[3]
Joiner WJ, Wang LY, Tang MD, Kaczmarek LK. hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 1997; 3094(20): 11013-8.
[4]
Lee CH, MacKinnon R. Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 2018; 4360(6388): 508-13.
[7]
Ohya S, Kanatsuka S, Hatano N, et al. Downregulation of the Ca(2+)-activated K(+) channel KC a3.1 by histone deacetylase inhibition in human breast cancer cells. Pharmacol Res Perspect 2016; 174(2): e00228
[13]
McNicholas CM, Fraser G, Sandle GI. Properties and regulation of basolateral K+ channels in rat duodenal crypts. J Physiol 1994; 15 477(Pt 3): 381-92.
[23]
Draheim HJ, Repp H, Dreyer F. Src-transformation of mouse fibroblasts induces a Ca(2+)-activated K+, current without changing the T-type Ca2+ current. Biochim Biophys Acta 1995; 191269(1): 57-63.
[27]
Srivastava S, Li Z, Ko K, et al. Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Mol Cell 2006; 824(5): 665-75.
[29]
Garneau L, Klein H, Banderali U, Longpré-Lauzon A, Parent L, Sauvé R. Hydrophobic interactions as key determinants to the KCa3.1 channel closed configuration. An analysis of KCa3.1 mutants constitutively active in zero Ca2+. J Biol Chem 2009; 2284(1): 389-403.
[30]
Ji T, Corbalán-García S, Hubbard SR. Crystal structure of the C-terminal four-helix bundle of the potassium channel KCa3.1. PLoS One 2018; 2813(6): e0199942
[35]
Roxburgh CJ, Ganellin CR, Athmani S, et al. Synthesis and structure-activity relationships of cetiedil analogues as blockers of the Ca(2+)-activated K+ permeability of erythrocytes. J Med Chem 2001; 2744(20): 3244-53.
[36]
Alvarez J, Montero M, Garcia-Sancho J. High affinity inhibition of Ca(2+)-dependent K+ channels by cytochrome P-450 inhibitors. J Biol Chem 1992; 15267(17): 11789-93.
[38]
Stocker JW, De Franceschi L, McNaughton-Smith GA, Corrocher R, Beuzard Y, Brugnara C. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 2003; 15101(6): 2412-8.
[39]
Urbahns K, Goldmann S, Krüger J, et al. IKCa-channel blockers. Bioorg Med Chem Lett 2005; 1715(2): 401-4.
[42]
Strøbaek D, Teuber L, Jørgensen TD, et al. Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta 2004; 111665(1-2): 1-5.
[46]
Carosati E, Lemoine H, Spogli R, et al. Binding studies and GRIND/ALMOND-based 3D QSAR analysis of benzothiazine type KATP-channel openers. Bioorg Med Chem 2005; 13(19): 5581-91.
[47]
Calderone V, Spogli R, Martelli A, et al. Novel 1,4-benzothiazine derivatives as large conductance Ca2+-activated potassium channel openers. J Med Chem 2008; 2851(16): 5085-92.
[48]
Martelli A, Manfroni G, Sabbatini P, et al. 1,4-Benzothiazine ATP-sensitive potassium channel openers: modifications at the C-2 and C-6 positions. J Med Chem 2013; 1356(11): 4718-28.
[51]
Olesen SP, Munch E, Moldt P, Drejer J. Selective activation of Ca(2+)-dependent K+ channels by novel benzimidazolone. Eur J Pharmacol 1994; 4251(1): 53-9.