosuspension-based aloe vera gel of silver sulfadiazine with improved wound healing activity. AAPS PharmSciTech 2017; 18(8): 3274-85.
[http://dx.doi.org/10.1208/s12249-017-0817-y] [PMID: 28584900]
[3]
Puglia C, Blasi P, Rizza L, et al. Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm 2008; 357(1-2): 295-304.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.045] [PMID: 18343059]
[4]
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 2018; 270(270): 203-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[5]
Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: formation, structure, and physical properties. J. Phys-condens. Mat 2006; 18(41): R635-66.
[6]
Singh TG, Sharma S. Nanobiomaterials in cosmetics: current status and future prospects. In: nanobiomaterials in galenic formulations and cosmetics: applications of nanobiomaterials; Elsevier B.V: UK. 2016: 149-174.
[7]
Date AA, Patravale VB. Current strategies for engineering drug nanoparticles. Curr Opin Colloid Interface Sci 2004; 9: 222-35.
[http://dx.doi.org/10.1016/j.cocis.2004.06.009]
[8]
Sintov AC, Shapiro L. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J Control Release 2004; 95(2): 173-83.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.004] [PMID: 14980766]
[9]
Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter 2016; 12(11): 2826-41.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[10]
Ganta S, Talekar M, Singh A, Coleman TP, Amiji MM. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech 2014; 15(3): 694-708.
[http://dx.doi.org/10.1208/s12249-014-0088-9] [PMID: 24510526]
[11]
Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 2009; 372(1-2): 105-11.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.029] [PMID: 19162149]
[12]
Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nanoemulsions. Curr Opin Colloid Interface Sci 2005; 10(3-4): 102-10.
[http://dx.doi.org/10.1016/j.cocis.2005.06.004]
[13]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252(252): 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[14]
Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interface Sci 2004; 108-109: 303-18.
[http://dx.doi.org/10.1016/j.cis.2003.10.023] [PMID: 15072948]
[15]
Morales D, Gutierrez JM, Garcia-Celma MJ, Solans YC. A study of the relation between bicontinuous nanoemulsions and oil/water nanoemulsion formation. Langmuir 2003; 19: 7196-200.
[http://dx.doi.org/10.1021/la0300737]
[16]
Forgiarini A, Esquena J, González C, Solans C. Formation of nanoemulsions by low-energy emulsification methods at constant temperature. Langmuir 2001; 17: 2076-83.
[http://dx.doi.org/10.1021/la001362n]
[17]
Uson N, Garcia MJ, Solans C. Formation of water-in-oil (W/O) Nanoemulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids Surf A Physicochem Eng Asp 2004; 250: 415-21.
[http://dx.doi.org/10.1016/j.colsurfa.2004.03.039]
[18]
Nicolaos G, Crauste-Manciet S, Farinotti R, Brossard D. Improvement of cefpodoxime proxetil oral absorption in rats by an oil-in-water submicron emulsion. Int J Pharm 2003; 263(1-2): 165-71.
[http://dx.doi.org/10.1016/S0378-5173(03)00365-X] [PMID: 12954191]
[19]
Puglia C, Rizza L, Drechsler M, Bonina F. Nanoemulsions as vehicles for topical administration of glycyrrhetic acid: characterization and in vitro and in vivo evaluation. Drug Deliv 2010; 17(3): 123-9.
[http://dx.doi.org/10.3109/10717540903581679] [PMID: 20136625]
[20]
Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates-a review. J Control Release 2008; 128(3): 185-99.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.007] [PMID: 18374443]
[21]
Kawakami K, Yoshikawa T, Hayashi T, Nishihara Y, Masuda K. Microemulsion formulation for enhanced absorption of poorly soluble drugs. II. In vivo study. J Control Release 2002; 81(1-2): 75-82.
[http://dx.doi.org/10.1016/S0168-3659(02)00050-0] [PMID: 11992680]
[22]
Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res 1995; 12(11): 1561-72.
[http://dx.doi.org/10.1023/A:1016268311867] [PMID: 8592652]
[23]
Li J, Nie S, Yang X, Wang C, Cui S, Pan W. Optimization of tocol emulsions for the intravenous delivery of clarithromycin. Int J Pharm 2008; 356(1-2): 282-90.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.046] [PMID: 18289806]
[24]
Bielinska AU, Janczak KW, Landers JJ, et al. Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect Immun 2007; 75(8): 4020-9.
[http://dx.doi.org/10.1128/IAI.00070-07] [PMID: 17502384]
[25]
Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 2007; 66(2): 227-43.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.014] [PMID: 17127045]
[26]
Bali V, Ali M, Ali J. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surf B Biointerfaces 2010; 76(2): 410-20.
[http://dx.doi.org/10.1016/j.colsurfb.2009.11.021] [PMID: 20042320]
[27]
Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem 2008; 108(2): 419-24.
[http://dx.doi.org/10.1016/j.foodchem.2007.10.086] [PMID: 26059118]
[28]
McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 2012; 8: 1719-29.
[http://dx.doi.org/10.1039/C2SM06903B]
[29]
Delmas T, Piraux H, Couffin AC, et al. How to prepare and stabilize very small nanoemulsions. Langmuir 2011; 27(5): 1683-92.
[http://dx.doi.org/10.1021/la104221q] [PMID: 21226496]
[30]
Shinoda K, Saito H. The Stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method. J Colloid Interface Sci 1969; 30(2): 258-63.
[http://dx.doi.org/10.1016/S0021-9797(69)80012-3]
[31]
Russel WB, Saville DA, Schowalter WR. Colloidal Dispersions. 1st ed. New York: Cambridge University Press 1989.
[http://dx.doi.org/10.1017/CBO9780511608810]
[32]
Amanullah M, Al-Tahini AM. Nano-Technology-Its Significance in Smart Fluid Development for Oil and Gas Field Application. Soc Petro Engin 2009. In press
[http://dx.doi.org/10.2118/126102-MS]
[33]
Salvia-Trujillo L, Martín-Belloso O, McClements DJ. Excipient nanoemulsions for improving oral bioavailability of bioactives. Nanomaterials (Basel) 2016; 6(1): 17.
[http://dx.doi.org/10.3390/nano6010017] [PMID: 28344274]
[34]
Meleson K, Graves S, Mason TG. Formation of concentrated Nanoemulsions by extreme shear. Soft Matter 2004; 2: 109.
[http://dx.doi.org/10.1081/SMTS-200056102]
[35]
Webster AJ, Cates ME. Osmotic stabilization of concentrated emulsions and foams. Langmuir 2001; 17: 595.
[http://dx.doi.org/10.1021/la000699m]
[36]
Tlusty T, Safran SA. Microemulsion networks: the onset of bicontinuity. J Phys Condens Matter 2000; 12: A253.
[http://dx.doi.org/10.1088/0953-8984/12/8A/332]
[37]
Koroleva MY, Yurtov EV. Nanoemulsions: the properties, methods of preparation and promising applications. Russ Chem Rev 2012; 81(1): 21-43.
[http://dx.doi.org/10.1070/RC2012v081n01ABEH004219]
[38]
Tadros TF. Emulsion Formation, Stability, and Rheology. Weinheim: John Wiley, Sons 2013.
[http://dx.doi.org/10.1002/9783527647941]
[39]
Maali A. HamedMosavian MT. Preparation and Application of Nanoemulsions in the Last Decade (2000-2010). J Dispers Sci Technol 2013; 34(1): 92-105.
[http://dx.doi.org/10.1080/01932691.2011.648498]
[40]
Eicke HF. Interfacial Phenomena in Apolar Media CRC Press. New York: Marcel Dekker Basel 1986.
[41]
Rusanov AI, Shchukin ED, Rehbinder PA. On the dispersion therory. 1. Thermodynamics of monodisperse systems. Colloid J 1968; 30: 428.
[42]
Yushchenko VS, Yaminsky VV, Shchukin ED. Interaction between particles in a non-wetting liquid. J Colloid Interface Sci 1983; 96(2): 307-14.
[http://dx.doi.org/10.1016/0021-9797(83)90035-8]
[43]
Tadros TF. Applied Surfactants: Principles and Applications. Weinheim: Wiley-VCH 2005.
[http://dx.doi.org/10.1002/3527604812]
[44]
Taylor P. Ostwald ripening in emulsions: estimation of solution thermodynamics of the disperse phase. Adv Colloid Interface Sci 2003; 106(1-3): 261-85.
[http://dx.doi.org/10.1016/S0001-8686(03)00113-1] [PMID: 14672850]
[45]
Kim SH, Ji YS, Lee ES, Hong ST. Ostwald ripening stability of curcumin-loaded mct nanoemulsion: influence of various emulsifiers. Prev Nutr Food Sci 2016; 21(3): 289-95.
[http://dx.doi.org/10.3746/pnf.2016.21.3.289] [PMID: 27752506]
[46]
Higuchi WI, Misra J. Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof. J Pharm Sci 1962; 51(5): 459-66.
[http://dx.doi.org/10.1002/jps.2600510514] [PMID: 13907271]
[47]
Azeem A, Rizwan M, Ahmad FJ, et al. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech 2009; 10(1): 69-76.
[http://dx.doi.org/10.1208/s12249-008-9178-x] [PMID: 19148761]
[48]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2000; 45(1): 89-121.
[http://dx.doi.org/10.1016/S0169-409X(00)00103-4] [PMID: 11104900]
[49]
Pawar VK, Panchal SB, Singh Y, et al. Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response. J Control Release 2014; 196: 295-306.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.010] [PMID: 25459427]
[50]
Ozturk B, Argin S, Ozilgen M, McClements DJ. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chem 2015; 188: 256-63.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.005] [PMID: 26041190]
[51]
Morais Diane JM, Burgess J. Vitamin E nanoemulsions characterization and analysis. Int J Pharm 2014; 465(1-2): 455-63.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.034] [PMID: 24560639]
[52]
Ali MS, Alam MS, Alam N, Siddiqui MR. Preparation, characterization and stability study of dutasteride loaded nanoemulsion for treatment of benign prostatic hypertrophy. Iran J Pharm Res 2014; 13(4): 1125-40.
[PMID: 25587300]
[53]
Sharif Makhmalzadeh B, Torabi S, Azarpanah A. Optimization of ibuprofen delivery through rat skin from traditional and novel nanoemulsion formulations. Iran J Pharm Res 2012; 11(1): 47-58.
[PMID: 25317184]
[54]
Belhaj N, Arab-Tehrany E, Linder M. Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochem 2010; 45: 187-95.
[http://dx.doi.org/10.1016/j.procbio.2009.09.005]
[55]
McClements DJ, Xiao H. Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct 2012; 3(3): 202-20.
[http://dx.doi.org/10.1039/C1FO10193E] [PMID: 22105669]
[56]
Narang AS, Delmarre D, Gao D. Stable drug encapsulation in micelles and microemulsions. Int J Pharm 2007; 345(1-2): 9-25.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.057] [PMID: 17945446]
[57]
Karim A, Gokhale R, Cole M, et al. HIV protease inhibitor SC-52151: a novel method of optimizing bioavailability profile via a microemulsion drug delivery system. Pharm Res 1994; 11: S368.
[58]
Li W, Chen H, He Z, Han C, Liu S, Li Y. Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions. Lebensm Wiss Technol 2015; 62: 39-47.
[http://dx.doi.org/10.1016/j.lwt.2015.01.012]
[59]
Buranasuksombat U, Kwon YJ, Turner M, Bhandari B. Influence of emulsion droplet size on antimicrobial properties. Food Sci Biotechnol 2011; 20: 793-800.
[http://dx.doi.org/10.1007/s10068-011-0110-x]
[60]
Hak S, Garaiova Z, Olsen LT, Nilsen AM, de Lange Davies C. The effects of oil-in-water nanoemulsion polyethylene glycol surface density on intracellular stability, pharmacokinetics, and biodistribution in tumor bearing mice. Pharm Res 2015; 32(4): 1475-85.
[http://dx.doi.org/10.1007/s11095-014-1553-6] [PMID: 25348468]
[61]
Emanuele M, Balasubramaniam B. Differential effects of commercial-grade and purified poloxamer 188 on renal function. Drugs R D 2014; 14(2): 73-83.
[http://dx.doi.org/10.1007/s40268-014-0041-0] [PMID: 24723148]
[62]
Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 2009; 138(3): 268-76.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.026] [PMID: 19477208]
[63]
Zhang Y, Shang Z, Gao C, et al. Nanoemulsion for solubilization, stabilization, and in vitro release of pterostilbene for oral delivery. AAPS PharmSciTech 2014; 15(4): 1000-8.
[http://dx.doi.org/10.1208/s12249-014-0129-4] [PMID: 24831090]
[64]
Kommuru TR, Gurley B, Khan MA, Reddy IK. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm 2001; 212(2): 233-46.
[http://dx.doi.org/10.1016/S0378-5173(00)00614-1] [PMID: 11165081]
[65]
Kreilgaard M, Pedersen EJ, Jaroszewski JW. NMR characterisation and transdermal drug delivery potential of microemulsion systems. J Control Release 2000; 69(3): 421-33.
[http://dx.doi.org/10.1016/S0168-3659(00)00325-4] [PMID: 11102682]
[66]
Tenjarla S. Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 1999; 16(5): 461-521.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v16.i5.20] [PMID: 10635455]
[67]
Sinko PJ, Allen LV Jr, Popovich NG, Ansel HC. Martin’s physical pharmacy and pharmaceutical sciences. Philadelphia, PA: Lippincott Williams & Wilkins 2006.
[68]
Lante A, Friso D. Oxidative stability and rheological properties of nanoemulsions with ultrasonic extracted green tea infusion. Food Res Int 2013; 54: 269-76.
[http://dx.doi.org/10.1016/j.foodres.2013.07.009]
[69]
Attwood D. MicroemulsionsColloidal drug delivery systems. New York: Marcel Dekker 1994; pp. 31-71.
[70]
Ravi TPU, Padma T. Nanoemulsions for drug delivery through different routes. Research in Biotechnol 2011; 2(3): 1-13.
[71]
Anton N, Vandamme TF. The universality of low-energy nano-emulsification. Int J Pharm 2009; 377(1-2): 142-7.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.014] [PMID: 19454306]
[72]
Mason TG, Graves SM, Wilking JN, Lin MY. Extreme emulsification: formation and structure of Nanoemulsions. J Phys Condens Matter 2006; 9(1): 193-9.
[http://dx.doi.org/10.5488/CMP.9.1.193]
[73]
Yukuyama MN, Ghisleni DD, Pinto TJ, Bou-Chacra NA. Nanoemulsion: process selection and application in cosmetics--a review. Int J Cosmet Sci 2016; 38(1): 13-24.
[http://dx.doi.org/10.1111/ics.12260] [PMID: 26171789]
[74]
Solans C, Sole I. Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci 2012; 17: 246-54.
[http://dx.doi.org/10.1016/j.cocis.2012.07.003]
[75]
Lamaallam S, Bataller H, Dicharry C, Lachaise J. Formation and stability of miniemulsions produced by dispersion of water/oil/surfactants concentrates in a large amount of water. Colloids Surf A Physicochem Eng Asp 2005; 270-271(1-3): 44-51.
[http://dx.doi.org/10.1016/j.colsurfa.2005.05.035]
[76]
Solans C, Esquena J, Forgiarini AM, Uson N, Morales D, Izquierdo P. Nanoemulsions: formation and propertiesSurfactants in solution: fundamentals and applications. New York: Marcel Dekker 2003; pp. 525-54.
[77]
Izquierdo P, Feng J, Esquena J, et al. The influence of surfactant mixing ratio on nano-emulsion formation by the pit method. J Colloid Interface Sci 2005; 285(1): 388-94.
[http://dx.doi.org/10.1016/j.jcis.2004.10.047] [PMID: 15797437]
[78]
Shinoda K, Saito H. The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and non‐ ionic surfactant. J Colloid Interface Sci 1968; 26(1): 70-4.
[http://dx.doi.org/10.1016/0021-9797(68)90273-7]
[79]
Pey CM, Maestro A, Solé I, González C, Solans C, Gutiérrez JM. Optimization of Nanoemulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids Surf A Physicochem Eng Asp 2006; 288(1-3): 144-50.
[http://dx.doi.org/10.1016/j.colsurfa.2006.02.026]
[80]
Porras M, Solans C, González C, Gutiérrez JM. Properties of water-in-oil (W/O) Nanoemulsions prepared by a low-energy emulsification method. Colloids Surf A Physicochem Eng Asp 2008; 324(1-3): 181-8.
[http://dx.doi.org/10.1016/j.colsurfa.2008.04.012]
[81]
Sonneville-Aubrun O, Simonnet JT, L’Alloret F. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci 2004; 108-109: 145-9.
[http://dx.doi.org/10.1016/j.cis.2003.10.026] [PMID: 15072937]
[82]
Wang L, Li X, Zhang G, Dong J, Eastoe J. Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 2007; 314(1): 230-5.
[http://dx.doi.org/10.1016/j.jcis.2007.04.079] [PMID: 17612555]
[83]
Sole I, Maestro A, Pey CM, Gonzalez C, Solans C, Gutierrez JM. Nanoemulsions preparation by low energy methods in an ionic surfactant system. Colloids Surf A Physicochem Eng Asp 2006; 288: 138-43.
[http://dx.doi.org/10.1016/j.colsurfa.2006.02.013]
[84]
Solè I, Pey CM, Maestro A, et al. Nano-emulsions prepared by the phase inversion composition method: preparation variables and scale up. J Colloid Interface Sci 2010; 344(2): 417-23.
[http://dx.doi.org/10.1016/j.jcis.2009.11.046] [PMID: 20129612]
[85]
Graves S, Meleson K, Wilking J, Lin MY, Mason TG. Structure of concentrated nanoemulsions. J Chem Phys 2005; 122(13)134703
[http://dx.doi.org/10.1063/1.1874952] [PMID: 15847485]
[86]
Jafari SM, He Y, Bhandari B. Optimization of NE production by microfluidization. Eur Food Res Technol 2007; 225(5-6): 733-41.
[http://dx.doi.org/10.1007/s00217-006-0476-9]
[87]
Pund S, Shete Y, Jagadale S. Multivariate analysis of physicochemical characteristics of lipid based nanoemulsifying cilostazol--quality by design. Colloids Surf B Biointerfaces 2014; 115: 29-36.
[http://dx.doi.org/10.1016/j.colsurfb.2013.11.019] [PMID: 24316585]
[88]
Patel V, Kukadiya H, Mashru R, Surti N, Mandal S. Development of microemulsion for solubility enhancement of clopidogrel. Iran J Pharm Res 2010; 9(4): 327-34.
[PMID: 24381597]
[89]
Zheng WW, Zhao L, Wei YM, Ye Y, Xiao SH. Preparation and the in vitro evaluation of nanoemulsion system for the transdermal delivery of granisetron hydrochloride. Chem Pharm Bull (Tokyo) 2010; 58(8): 1015-9.
[http://dx.doi.org/10.1248/cpb.58.1015] [PMID: 20686252]
[90]
Zhang Y, Gao J, Zheng H, Zhang R, Han Y. The preparation of 3,5-dihydroxy-4-isopropylstilbene nanoemulsion and in vitro release. Int J Nanomedicine 2011; 6: 649-57.
[http://dx.doi.org/10.2147/IJN.S17242] [PMID: 21674020]
[91]
Arora R, Aggarwal G, Harikumar SL, Kaur K. Nanoemulsion based hydrogel for enhanced transdermal delivery of ketoprofen. Adv Pharmaceu 2014; 2014: 12.
[http://dx.doi.org/10.1155/2014/468456]
[92]
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008; 76(5): 965-77.
[http://dx.doi.org/10.1016/j.talanta.2008.05.019] [PMID: 18761143]
[93]
Ryan TP. Response Surface Designs Modern Experimental Design. John Wiley & Sons. Inc. 2006; pp. 360-424.
[http://dx.doi.org/10.1002/9780470074350.ch10]
[94]
Boyd J, Parkinson C, Sherman P. Factors affecting emulsion stability, and the HLB concept. J Colloid Interface Sci 1972; 41: 359-70.
[http://dx.doi.org/10.1016/0021-9797(72)90122-1]
[95]
Yadav NP, Meher JG, Pandey N, Luqman S, Yadav KS, Chanda D. Enrichment, development, and assessment of Indian basil oil based antiseptic cream formulation utilizing hydrophilic-lipophilic balance approach. BioMed Res Int 2013; 2013410686
[http://dx.doi.org/10.1155/2013/410686] [PMID: 23984361]
[96]
Meher JG, Yadav NP, Sahu JJ, Sinha P. Determination of required hydrophilic-lipophilic balance of citronella oil and development of stable cream formulation. Drug Dev Ind Pharm 2013; 39(10): 1540-6.
[http://dx.doi.org/10.3109/03639045.2012.719902] [PMID: 23025241]
[97]
Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev 2015; 115(19): 10938-66.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[98]
Quin C, Mc Clement DJ. Formation of Nanoemulsions stabilized by model food grade emulsifiers using high pressure homogenization: factors affecting particle size. Food Hydrocoll 2011; 25(5): 1000-8.
[http://dx.doi.org/10.1016/j.foodhyd.2010.09.017]
[99]
Shakeel F, Baboota S, Ahuja A, Ali J, Faisal MS, Shafiq S. Stability evaluation of celecoxib NE containing Tween 80. Thaiphesatchasan 2008; 32: 4-9.
[100]
Shakeel F, Baboota S, Ahuja A, All J, Shafiq S. Skin permeation mechanism of aceclofenac using novel nanoemulsion formulation. Pharmazie 2008; 63(8): 580-4.
[PMID: 18771006]
[101]
Baboota S, Shakeel F, Ahuja A, Ali J, Shafiq S. Design, development and evaluation of novel NE formulations for transdermal potential of celecoxib. Acta Pharm 2007; 57(3): 315-32.
[http://dx.doi.org/10.2478/v10007-007-0025-5]
[102]
Haritha A, Syed PB, Koteswara RP, Chakravarthi V. A brief introduction to methods of preparation, applications and characterization of NE drug delivery systems. Indian J Res Pharm Biotechnol 2013; 1(1): 25-8.
[103]
Rutvij JP, Gunjan JP, Bharadia PD, Pandya VM, Modi DANE. An advanced concept of dosage form. Int. J Pharm. Cosmetol 2011; 1(5): 122-33.
[104]
Yashpal S, Tanuj H, Harsh K. Nanoemulsions: a pharmaceutical review. Int J Pharma Prof Res 2013; 4(2): 928-35.
[105]
Persson EM, Nilsson RG, Hansson GI, et al. A clinical single-pass perfusion investigation of the dynamic in vivo secretory response to a dietary meal in human proximal small intestine. Pharm Res 2006; 23(4): 742-51.
[http://dx.doi.org/10.1007/s11095-006-9607-z] [PMID: 16482422]
[106]
Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 2007; 6(3): 231-48.
[http://dx.doi.org/10.1038/nrd2197] [PMID: 17330072]
[107]
Collnot EM, Baldes C, Schaefer UF, Edgar KJ, Wempe MF, Lehr CM. Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharm 2010; 7(3): 642-51.
[http://dx.doi.org/10.1021/mp900191s] [PMID: 20205474]
[108]
Lin Y, Shen Q, Katsumi H, et al. Effects of Labrasol and other pharmaceutical excipients on the intestinal transport and absorption of rhodamine123, a P-glycoprotein substrate, in rats. Biol Pharm Bull 2007; 30(7): 1301-7.
[http://dx.doi.org/10.1248/bpb.30.1301] [PMID: 17603171]
[109]
Khandavilli S, Panchagnula R. Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Invest Dermatol 2007; 127(1): 154-62.
[http://dx.doi.org/10.1038/sj.jid.5700485] [PMID: 16858422]
[110]
Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 2009; 61(6): 428-37.
[http://dx.doi.org/10.1016/j.addr.2009.03.009] [PMID: 19376175]
[111]
Szebeni J, Alving CR, Rosivall L, et al. Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J Liposome Res 2007; 17(2): 107-17.
[http://dx.doi.org/10.1080/08982100701375118] [PMID: 17613700]
[112]
Baccarin T, Mitjans M, Lemos-SennaE, Vinardell MP. Protection against oxidative damage in human erythrocytes and preliminary photosafety assessment of Punica granatum seed oil nanoemulsions entrapping polyphenol-rich ethyl acetate fraction. Toxicology in vitro. Int J BIBRA 2015; 30: 421-8.
[113]
Li X, Du L, Wang C, Liu Y, Mei X, Jin Y. Highly efficient and lowly toxic docetaxel nanoemulsions for intravenous injection to animals. Pharmazie 2011; 66(7): 479-83.
[PMID: 21812321]
[114]
Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012; 14(2): 282-95.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[115]
Singh KK, Vingkar SK. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int J Pharm 2008; 347(1-2): 136-43.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.035] [PMID: 17709216]
[116]
Kuhn DA, Vanhecke D, Michen B, et al. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages 2014; 5: 1625-36..
[http://dx.doi.org/10.3762/bjnano.5.174]
[117]
Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Scie 2013; 8: 1-10.
[http://dx.doi.org/10.1016/j.ajps.2013.07.001]
[118]
Maranhão RC, Roland IA, Toffoletto O, et al. Plasma kinetic behavior in hyperlipidemic subjects of a lipidic microemulsion that binds to low density lipoprotein receptors. Lipids 1997; 32(6): 627-33.
[http://dx.doi.org/10.1007/s11745-997-0080-6] [PMID: 9208392]
[119]
Rodrigues DG, Maria DA, Fernandes DC, et al. Improvement of paclitaxel therapeutic index by derivatization and association to a cholesterol-rich microemulsion: in vitro and in vivo studies. Cancer Chemother Pharmacol 2005; 55(6): 565-76.
[http://dx.doi.org/10.1007/s00280-004-0930-y] [PMID: 15726368]
[120]
Valduga CJ, Fernandes DC, Lo Prete AC, Azevedo CH, Rodrigues DG, Maranhão RC. Use of a cholesterol-rich microemulsion that binds to low-density lipoprotein receptors as vehicle for etoposide. J Pharm Pharmacol 2003; 55(12): 1615-22.
[http://dx.doi.org/10.1211/0022357022232] [PMID: 14738586]
[121]
Maranhão RC, Graziani SR, Yamaguchi N, et al. Association of carmustine with a lipid emulsion: in vitro, in vivo and preliminary studies in cancer patients. Cancer Chemother Pharmacol 2002; 49(6): 487-98.
[http://dx.doi.org/10.1007/s00280-002-0437-3] [PMID: 12107554]
[122]
Ye J, Liu Y, Xia X, et al. Improved safety and efficacy of a lipid emulsion loaded with a paclitaxel-cholesterol complex for the treatment of breast tumors. Oncol Rep 2016; 36(1): 399-409.
[http://dx.doi.org/10.3892/or.2016.4787] [PMID: 27175803]
[123]
Ye J, Xia X, Dong W, et al. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel-cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines. Int J Nanomedicine 2016; 11: 4125-40.
[http://dx.doi.org/10.2147/IJN.S113638] [PMID: 27601899]
[124]
SinghY, Tomar S, Khan S, et al. Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes. J Con Release 2015; 220(Pt. A): 368-87.
[125]
Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (Lond) 2010; 5(10): 1595-616.
[http://dx.doi.org/10.2217/nnm.10.126] [PMID: 21143036]
[126]
Charles L, Attama AA. Current state of Nanoemulsions in drug delivery. J Biomater Nanobiotechnol 2011; 2: 626-39.
[http://dx.doi.org/10.4236/jbnb.2011.225075]
[127]
Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 2011; 16(7-8): 354-60.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[128]
Subhashis D, Satayanarayana J, Gampa VKNE. A method to improve the solubility of lipophilic drugs. PHARMANEST- Int J. Adv Pharm Sci 2011; 2(2-3): 72-83.
[129]
Surbhi S, Kumkum S. Nanoemulsions for cosmetics. Int J Adv Res Pharm Bio Sci 2012; 2(3): 408-15.
[130]
Hussain A, Samad A, Kumar Singh S, Beg S. Self-emulsifying systems for oral bioavailability enhancement. Recent Pat Nanomed 2015; 5(2): 71-7.
[http://dx.doi.org/10.2174/1877912305666150616221856]
[131]
Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm 2004; 280(1-2): 241-51.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.016] [PMID: 15265563]
[132]
Fang JY, Hung CF, Hua SC, Hwang TL. Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells. Ultrasonics 2009; 49(1): 39-46.
[http://dx.doi.org/10.1016/j.ultras.2008.04.009] [PMID: 18554679]
[133]
Ganta S, Amiji M. Coadministration of Paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 2009; 6(3): 928-39.
[http://dx.doi.org/10.1021/mp800240j] [PMID: 19278222]
[134]
Ganta S, Devalapally H, Amiji M. Curcumin enhances oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in nanoemulsion formulation. J Pharm Sci 2010; 99(11): 4630-41.
[http://dx.doi.org/10.1002/jps.22157] [PMID: 20845461]
[135]
Pires LA, Hegg R, Valduga CJ, Graziani SR, Rodrigues DG, Maranhão RC. Use of cholesterol-rich nanoparticles that bind to lipoprotein receptors as a vehicle to paclitaxel in the treatment of breast cancer: pharmacokinetics, tumor uptake and a pilot clinical study. Cancer Chemother Pharmacol 2009; 63(2): 281-7.
[http://dx.doi.org/10.1007/s00280-008-0738-2] [PMID: 18365196]
[136]
Rapoport N, Kennedy AM, Shea JE, Scaife CL, Nam KH. Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging. Mol Pharm 2010; 7(1): 22-31.
[http://dx.doi.org/10.1021/mp900128x] [PMID: 19899813]
[137]
Liu CH, Yu SY. Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery. Colloids Surf B Biointerfaces 2010; 79(2): 509-15.
[http://dx.doi.org/10.1016/j.colsurfb.2010.05.026] [PMID: 20541375]
[138]
Subramanian B, Kuo F, Ada E, et al. Enhancement of anti-inflammatory property of aspirin in mice by a nano-emulsion preparation. Int Immunopharmacol 2008; 8(11): 1533-9.
[http://dx.doi.org/10.1016/j.intimp.2008.06.009] [PMID: 18625344]
[139]
Aditya NP, Patankar S, Madhusudhan B, Murthy RSR, Souto EB. Arthemeter-loaded lipid nanoparticles produced by modified thin-film hydration: Pharmacokinetics, toxicological and in vivo anti-malarial activity. Eur J Pharm Sci 2010; 40(5): 448-55.
[http://dx.doi.org/10.1016/j.ejps.2010.05.007] [PMID: 20493255]
[140]
Lo Prete AC, Dina CH, Azevedo CH, et al. In vitro simultaneous transfer of lipids to HDL in coronary artery disease and in statin treatment. Lipids 2009; 44(10): 917-24.
[http://dx.doi.org/10.1007/s11745-009-3342-2] [PMID: 19760244]
[141]
Bielinska AU, Janczak KW, Landers JJ, Markovitz DM, Montefiori DC, Baker JR Jr. Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res Hum Retroviruses 2008; 24(2): 271-81.
[http://dx.doi.org/10.1089/aid.2007.0148] [PMID: 18260780]
[142]
Berkowitz AC, Goddard DM. Novel drug delivery systems: future directions. J Neurosci Nurs 2009; 41(2): 115-20.
[http://dx.doi.org/10.1097/JNN.0b013e318193458b] [PMID: 19361127]
[143]
Shakeel F, Ramadan W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B Biointerfaces 2010; 75(1): 356-62.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.010] [PMID: 19783127]
[144]
Shen J, Deng Y, Jin X, Ping Q, Su Z, Li L. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: improving in vivo ocular distribution. Int J Pharm 2010; 15; 402(1-2): 248-53.
[145]
Chime SA, Kenechukwu FC, Attama AA. Nanoemulsions - Advances in formulation, characterization and applications in drug delivery Application of nanotechnology in drug delivery. Croatia: InTech 2014; pp. 77-111.
[http://dx.doi.org/10.5772/58673]
[146]
Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Celecoxib nanoemulsion for transdermal drug delivery: characterization and in vitro evaluation. J Dispers Sci Technol 2009; 30(6): 834-42.
[http://dx.doi.org/10.1080/01932690802644012]
[147]
Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Accelerated stability testing of celecoxib nanoemulsion containing cremophor-EL. Afr J Pharm Pharmacol 2008; 2(8): 179-83.
[148]
Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Celecoxib nanoemulsion: skin permeation mechanism and bioavailability assessment. J Drug Target 2008; 16(10): 733-40.
[http://dx.doi.org/10.1080/10611860802473402] [PMID: 18985507]
[149]
Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnology 2008; 6: 8.
[http://dx.doi.org/10.1186/1477-3155-6-8] [PMID: 18613981]
[150]
Kelmann RG, Kuminek G, Teixeira HF, Koester LS. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process 2007; 342(1-2): 231-9..
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.004aa]
[151]
Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Design and development of oral oil in water ramipril nanoemulsion formulation: in vitro and in vivo assessment. J Biomed Nanotechnol 2007; 3(1): 28-44.
[http://dx.doi.org/10.1166/jbn.2007.008]
[152]
Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech 2007; 8(4)E104
[http://dx.doi.org/10.1208/pt0804104] [PMID: 18181525]
[153]
Shafiq S, Shakeel F, Talegaonkar S, Khar RK, Ali M. Nanoemulsion as carrier for stability enhancement of ramipril. J Dispers Sci Technol 2010; 31(7): 975-9.
[http://dx.doi.org/10.1080/01932690903224144]
[154]
Spagnul A, Bouvier-Capely C, Adam M, Phan G, Rebière F, Fattal E. Quick and efficient extraction of uranium from a contaminated solution by a calixarene nanoemulsion. Int J Pharm 2010; 398(1-2): 179-84.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.016] [PMID: 20656002]
[155]
Spagnul A, Bouvier-Capely C, Phan G, Rebière F, Fattal E. Calixarene-entrapped nanoemulsion for uranium extraction from contaminated solutions. J Pharm Sci 2010; 99(3): 1375-83.
[http://dx.doi.org/10.1002/jps.21932] [PMID: 19780139]
[156]
Zanatta CF, Mitjans M, Urgatondo V, Rocha-Filho PA, Vinardell MP. Photoprotective potential of emulsions formulated with Buriti oil (Mauritia flexuosa) against UV irradiation on keratinocytes and fibroblasts cell lines. Food Chem Toxicol 2010; 48(1): 70-5.
[http://dx.doi.org/10.1016/j.fct.2009.09.017] [PMID: 19766688]
[157]
Zanatta CF, Ugartondo V, Mitjans M, Rocha-Filho PA, Vinardell MP. Low cytotoxicity of creams and lotions formulated with Buriti oil (Mauritia flexuosa) assessed by the neutral red release test. Food Chem Toxicol 2008; 46(8): 2776-81.
[http://dx.doi.org/10.1016/j.fct.2008.05.001] [PMID: 18558457]
[158]
Al-Edresi S, Baie S. Formulation and stability of whitening VCO-in-water nano-cream. Int J Pharm 2009; 373(1-2): 174-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.02.011] [PMID: 19429303]
[159]
Gurpreet K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci 2018; 80(5): 781-9.
[160]
Lu Y, Qi J, Wu W. Absorption, disposition and pharmacokinetics of nanoemulsions. Curr Drug Metab 2012; 13(4): 396-417.
[http://dx.doi.org/10.2174/138920012800166544] [PMID: 22443535]
[161]
Botelho M, Queiroz D, Freitas A, Guerreiro S, Umbelino S, Barros G. Effects of a new testosterone transdermal delivery system, Biolipid B2-testosterone in healthy middle aged men: a Confocal Raman Spectroscopy Study. J Pharm Sci Innov 2013; 2: 1-7.
[http://dx.doi.org/10.7897/2277-4572.02204]
[162]
Maisch T, Santarelli F, Schreml S, Babilas P, Szeimies RM. Fluorescence induction of protoporphyrin IX by a new 5-aminolevulinic acid nanoemulsion used for photodynamic therapy in a full-thickness ex vivo skin model. Exp Dermatol 2010; 19(8): e302-5.
[http://dx.doi.org/10.1111/j.1600-0625.2009.01001.x] [PMID: 19845760]
[163]
Lourenço-Filho DD, Maranhão RC, Méndez-Contreras CA, Tavares ER, Freitas FR, Stolf NA. An artificial nanoemulsion carrying paclitaxel decreases the transplant heart vascular disease: a study in a rabbit graft model. J Thorac Cardiovasc Surg 2011; 141(6): 1522-8.
[http://dx.doi.org/10.1016/j.jtcvs.2010.08.032] [PMID: 21458008]
[164]
Dantas SA, Ficker ES, Vinagre CG, Ianni BM, Maranhão RC, Mady C. Metabolism of a lipid nanoemulsion resembling low-density lipoprotein in patients with grade iii obesity. Clinics (São Paulo) 2010; 65(1): 23-7.
[http://dx.doi.org/10.1590/S1807-59322010000100005] [PMID: 20126342]
[165]
Favero GM, Maranhão RC, Maria DA, Levy D, Bydlowski SP. Synthetic nanoemulsion resembling a protein-free model of 7-ketocholesterol containing low density lipoprotein: In vitro and in vivo studies. Biol Res 2010; 43(4): 439-44.
[http://dx.doi.org/10.4067/S0716-97602010000400008] [PMID: 21526270]
[166]
Fattom AI, Simon J, Baker JR. Herpes simplex virus nanoemulsion vaccine. Umited States Patent US 0052235 A1. 2013 February.
[167]
Desai D, Vaka S, Shah NH, Jain A, Phuapradit W. Selfnanoemulsionof poorly soluble drugs. World Intellectual Property Patent WO 205226 A1. 2014 December.
[168]
Bitko V, Hamouda T. Nanoemulsion respiratory syncytial virus (RSV) subunit vaccine. Canada Patent CA 2848163 A1. 2013 March.
[169]
Pretto JRE, Ricordi C, Fukazawa K, Pileggi A, Fraker C. Stable liquid formulations of volatile gas anesthetics. United States Patent US 0256828 A1. 2014 September
[170]
Rapoport N. Stable nanoemulsion useful in the treatment of cancer. United States Patent US 0341803 A1. 2014 November.
[171]
Chen AX, Orida NK, Chen H, Dang H. Stabilized glucagon nanoemulsions. World Intellectual Property Patent WO 101749 A1. 2013 July.
[172]
Sample JL, Patrone JB, Benkoski JJ, Breidenich JL, Kelly LA, Huong L, Crookston JC, Patchan MW, Garza L, Colon-Calderon X, Wolfe JT, Theodore ML, Nelson A, KangS. Topical compositions and methods of detection and treatment. United States Patent US 0022685 A1. 2013 January.
[173]
De Queiroz DB. Stable topical compositions and a process for the producing a stable topical composition. United States Patent US 0123220 A1. 2013 May.
[174]
Edelson J, Nicolosi R. Botulinum nanoemulsion. United States Patent US 0099342 A1. 2014 April.
[175]
Tamarkin D, Besonov A, Eini M, Danziger J. Foam prepared from nanoemulsions and uses.United States Patent US 0193502 A1. 2014 July.
[176]
Baker JR, Smith D, Fattom AI, Simon J. Immunogenic compositions comprising nanoemulsion and methods of administering the same. United States Patent US 0093537 A1. 2014 April.
[177]
Jeong SH, Son JH, Jang SJ, Kim YJ, Cheon JW. Cosmetic composition containing retinol stabilized by porous polymer beads and nanoemulsion. United States Patent US 0095157 A1. 2013April.
[178]
Singh H, Ye A, Zhu XQ. Emulsion. United States Patent US 0115258 A1. 2013 May.
[179]
Chen AX, Orida NK, Chen H, Dang HH. Stabilized Glucagon nanoemulsion. World Intellectual Property Patent WO 101749 A1. 2013 July.
[180]
Vecchione R, Netti PA, Ciotola U, Sagliano A. Method for obtaining ultrastable nanoemulsion. World Intellectual Property Patent WO 020543 A1. 2014 February.
[181]
Port M, Robic C, Leal Calderon F, Chadel S. Chelate nanoemulsion for MRI. United States Patent US 0309176 A1. 2013 November.
[182]
Ganta S, Coleman TP. Therapeutic nanoemulsion formulation for the targeted delivery of docetaxel and methods of making and using the same. United States Patent US 0105829 A1. 2014 April.
[183]
Port M, Robic C, Fabicki JM. Nanoemulsion and use thereof as contrast agents. United States Patent US 0234223 A1. 2014 August.
[184]
Annis TC, Baker JR, Hamouda T. Compositions for inactivating pathogenic microorganisms, methods of making the compositions, and methods of use thereof. United States Patent US 0212463 A1. 2014 July.
[185]
Baker JR, Rathiavelu S, Makidon PE, LiPuma JJ, Nigavekar S. Nanoemulsion therapeutics compositions and methods of using the same. United States Patent US 0287047 A1. 2014 September
[186]
Brito L, Singh M, O’Hagan D. Adjuvant nanoemulsions with phospholipids. United States Patent US 0017285 A1. 2014 January
[187]
Mitri K, Vauthier C, Huang N, et al. Scale-up of nanoemulsion produced by emulsification and solvent diffusion. J Pharm Sci 2012; 101(11): 4240-7.
[http://dx.doi.org/10.1002/jps.23291] [PMID: 22886515]
[188]
Fang JH, Hora M. The adjuvant MF59: A 10-year perspective gary ott, ramachandran radhakrishnanvaccine adjuvants: preparation methods and research protocols. New York, Totowa, NJ: Springer 2000; pp. 211-28.
[189]
Schultze V, D’Agosto V, Wack A, Novicki D, Zorn J, Hennig R. Safety of MF59 adjuvant. Vaccine 2008; 26(26): 3209-22.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.093] [PMID: 18462843]
[190]
Liu L, Bagia C, Janjic JM. The first scale-up production of theranostic nanoemulsions. Biores Open Access 2015; 4(1): 218-28.
[http://dx.doi.org/10.1089/biores.2014.0030] [PMID: 26309798]
[191]
Betts JN, Johnson MG, Rygiewicz PT, King GA, Andersen CP. Potential for metal contamination by direct sonication of nanoparticle suspensions. Environ Toxicol Chem 2013; 32(4): 889-93.
[http://dx.doi.org/10.1002/etc.2123] [PMID: 23322586]
[192]
Peshkovsky AS, Peshkovsky SL, Bystryak S. Scalable high-power ultrasonic technology for the production of translucent nanoemulsions. Chem Eng Process 2013; 69: 77-82.
[http://dx.doi.org/10.1016/j.cep.2013.02.010]
[193]
Mason TJ, Joyce E, Phull SS, Lorimer JP. Potential uses of ultrasound in the biological decontamination of water. Ultrason Sonochem 2003; 10(6): 319-23.
[http://dx.doi.org/10.1016/S1350-4177(03)00102-0] [PMID: 12927606]
[194]
Muqbil I, Burke FJT, Miller CH, Palenik CJ. Antimicrobial activity of ultrasonic cleaners. J Hosp Infect 2005; 60(3): 249-55.
[http://dx.doi.org/10.1016/j.jhin.2004.11.017] [PMID: 15949617]