Abstract
Background: Orodispersible Tablets (ODTs) are an option to facilitate the intake of pharmaceutical
solid dosage forms, which dissolve in the mouth within 30 seconds releasing the drug immediately
with no need for water intake or chewing.
Objective: The main goal of our study is the technological development of lactose-free orodispersible
tablets that contain ketoprofen.
Methods: We assessed different variables during the pharmaceutical development of ODTs: compression
techniques conducted after a wet granulation process, aiming to optimize the flow properties of the
formulation, and a suspension freeze-drying molded in blisters. We developed three formulations for
each method, each containing one of the superdisintegrants: croscarmellose, crospovidone, or starch
glycolate.
Results: During the production of ODTs, we performed quality control of the granulation process, since
the production of pellets contributed to the enhancement of the disintegration time and content homogeneity.
Quality control tests for ODTs produced by freeze-drying were also satisfactory, despite significant
changes in the final physical aspect of these products when compared to that of ODTs produced
by compression. In addition, the disintegration times of ODTs produced by freeze-drying were substantially
higher. Furthermore, these tablets displayed greater friability and pose a challenge to the control
of a standard individual weight.
Conclusion: Among the superdisintegrants, croscarmellose contributed most significantly to reduce the
disintegration time and to dissolve KTP effectively in 20 minutes.
Keywords:
Pharmaceutical dosage forms, dissolution efficiency, development of formulations, freeze-drying, granulation,
direct compression.
Graphical Abstract
[4]
Arshad, A.K.; Sarfaraz, M.D.; Doddayya, H. Design and evaluation of aceclofenac fast dissolving tablets prepared by crystallo-co-agglomeration technique. Int. J. Pharma Sci., 2011, 3, 116-123.
[5]
Gholve, S.; Kaware, A.; Thonte, S.; Kaudewar, D.; Bhusnure, O. Orodispersible tablets: a systematic review. World J. Pharm. Res, 2018, 7(6), 152-165.
[6]
Pandey, P.; Dahiya, M. Oral disintegrating tablets: a review. Int. J. Pharma. Res. Rev., 2016, 5(1), 50-62.
[7]
Camarco, W.; Ray, D.; Druffner, A. Selecting superdisintegrants for orally disintegrating tablet formulations. Pharm. Technol., 2006, 5, 1-4.
[9]
Aulton, M.E.; Taylor, K.M.G. Aulton delineamento de formas farmacêuticas, 4th ed.; Elsevier: Rio de Janeiro, . 2016, pp. 25.
[14]
Morais, M.B.; Fagundes, U.F. Alergia alimentar.Nutrição e dietética em clínica pediátrica; Lopez, F.A; Brasil, A.L.D., Ed.; Atheneu: São Paulo, 2003, pp. 210-219.
[19]
Allen, J.R.; Popovich, N.G.; Ansel, H.C. Formas farmacêuticas e sistemas de liberação de fármacos, 9th ed; Artmed: Porto Alegre, 2013.
[20]
USP - United States pharmacopeia and the national formulary (USP 41 - NF 36); The United States Pharmacopeia Convention: Rockville, MD, 2018.
[21]
Carr, R.L. Evaluating flow properties of solids. Chem. Eng., 1965, 72, 163-168.
[22]
Hausner, H.H. Friction conditions in a mass of metal powder. Int. J. Metall, 1967, 3, 7-13.
[23]
Agência Nacional de Vigilância Sanitária (ANVISA). Farmacopeia Brasileira, 5th ed; Brasília, 2010.
[26]
Agência Nacional de Vigilância Sanitária (ANVISA). Resolução RDC
nº 31, de 11 de agosto de;; Brasil , 2010.
[29]
Serra, C.H.R.; Storpirtis, S. Comparação de perfis de dissolução da cefalexina através de estudos de cinética e eficiência de dissolução (ED%). Braz. J. Pharm. Sci., 2007, 43(1), 79-88.
[31]
Prista, L.N.; Alves, A.C.; Morgado, R.M.R. Tecnologia Farmacêutica, 6th ed; Fundação Calouste Gulbenkian: Lisboa, 2003.
[32]
Propst, C.W. Granulation Characterization.Handbook of pharmaceutical granulation technology, 3rd ed; Parikh, D.M., Ed.; Informa Healthcare: New York, 2010, pp. 469-484.
[33]
Lamolha, M.A.; Serra, C.H.R. Avaliação das propriedades de fluxo dos granulados e dissolução de comprimidos de hidroclorotiazida 50 mg obtidos por granulação úmida. Braz. J. Pharm. Sci., 2007, 43(3), 436-446.