A Tunable THz Plasmonic Waveguide Based on Graphene Coated Bowtie Nanowire with High Mode Confinement

Page: [103 - 108] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: A THz Plasmonic Waveguide Based on Graphene Coated Bow-tie Nanowire (TPW-GCBN) has been proposed. The waveguide characteristics are investigated by the Finite Element Method (FEM). The influence of the geometric parameters on propagation constants, electric field distributions, effective mode areas, and propagation lengths is obtained numerically. The performance tunability of TPW-GCBN is also studied by adjusting the Fermi energy. The simulation results show that TPW-GCBN has better mode confinement ability. TPW-GCBN provides a promising alternative in high-density integration of photonic circuit for the future tunable micro-nano optoelectronic devices.: Surface plasmonpolaritons based waveguides have been widely used to enhance the local electric fields. It also has the capability of manipulating electromagnetic fields on the deepsubwavelength.

Objective: The waveguide characteristics of TPW-GCBN should be investigated. The tunability of TPW-GCBN should be studied by adjusting Fermi energy (FE) which can be changed by the voltage.

Methods: The mode analysis and parameter sweep in Finite Element Method (FEM) were used to simulate TPW-GCBN for analyzing effective refractive index (neff), electric field distributions, normalized mode areas (Am), propagation length (Lp) and Figure of Merit (FoM).

Results: At 5 THz, Aeffof λ2/14812,Lp of ~2 μm and FoM of 25 can be achieved. The simulation results show that TPW-GBN has good mode confinement ability and flexible tunability.

Conclusion: TPW-GBN provides new freedom to manipulate the graphene surface plasmons, and leads to new applications in high-density integration of photonic circuits for tunable integrated optical devices.

Keywords: Plasmonic waveguide, terahertz, graphene, effective mode areas, propagation length, figure of merit.

Graphical Abstract

[1]
Koshiba, M. Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. Lightwave Technol., 2001, 19(12), 1970-1975.
[http://dx.doi.org/10.1109/50.971693]
[2]
Barrios, C.A. Optical slot-waveguide based biochemical sensors. Sensors (Basel), 2009, 9(6), 4751-4765.
[http://dx.doi.org/10.3390/s90604751 ]
[3]
Kwon, M.S. Disposable and compact integrated plasmonic sensor using a long-period grating. Opt. Lett., 2010, 35(22), 3835-3837.
[http://dx.doi.org/10.1364/OL.35.003835 ]
[4]
Bian, Y.; Zheng, Z.; Zhao, X.; Zhu, J.; Zhou, T. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. Opt. Express, 2009, 17(23), 21320-21325.
[http://dx.doi.org/10.1364/OE.17.021320 ]
[5]
Sun, X.; Xia, L.; Du, C.; Du, J.; Yin, S. A hybrid long-range surface plasmon waveguide comprising a narrow metal stripe surrounded by the low-index dielectric regions. Opt. Commun., 2012, 285(21-22), 4359-4363.
[http://dx.doi.org/10.1016/j.optcom.2012.06.055]
[6]
Wang, Y.; Ma, Y.; Guo, X.; Tong, L. Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates. Opt. Express, 2012, 20(17), 19006-19015.
[http://dx.doi.org/10.1364/OE.20.019006 ]
[7]
Bian, Y.; Gong, Q. Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement. Appl. Opt., 2013, 52(23), 5733-5741.
[http://dx.doi.org/10.1364/AO.52.005733 ]
[8]
Xiao, B.; Qin, K.; Xiao, S.; Han, Z. Metal-loaded graphene surface plasmon waveguides working in the terahertz regime. Opt. Commun., 2015, 355, 602-606.
[http://dx.doi.org/10.1016/j.optcom.2015.07.031]
[9]
Bahiraei, M.; Heshmatian, S. Graphene family nanofluids: A critical review and future research directions. Energy Convers. Manage., 2019, 196, 1222-1256.
[http://dx.doi.org/10.1016/j.enconman.2019.06.076]
[10]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065), 197-200.
[http://dx.doi.org/10.1038/nature04233 ]
[11]
Wang, F.; Zhang, Y.; Tian, C.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y.R. Gate-variable optical transitions in graphene. Science, 2008, 320(5873), 206-209.
[http://dx.doi.org/10.1126/science.1152793 ]
[12]
Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photon and optoelectronics. Nat. Photonics, 2010, 4(9), 611-622.
[http://dx.doi.org/10.1038/nphoton.2010.186]
[13]
Nikitin, A.Y.; Guinea, F.; Garcia-Vidal, F.J.; Martin-Moreno, L. Fields radiated by a nanoemitter in a graphene sheet. Phys. Rev. B , 2011, 84(19)195446
[http://dx.doi.org/10.1103/PhysRevB.84.195446]
[14]
Zhu, B.; Ren, G.; Gao, Y.; Yang, Y.; Lian, Y.; Jian, S. Graphene-coated tapered nanowire infrared probe: A comparison with metal-coated probes. Opt. Express, 2014, 22(20), 24096-24103.
[http://dx.doi.org/10.1364/OE.22.024096 ]
[15]
Yao, B.C.; Wu, Y.; Zhang, A.Q.; Rao, Y.J.; Wang, Z.G.; Cheng, Y.; Gong, Y.; Zhang, W.L.; Chen, Y.F.; Chiang, K.S. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Opt. Express, 2014, 22(23), 28154-28162.
[http://dx.doi.org/10.1364/OE.22.028154 ]
[16]
Xu, W.; Zhu, Z.H.; Liu, K.; Zhang, J.F.; Yuan, X.D.; Lu, Q.S.; Qin, S.Q. Dielectric loaded graphene plasmon waveguide. Opt. Express, 2015, 23(4), 5147-5153.
[http://dx.doi.org/10.1364/OE.23.005147 ]
[17]
Guan, C.; Li, S.; Shen, Y.; Yuan, T.; Yang, J.; Yuan, L. Graphene-coated surface core fiber polarizer. J. Lightwave Technol., 2015, 33(2), 349-353.
[http://dx.doi.org/10.1109/JLT.2014.2386893]
[18]
Lu, W. Tunable broadband optical field enhancement in grapheme-based slot waveguide at infrared frequencies. Appl. Opt., 2016, 55(19), 5095-5101.
[http://dx.doi.org/10.1364/AO.55.005095 ]
[19]
Bahiraei, M.; Heshmatian, S. Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene–silver nanoparticles. Energy Convers. Manage., 2018, 168, 357-370.
[http://dx.doi.org/10.1016/j.enconman.2018.05.020]
[20]
Bahiraei, M.; Mazaheri, N. Application of a novel hybrid nanofluid containing graphene–platinum nanoparticles in a chaotic twisted geometry for utilization in miniature devices: Thermal and energy efficiency considerations. Int. J. Mech. Sci., 2018, 138-139, 337-349.
[http://dx.doi.org/10.1016/j.ijmecsci.2018.02.030]
[21]
Bahiraei, M.; Mazaheri, N.; Rizehvandi, A. Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Appl. Therm. Eng., 2019, 149, 588-601.
[http://dx.doi.org/10.1016/j.applthermaleng.2018.12.072]
[22]
Chen, B.; Meng, C.; Yang, Z.; Li, W.; Lin, S.; Gu, T.; Guo, X.; Wang, D.; Yu, S.; Wong, C.W.; Tong, L. Graphene coated ZnO nanowire optical waveguides. Opt. Express, 2014, 22(20), 24276-24285.
[http://dx.doi.org/10.1364/OE.22.024276 ]
[23]
Chen, J.; Zeng, Y.; Xu, X.; Chen, X.; Zhou, Z.; Shi, P.; Yi, Z.; Ye, X.; Xiao, S.; Yi, Y. Plasmonic absorption enhancement in elliptical graphene arrays. Nanomaterials (Basel), 2018, 8(3), 175.
[http://dx.doi.org/10.3390/nano8030175 ]
[24]
Cen, C.; Lin, H.; Liang, C.; Huang, J.; Chen, X.; Yi, Y.; Yi, Z.; Tang, Y.; Duan, T.; Xu, X.; Xiao, S. Tunable plasmonic resonance absorption characteristics in periodic H-shaped graphene arrays. Superlattices Microstruct., 2018, 120, 427-435.
[http://dx.doi.org/10.1016/j.spmi.2018.05.059]
[25]
Huang, M.; Yang, C.; Sun, B.; Zhang, Z.; Zhang, L. Ultrasensitive sensing in air based on graphene-coated hollow core fibers. Opt. Express, 2018, 26(3), 3098-3107.
[http://dx.doi.org/10.1364/OE.26.003098 ]
[26]
Lu, W.B.; Zhu, W.; Xu, H.J.; Ni, Z.H.; Dong, Z.G.; Cui, T.J. Flexible transformation plasmonics using graphene. Opt. Express, 2013, 21(9), 10475-10482.
[http://dx.doi.org/10.1364/OE.21.010475 ]
[27]
Yang, J.; Yang, J.; Deng, W.; Mao, F.; Huang, M. Transmission properties and molecular sensing application of CGPW. Opt. Express, 2015, 23(25), 32289-32299.
[http://dx.doi.org/10.1364/OE.23.032289 ]
[28]
Qi, L.; Liu, C. Broadband multilayer graphene metamaterial absorbers. Opt. Mater. Express, 2019, 9(3), 1298.
[http://dx.doi.org/10.1364/OME.9.001298]
[29]
Ma, Y.; Zhou, J.; Pištora, J.; Eldlio, M.; Nguyen-Huu, N.; Maeda, H.; Wu, Q.; Cada, M. Subwavelength InSb-based Slot wavguides for THz transport: Concept and practical implementations. Sci. Rep., 2016, 6(1), 38784.
[http://dx.doi.org/10.1038/srep38784 ]
[30]
Berini, P. Figures of merit for surface plasmon waveguides. Opt. Express, 2006, 14(26), 13030-13042.
[http://dx.doi.org/10.1364/OE.14.013030 ]
[31]
Eldlio, M.; Ma, Y.Q.; Maeda, H.; Cada, M. A long-range hybrid THz plasmonic waveguide with low attenuation loss. Infrared Phys. Technol., 2017, 80, 93-99.
[http://dx.doi.org/10.1016/j.infrared.2016.11.007]
[32]
Hajati, M.; Hajati, Y. Plasmonic characteristics of two vertically coupled graphene-coated nanowires integrated with substrate. Appl. Opt., 2017, 56(4), 870-875.
[http://dx.doi.org/10.1364/AO.56.000870 ]
[33]
Ma, Y.; Farrell, G.; Semenova, Y.; Wu, Q. A Hybrid wedge-to-wedge plasmonic waveguide with low loss propagation and ultra-deep-nanoscale mode confinement. J. Lightwave Technol., 2015, 33(18), 3827-383.
[http://dx.doi.org/10.1109/JLT.2015.2445571]