Self-Assembling, Ultrashort Peptide Gels as Antimicrobial Biomaterials

Page: [1300 - 1309] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Supramolecular antimicrobial hydrogels based on peptides are attractive soft materials for the treatment of infections, considering their ease of preparation and benign fate in biological settings and in the environment. In particular, stimuli-responsive systems that can be assembled/disassembled ad hoc could offer the opportunity to switch on/off their bioactivity as needed. Besides, the shorter is the peptide, the lower its cost of production. However, a structure-to-function relationship is yet to be defined and reported activities are generally not yet competitive relative to traditional antibiotics. Inspiration for their design can be found in host defense peptides (HDPs), which can self-assemble to exert their function. This article reviews research developments in this emerging area, and it examines features, differences and similarities between antimicrobial and amyloid peptides to open the avenue towards the next generation of supramolecular antimicrobial peptides as innovative therapeutic materials.

Keywords: Peptides, Self-assembly, Antimicrobial, Amyloid, Hydrogel, Smart materials.

Graphical Abstract

[1]
Fernandes, P.; Martens, E. Antibiotics in late clinical development. Biochem. Pharmacol., 2017, 133, 152-163.
[http://dx.doi.org/10.1016/j.bcp.2016.09.025] [PMID: 27687641]
[2]
WHO Antimicrobial resistance Fact Sheet.Available at:, https://www.who.int/antimicrobial-resistance/en/ (Accessed on 22/07/2019.
[3]
Reshma, V.G.; Syama, S.; Sruthi, S.; Reshma, S.C.; Remya, N.S.; Mohanan, P.V. Engineered nanoparticles with antimicrobial property. Curr. Drug Metab., 2017, 18(11), 1040-1054.
[http://dx.doi.org/10.2174/1389200218666170925122201] [PMID: 28952436]
[4]
Lombardi, L.; Falanga, A.; Del Genio, V.; Galdiero, S. A new hope: self-assembling peptides with antimicrobial activity. Pharmaceutics, 2019, 11(4), 166.
[http://dx.doi.org/10.3390/pharmaceutics11040166] [PMID: 30987353]
[5]
Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther., 2017, 17(6), 663-676.
[http://dx.doi.org/10.1080/14712598.2017.1315402] [PMID: 28368216]
[6]
Greco, I.; Hansen, J.E.; Jana, B.; Molchanova, N.; Oddo, A.; Thulstrup, P.W.; Damborg, P.; Guardabassi, L.; Hansen, P.R. StructureQActivity Study, Characterization, and Mechanism of Action of an Antimicrobial Peptoid D2 and Its d- and l-Peptide Analogues. Molecules, 2019, 24(6), 1121.
[http://dx.doi.org/10.3390/molecules24061121] [PMID: 30901860]
[7]
Ye, Z.; Zhu, X.; Acosta, S.; Kumar, D.; Sang, T.; Aparicio, C. Self-assembly dynamics and antimicrobial activity of all l- and d-amino acid enantiomers of a designer peptide. Nanoscale, 2018, 11(1), 266-275.
[http://dx.doi.org/10.1039/C8NR07334A] [PMID: 30534763]
[8]
Zaet, A.; Dartevelle, P.; Daouad, F.; Ehlinger, C.; Quilès, F.; Francius, G.; Boehler, C.; Bergthold, C.; Frisch, B.; Prévost, G.; Lavalle, P.; Schneider, F.; Haïkel, Y.; Metz-Boutigue, M.H.; Marban, C. D-Cateslytin, a new antimicrobial peptide with therapeutic potential. Sci. Rep., 2017, 7(1), 15199.
[http://dx.doi.org/10.1038/s41598-017-15436-z] [PMID: 29123174]
[9]
Qiu, S.; Zhu, R.; Zhao, Y.; An, X.; Jia, F.; Peng, J.; Ma, Z.; Zhu, Y.; Wang, J.; Su, J.; Wang, Q.; Wang, H.; Li, Y.; Wang, K.; Yan, W.; Wang, R. Antimicrobial activity and stability of protonectin with D-amino acid substitutions. J. Pept. Sci., 2017, 23(5), 392-402.
[http://dx.doi.org/10.1002/psc.2989] [PMID: 28299840]
[10]
Li, H.; Anuwongcharoen, N.; Malik, A.A.; Prachayasittikul, V.; Wikberg, J.E.; Nantasenamat, C. Roles of d-amino acids on the bioactivity of host defense peptides. Int. J. Mol. Sci., 2016, 17(7), 1023.
[http://dx.doi.org/10.3390/ijms17071023] [PMID: 27376281]
[11]
Lim, H.L.; Hwang, Y.; KAr, M.; Varghese, S. Smart hydrogels as functional biomimetic systems. Biomater. Sci., 2014, 2(5), 603-618.
[http://dx.doi.org/10.1039/C3BM60288E]
[12]
Gribs, I.; Janik, K. Synthetic polymer hydrogels for biomedical applications. Chem. Chem. Technol., 2010, 4, 297-304.
[13]
Ganguly, K.; Chaturvedi, K.; More, U.A.; Nadagouda, M.N.; Aminabhavi, T.M. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J. Control. Release, 2014, 193, 162-173.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.014] [PMID: 24845128]
[14]
Jonker, A.M.; Lӧwik, D.W.P.M.; van Hest, J.C.M. Peptide- and protein-based hydrogels. Chem. Mater., 2012, 24(5), 759-773.
[http://dx.doi.org/10.1021/cm202640w]
[15]
Iglesias, D.; Bosi, S.; Melchionna, M.; Da Ros, T.; Marchesan, S. The glitter of carbon nanostructures in hybrid/composite hydrogels for medicinal use. Curr. Top. Med. Chem., 2016, 16(18), 1976-1989.
[http://dx.doi.org/10.2174/1568026616666160215154807] [PMID: 26876524]
[16]
Chen, T.; Hou, K.; Ren, Q.; Chen, G.; Wei, P.; Zhu, M. Nanoparticle-polymer synergies in nanocomposite hydrogels: from design to application. Macromol. Rapid Commun., 2018, 39(21)e1800337
[http://dx.doi.org/10.1002/marc.201800337] [PMID: 30118163]
[17]
Marchesan, S.; Prato, M. Nanomaterials for (Nano)medicine. ACS Med. Chem. Lett., 2012, 4(2), 147-149.
[http://dx.doi.org/10.1021/ml3003742] [PMID: 24900637]
[18]
Adams, D.J. Dipeptide and tripeptide conjugates as low-molecular-weight hydrogelators. Macromol. Biosci., 2011, 11(2), 160-173.
[http://dx.doi.org/10.1002/mabi.201000316] [PMID: 21080382]
[19]
Hoque, J.; Sangaj, N.; Varghese, S. Stimuli-responsive supramolecular hydrogels and their applications in regenerative medicine. Macromol. Biosci., 2019, 19(1)e1800259
[http://dx.doi.org/10.1002/mabi.201800259] [PMID: 30295012]
[20]
Frederix, P.W.; Scott, G.G.; Abul-Haija, Y.M.; Kalafatovic, D.; Pappas, C.G.; Javid, N.; Hunt, N.T.; Ulijn, R.V.; Tuttle, T. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem., 2015, 7(1), 30-37.
[http://dx.doi.org/10.1038/nchem.2122] [PMID: 25515887]
[21]
Adler-Abramovich, L.; Vaks, L.; Carny, O.; Trudler, D.; Magno, A.; Caflisch, A.; Frenkel, D.; Gazit, E. Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat. Chem. Biol., 2012, 8(8), 701-706.
[http://dx.doi.org/10.1038/nchembio.1002] [PMID: 22706200]
[22]
Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science, 2003, 300(5619), 625-627.
[http://dx.doi.org/10.1126/science.1082387] [PMID: 12714741]
[23]
Conte, M.P.; Singh, N.; Sasselli, I.R.; Escuder, B.; Ulijn, R.V. Metastable hydrogels from aromatic dipeptides. Chem. Commun. (Camb.), 2016, 52(96), 13889-13892.
[http://dx.doi.org/10.1039/C6CC05821C] [PMID: 27841381]
[24]
Kurbasic, M.; Semeraro, S.; Garcia, A.M.; Kralj, S.; Parisi, E.; Deganutti, C.; De Zorzi, R.; Marchesan, S. Microwave-assisted cyclization of unprotected dipeptides in water to 2,5- piperazinediones and self-assembly study of products and reagents. Synthesis, 2019, 51, 2829-2838.https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0037-1612376
[25]
Marchesan, S.; Vargiu, A.V.; Styan, K.E. The Phe-Phe motif for peptide self-assembly in nanomedicine. Molecules, 2015, 20(11), 19775-19788.
[http://dx.doi.org/10.3390/molecules201119658] [PMID: 26540034]
[26]
Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem. Rev., 2015, 115(24), 13165-13307.
[http://dx.doi.org/10.1021/acs.chemrev.5b00299] [PMID: 26646318]
[27]
Tao, K.; Levin, A.; Adler-Abramovich, L.; Gazit, E. Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chem. Soc. Rev., 2016, 45(14), 3935-3953.
[http://dx.doi.org/10.1039/C5CS00889A] [PMID: 27115033]
[28]
Martin, A.D.; Wojciechowski, J.P.; Robinson, A.B.; Heu, C.; Garvey, C.J.; Ratcliffe, J.; Waddington, L.J.; Gardiner, J.; Thordarson, P. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups. Sci. Rep., 2017, 7, 43947.
[http://dx.doi.org/10.1038/srep43947] [PMID: 28272523]
[29]
Wojciechowski, J.P.; Martin, A.D.; Mason, A.F.; Fife, C.M.; Sagnella, S.M.; Kavallaris, M.; Thordarson, P. Choice of capping group in tripeptide hydrogels influences viability in the three-dimensional cell culture of tumor spheroids. ChemPlusChem, 2017, 82(3), 383-389.
[http://dx.doi.org/10.1002/cplu.201600464] [PMID: 31962021]
[30]
Truong, W.T.; Su, Y.; Gloria, D.; Braet, F.; Thordarson, P. Dissolution and degradation of Fmoc-diphenylalanine self-assembled gels results in necrosis at high concentrations in vitro. Biomater. Sci., 2015, 3(2), 298-307.
[http://dx.doi.org/10.1039/C4BM00244J] [PMID: 26218120]
[31]
Vargiu, A.V.; Iglesias, D.; Styan, K.E.; Waddington, L.J.; Easton, C.D.; Marchesan, S. Design of a hydrophobic tripeptide that self-assembles into amphiphilic superstructures forming a hydrogel biomaterial. Chem. Commun. (Camb.), 2016, 52(35), 5912-5915.
[http://dx.doi.org/10.1039/C5CC10531E] [PMID: 26998534]
[32]
Garcia, A.M.; Kurbasic, M.; Kralj, S.; Melchionna, M.; Marchesan, S. A biocatalytic and thermoreversible hydrogel from a histidine-containing tripeptide. Chem. Commun. (Camb.), 2017, 53(58), 8110-8113.
[http://dx.doi.org/10.1039/C7CC03371K] [PMID: 28630961]
[33]
Garcia, A.M.; Iglesias, D.; Parisi, E.; Styan, K.E.; Waddington, L.J.; Deganutti, C.; De Zorzi, R.; Grassi, M.; Melchionna, M.; Vargiu, A.V.; Marchesan, S. Chirality effects on peptide self-assembly unraveled from molecules to materials. Chem, 2018, 4(8), 1862-1876.
[http://dx.doi.org/10.1016/j.chempr.2018.05.016]
[34]
Cringoli, M.C.; Bellotto, O.; De Zorzi, R.; Vargiu, A.V.; Marchesan, S. Self-assembling LDL-tripeptides dance the twist. Synlett, 2020, 31(5), 434-438.
[http://dx.doi.org/10.1055/s-0039-1690776]
[35]
Melchionna, M.; Styan, K.E.; Marchesan, S. The unexpected advantages of using D-amino acids for peptide self-assembly into nanostructured hydrogels for medicine. Curr. Top. Med. Chem., 2016, 16(18), 2009-2018.
[http://dx.doi.org/10.2174/1568026616999160212120302] [PMID: 26876522]
[36]
Marchesan, S.; Styan, K.E.; Easton, C.D.; Waddington, L.; Vargiu, A.V. Higher and lower supramolecular orders for the design of self-assembled heterochiral tripeptide hydrogel biomaterials. J.Mater. Chem. B,, 2015, 3(41), 8123-8132.
[http://dx.doi.org/10.1039/C5TB00858A]
[37]
Jahn, T.R.; Makin, O.S.; Morris, K.L.; Marshall, K.E.; Tian, P.; Sikorski, P.; Serpell, L.C. The common architecture of cross-beta amyloid. J. Mol. Biol., 2010, 395(4), 717-727.
[http://dx.doi.org/10.1016/j.jmb.2009.09.039] [PMID: 19781557]
[38]
Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell, 2012, 148(6), 1188-1203.
[http://dx.doi.org/10.1016/j.cell.2012.02.022] [PMID: 22424229]
[39]
Cherny, I.; Gazit, E. Amyloids: not only pathological agents but also ordered nanomaterials. Angew. Chem. Int. Ed. Engl., 2008, 47(22), 4062-4069.
[http://dx.doi.org/10.1002/anie.200703133] [PMID: 18412209]
[40]
Riek, R.; Eisenberg, D.S. The activities of amyloids from a structural perspective. Nature, 2016, 539(7628), 227-235.
[http://dx.doi.org/10.1038/nature20416] [PMID: 27830791]
[41]
Benson, M.D.; Buxbaum, J.N.; Eisenberg, D.S.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Sipe, J.D.; Westermark, P. Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid, 2018, 25(4), 215-219.
[http://dx.doi.org/10.1080/13506129.2018.1549825] [PMID: 30614283]
[42]
Greenwald, J.; Riek, R. Biology of amyloid: structure, function, and regulation. Structure, 2010, 18(10), 1244-1260.
[http://dx.doi.org/10.1016/j.str.2010.08.009] [PMID: 20947013]
[43]
Otzen, D.; Riek, R. Functional Amyloids. Cold Spring Harb. Perspect. Biol., 2019, 11(12)a033860
[http://dx.doi.org/10.1101/cshperspect.a033860] [PMID: 31088827]
[44]
Jackson, M.P.; Hewitt, E.W. Why are functional amyloids non-toxic in humans? Biomolecules, 2017, 7(4), 71.
[http://dx.doi.org/10.3390/biom7040071] [PMID: 28937655]
[45]
Shewmaker, F.; McGlinchey, R.P.; Wickner, R.B. Structural insights into functional and pathological amyloid. J. Biol. Chem., 2011, 286(19), 16533-16540.
[http://dx.doi.org/10.1074/jbc.R111.227108] [PMID: 21454545]
[46]
Bieler, S.; Estrada, L.; Lagos, R.; Baeza, M.; Castilla, J.; Soto, C. Amyloid formation modulates the biological activity of a bacterial protein. J. Biol. Chem., 2005, 280(29), 26880-26885.
[http://dx.doi.org/10.1074/jbc.M502031200] [PMID: 15917245]
[47]
Seviour, T.; Hansen, S.H.; Yang, L.; Yau, Y.H.; Wang, V.B.; Stenvang, M.R.; Christiansen, G.; Marsili, E.; Givskov, M.; Chen, Y.; Otzen, D.E.; Nielsen, P.H.; Geifman-Shochat, S.; Kjelleberg, S.; Dueholm, M.S. Functional amyloids keep quorum-sensing molecules in check. J. Biol. Chem., 2015, 290(10), 6457-6469.
[http://dx.doi.org/10.1074/jbc.M114.613810] [PMID: 25586180]
[48]
Blanco, L.P.; Evans, M.L.; Smith, D.R.; Badtke, M.P.; Chapman, M.R. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol., 2012, 20(2), 66-73.
[http://dx.doi.org/10.1016/j.tim.2011.11.005] [PMID: 22197327]
[49]
Hengge, R. Targeting bacterial biofilms by the green tea polyphenol EGCG. Molecules, 2019, 24(13), 2403.
[http://dx.doi.org/10.3390/molecules24132403] [PMID: 31261858]
[50]
Andreasen, M.; Meisl, G.; Taylor, J.D.; Michaels, T.C.T.; Levin, A.; Otzen, D.E.; Chapman, M.R.; Dobson, C.M.; Matthews, S.J.; Knowles, T.P.J. Physical determinants of amyloid assembly in biofilm formation. MBio, 2019, 10(1), e02279-e18.
[http://dx.doi.org/10.1128/mBio.02279-18] [PMID: 30622185]
[51]
Harris, F.; Dennison, S.R.; Phoenix, D.A. Aberrant action of amyloidogenic host defense peptides: a new paradigm to investigate neurodegenerative disorders? FASEB J., 2012, 26(5), 1776-1781.
[http://dx.doi.org/10.1096/fj.11-199208] [PMID: 22308196]
[52]
Sood, R.; Domanov, Y.; Pietiäinen, M.; Kontinen, V.P.; Kinnunen, P.K. Binding of LL-37 to model biomembranes: insight into target vs host cell recognition. Biochim. Biophys. Acta, 2008, 1778(4), 983-996.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.016] [PMID: 18166145]
[53]
Torrent, M.; Odorizzi, F.; Nogués, M.V.; Boix, E. Eosinophil cationic protein aggregation: identification of an N-terminus amyloid prone region. Biomacromolecules, 2010, 11(8), 1983-1990.
[http://dx.doi.org/10.1021/bm100334u] [PMID: 20690710]
[54]
Nilsson, M.R.; Dobson, C.M. In vitro characterization of lactoferrin aggregation and amyloid formation. Biochemistry, 2003, 42(2), 375-382.
[http://dx.doi.org/10.1021/bi0204746] [PMID: 12525164]
[55]
Jang, H.; Ma, B.; Lal, R.; Nussinov, R. Models of toxic beta-sheet channels of protegrin-1 suggest a common subunit organization motif shared with toxic alzheimer beta-amyloid ion channels. Biophys. J., 2008, 95(10), 4631-4642.
[http://dx.doi.org/10.1529/biophysj.108.134551] [PMID: 18708452]
[56]
Salazar, V.A.; Rubin, J.; Moussaoui, M.; Pulido, D.; Nogués, M.V.; Venge, P.; Boix, E. Protein post-translational modification in host defense: the antimicrobial mechanism of action of human eosinophil cationic protein native forms. FEBS J., 2014, 281(24), 5432-5446.
[http://dx.doi.org/10.1111/febs.13082] [PMID: 25271100]
[57]
Brogden, K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[58]
Huang, H.W.; Charron, N.E. Understanding membrane-active antimicrobial peptides. Q. Rev. Biophys.,, 2017.50e10
[http://dx.doi.org/10.1017/S0033583517000087] [PMID: 29233222]
[59]
Vineeth Kumar, T.V.; Sanil, G. A Review of the mechanism of action of amphibian antimicrobial peptides focusing on peptide-membrane interaction and membrane curvature. Curr. Protein Pept. Sci., 2017, 18(12), 1263-1272.
[PMID: 28699512]
[60]
Chairatana, P.; Nolan, E.M. Human α-defensin 6: a small peptide that self-assembles and protects the host by entangling microbes. Acc. Chem. Res., 2017, 50(4), 960-967.
[http://dx.doi.org/10.1021/acs.accounts.6b00653] [PMID: 28296382]
[61]
Kuang, Y.; Shi, J.; Li, J.; Yuan, D.; Alberti, K.A.; Xu, Q.; Xu, B. Pericellular hydrogel/nanonets inhibit cancer cells. Angew. Chem. Int. Ed. Engl., 2014, 53(31), 8104-8107.
[http://dx.doi.org/10.1002/anie.201402216] [PMID: 24820524]
[62]
Soscia, S.J.; Kirby, J.E.; Washicosky, K.J.; Tucker, S.M.; Ingelsson, M.; Hyman, B.; Burton, M.A.; Goldstein, L.E.; Duong, S.; Tanzi, R.E.; Moir, R.D. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One, 2010, 5(3)e9505
[http://dx.doi.org/10.1371/journal.pone.0009505] [PMID: 20209079]
[63]
Kagan, B.L.; Jang, H.; Capone, R.; Teran Arce, F.; Ramachandran, S.; Lal, R.; Nussinov, R. Antimicrobial properties of amyloid peptides. Mol. Pharm., 2012, 9(4), 708-717.
[http://dx.doi.org/10.1021/mp200419b] [PMID: 22081976]
[64]
Bourgade, K.; Dupuis, G.; Frost, E.H.; Fülöp, T. Anti-viral properties of amyloid-β peptides. J. Alzheimers Dis., 2016, 54(3), 859-878.
[http://dx.doi.org/10.3233/JAD-160517] [PMID: 27392871]
[65]
Luna, S.; Cameron, D.J.; Ethell, D.W. Amyloid-β and APP deficiencies cause severe cerebrovascular defects: important work for an old villain. PLoS One, 2013, 8(9)e75052
[http://dx.doi.org/10.1371/journal.pone.0075052] [PMID: 24040383]
[66]
Kumar, D.K.; Eimer, W.A.; Tanzi, R.E.; Moir, R.D. Alzheimer’s disease: the potential therapeutic role of the natural antibiotic amyloid-β peptide. Neurodegener. Dis. Manag., 2016, 6(5), 345-348.
[http://dx.doi.org/10.2217/nmt-2016-0035] [PMID: 27599536]
[67]
Gosztyla, M.L.; Brothers, H.M.; Robinson, S.R. Alzheimer’s amyloid-β is an antimicrobial peptide: a review of the evidence. J. Alzheimers Dis., 2018, 62(4), 1495-1506.
[http://dx.doi.org/10.3233/JAD-171133] [PMID: 29504537]
[68]
Fülöp, T.; Itzhaki, R.F.; Balin, B.J.; Miklossy, J.; Barron, A.E. Role of microbes in the development of alzheimer’s disease: state of the art an international symposium presented at the 2017 iagg congress in San Francisco. Front. Genet, 2018, 9, p. 362.
[http://dx.doi.org/10.3389/fgene.2018.00362] [PMID: 30250480]
[69]
Mayr, J.; Saldías, C.; Díaz Díaz, D. Release of small bioactive molecules from physical gels. Chem. Soc. Rev., 2018, 47(4), 1484-1515.
[http://dx.doi.org/10.1039/C7CS00515F] [PMID: 29354818]
[70]
Hu, Y.; Xu, W.; Li, G.; Xu, L.; Song, A.; Hao, J. Self-assembled peptide nanofibers encapsulated with superfine silver nanoparticles via Ag+ coordination. Langmuir, 2015, 31(31), 8599-8605.
[http://dx.doi.org/10.1021/acs.langmuir.5b02036] [PMID: 26177269]
[71]
Garcia, A.M.; Lavendomme, R.; Kralj, S.; Kurbasic, M.; Bellotto, O.; Cringoli, M.C.; Semeraro, S.; Bandiera, A.; De Zorzi, R.; Marchesan, S. Self-assembly of an amino acid derivative into an antimicrobial hydrogel biomaterial. Chem. Eur. J.,, 2020, 26(8), 1880-1886.https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201905681/
[72]
Mitra, R.N.; Shome, A.; Paul, P.; Das, P.K. Antimicrobial activity, biocompatibility and hydrogelation ability of dipeptide-based amphiphiles. Org. Biomol. Chem., 2009, 7(1), 94-102.
[http://dx.doi.org/10.1039/B815368J] [PMID: 19081951]
[73]
Baral, A.; Roy, S.; Ghosh, S.; Hermida-Merino, D.; Hamley, I.W.; Banerjee, A. A Peptide-based mechano-sensitive, proteolytically stable hydrogel with remarkable antibacterial properties. Langmuir, 2016, 32(7), 1836-1845.
[http://dx.doi.org/10.1021/acs.langmuir.5b03789] [PMID: 26818698]
[74]
Gahane, A.Y.; Ranjan, P.; Singh, V.; Sharma, R.K.; Sinha, N.; Sharma, M.; Chaudhry, R.; Thakur, A.K. Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases. Soft Matter, 2018, 14(12), 2234-2244.
[http://dx.doi.org/10.1039/C7SM02317K] [PMID: 29517792]
[75]
Debnath, S.; Shome, A.; Das, D.; Das, P.K. Hydrogelation through self-assembly of fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J. Phys. Chem. B, 2010, 114(13), 4407-4415.
[http://dx.doi.org/10.1021/jp909520w] [PMID: 20297770]
[76]
Irwansyah, I.; Li, Y.Q.; Shi, W.; Qi, D.; Leow, W.R.; Tang, M.B.; Li, S.; Chen, X. Gram-positive antimicrobial activity of amino acid-based hydrogels. Adv. Mater., 2015, 27(4), 648-654.
[http://dx.doi.org/10.1002/adma.201403339] [PMID: 25447243]
[77]
Schnaider, L.; Ghosh, M.; Bychenko, D.; Grigoriants, I.; Ya’ari, S.; Shalev Antsel, T.; Matalon, S.; Sarig, R.; Brosh, T.; Pilo, R.; Gazit, E.; Adler-Abramovich, L. Enhanced nanoassembly-incorporated antibacterial composite materials. ACS Appl. Mater. Interfaces, 2019, 11(24), 21334-21342.
[http://dx.doi.org/10.1021/acsami.9b02839] [PMID: 31134790]
[78]
Schnaider, L.; Brahmachari, S.; Schmidt, N.W.; Mensa, B.; Shaham-Niv, S.; Bychenko, D.; Adler-Abramovich, L.; Shimon, L.J.W.; Kolusheva, S.; DeGrado, W.F.; Gazit, E. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat. Commun., 2017, 8(1), 1365.
[http://dx.doi.org/10.1038/s41467-017-01447-x] [PMID: 29118336]
[79]
Marchesan, S.; Waddington, L.; Easton, C.D.; Winkler, D.A.; Goodall, L.; Forsythe, J.; Hartley, P.G. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels. Nanoscale, 2012, 4(21), 6752-6760.https://pubs.rsc.org/en/content/articlelanding/2012/nr/c2nr32006a/
[80]
Marchesan, S.; Qu, Y.; Waddington, L.J.; Easton, C.D.; Glattauer, V.; Lithgow, T.J.; McLean, K.M.; Forsythe, J.S.; Hartley, P.G. Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. Biomaterials, 2013, 34(14), 3678-3687.https://www.sciencedirect.com/science/article/pii/S0142961213001518
[81]
Kurbasic, M.; Romano, C.D.; Garcia, A.M.; Kralj, S.; Marchesan, S. o Assembly of a Tripeptide and anti-inflammatory drugs into supramolecular hydrogels for sustained release. Gels,, 2017, 3(3), 29.https://www.mdpi.com/2310-2861/3/3/29
[PMID: 30920525]
[82]
Marchesan, S.; Waddington, L.; Easton, C.D.; Kushkaki, F.; McLean, K.M.; Forsythe, J.S.; Hartley, P.G. Tripeptide selfassembled hydrogels: Soft nanomaterials for biological applications. Bionanosci.,, 2013, 3(1), 21-29.https://link.springer.com/article/10.1007/s12668-012-0074-1
[83]
Parisi, E.; Garcia, A.M.; Marson, D.; Posocco, P.; Marchesan, S. Supramolecular Tripeptide Hydrogel Assembly with 5-Fluorouracil. Gels, 2019, 5(1), 5.
[http://dx.doi.org/10.3390/gels5010005] [PMID: 30691142]
[84]
Colquhoun, C.; Draper, E.R.; Eden, E.G.B.; Cattoz, B.N.; Morris, K.L.; Chen, L.; McDonald, T.O.; Terry, A.E.; Griffiths, P.C.; Serpell, L.C.; Adams, D.J. The effect of self-sorting and co-assembly on the mechanical properties of low molecular weight hydrogels. Nanoscale, 2014, 6(22), 13719-13725.
[http://dx.doi.org/10.1039/C4NR04039B] [PMID: 25285577]
[85]
Draper, E.R.; Eden, E.G.B.; McDonald, T.O.; Adams, D.J. Spatially resolved multicomponent gels. Nat. Chem., 2015, 7(10), 848-852.
[http://dx.doi.org/10.1038/nchem.2347] [PMID: 26391086]
[86]
Singh, N.; Zhang, K.; Angulo-Pachón, C.A.; Mendes, E.; van Esch, J.H.; Escuder, B. Tandem reactions in self-sorted catalytic molecular hydrogels. Chem. Sci. (Camb.), 2016, 7(8), 5568-5572.
[http://dx.doi.org/10.1039/C6SC01268J] [PMID: 30034697]
[87]
Liu, G.; Zhou, C.; Teo, W.L.; Qian, C.; Zhao, Y. Self-sorting double-network hydrogels with tunable supramolecular handedness and mechanical properties. Angew. Chem. Int. Ed. Engl., 2019, 58(28), 9366-9372.
[http://dx.doi.org/10.1002/anie.201904884] [PMID: 31115126]
[88]
Cornwell, D.J.; Daubney, O.J.; Smith, D.K. Photopatterned multidomain gels: multi-component self-assembled hydrogels based on partially self-sorting 1,3:2,4-dibenzylidene-d-sorbitol derivatives. J. Am. Chem. Soc., 2015, 137(49), 15486-15492.
[http://dx.doi.org/10.1021/jacs.5b09691] [PMID: 26646708]
[89]
Wang, Y.; Lovrak, M.; Liu, Q.; Maity, C.; le Sage, V.A.A.; Guo, X.; Eelkema, R.; van Esch, J.H. Hierarchically compartmentalized supramolecular gels through multilevel self-sorting. J. Am. Chem. Soc., 2019, 141(7), 2847-2851.
[http://dx.doi.org/10.1021/jacs.8b09596] [PMID: 30563317]
[90]
Nordström, R.; Malmsten, M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci., 2017, 242, 17-34.
[http://dx.doi.org/10.1016/j.cis.2017.01.005] [PMID: 28159168]
[91]
Goel, R.; Garg, C.; Gautam, H.K.; Sharma, A.K.; Kumar, P.; Gupta, A. Fabrication of cationic nanostructures from short self-assembling amphiphilic mixed α/β-pentapeptide: Potential candidates for drug delivery, gene delivery, and antimicrobial applications. Int. J. Biol. Macromol., 2018, 111, 880-893.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.079] [PMID: 29355630]
[92]
Zhang, F.; Hu, C.; Kong, Q.; Luo, R.; Wang, Y. Peptide-/drug-directed self-assembly of hybrid polyurethane hydrogels for wound healing. ACS Appl. Mater. Interfaces, 2019, 11(40), 37147-37155.
[http://dx.doi.org/10.1021/acsami.9b13708] [PMID: 31513742]
[93]
Sis, M.J.; Webber, M.J. Drug delivery with designed peptide assemblies. Trends Pharmacol. Sci., 2019, 40(10), 747-762.
[http://dx.doi.org/10.1016/j.tips.2019.08.003] [PMID: 31493931]
[94]
Pentlavalli, S.; Coulter, S.; Laverty, G. Peptide nanomaterials for drug delivery applications. Curr. Protein Pept. Sci., 2019, •••
[http://dx.doi.org/10.2174/1389203721666200101091834] [PMID: 31893991]
[95]
Tesauro, D.; Accardo, A.; Diaferia, C.; Milano, V.; Guillon, J.; Ronga, L.; Rossi, F. Peptide-based drug-delivery systems in biotechnological applications: recent advances and perspectives. Molecules, 2019, 24(2), 351.
[http://dx.doi.org/10.3390/molecules24020351] [PMID: 30669445]
[96]
You, Y.; Xing, R.; Zou, Q.; Shi, F.; Yan, X. High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide. Beilstein J. Nanotechnol., 2019, 10, 1894-1901.
[http://dx.doi.org/10.3762/bjnano.10.184] [PMID: 31598455]
[97]
Nir, S.; Zanuy, D.; Zada, T.; Agazani, O.; Aleman, C.; Shalev, D.E.; Reches, M. Tailoring the self-assembly of a tripeptide for the formation of antimicrobial surfaces. Nanoscale, 2019, 11(18), 8752-8759.
[http://dx.doi.org/10.1039/C8NR10043H] [PMID: 30778487]
[98]
Lombardi, L.; Shi, Y.; Falanga, A.; Galdiero, E.; de Alteriis, E.; Franci, G.; Chourpa, I.; Azevedo, H.S.; Galdiero, S. Enhancing the potency of antimicrobial peptides through molecular engineering and self-assembly. Biomacromolecules, 2019, 20(3), 1362-1374.
[http://dx.doi.org/10.1021/acs.biomac.8b01740] [PMID: 30735368]
[99]
Mendonça, D.A.; Figueira, T.N.; Melo, M.N.; Harder, O.; Niewiesk, S.; Moscona, A.; Porotto, M.; Veiga, A.S. Self-assembly stability compromises the efficacy of tryptophan-containing anti-measles virus peptides. J. Nanomed. Nanotechnol., 2019, 10, 528.