[1]
Gupta, R.D. Environment Pollution: Hazards and Control; Concept Publishing Company, 2006.
[2]
Scheepers, P.T. Health Implications of Combustion Engine Exhaust. Environmental Indicators. Springer, 2015, 899-924.
[4]
Miller, C.A. Air pollution-control technologies. Strategies, 2015, 65, 3.
[5]
Dantas, T.C.; Neto, A.D.; Moura, M.; Neto, E.B.; Duarte, K.F. Study of new alternatives for removal of sulfur from diesel. Brazilian J. Petrol. Gas, 2014, 8(1), 1.
[10]
Gattupalli, R.R.; Banerjee, S.M.; Nicholas, C.P.; Bhatacharyya, A. Process for desulfurization of naphtha using ionic liquids. U.S. Patent 20,150,001,135 2015.
[29]
Hailiang, Y.; Xinliang, L.; Tongna, Z.; Yunqi, L. Novel NiMo Catalysts Supported on Sol-Gel Nanosized HY Zeolite-Alumina Composites for Hydrodesulfurization of Diesel. J China Petroleum Process. Petrochem. Technol. (IJCPT), 2019, 21(1), 15-22.
[37]
Feng, X.J.; Yang, J.X.; Yu, W.T.; Fun, H.K.; Wu, J.Y.; Tian, Y.P. Synthesis and crystal structure of a novel coordination polymer of [Cd(SCN)(2)(POM)(2)](n). Wuji Huaxue Xuebao, 2004, 20(4), 403-406.
[41]
Bernal, H.; Cedeño, L. Solvent effects during oxidation-extraction desulfurization process of aromatic sulfur compounds from fuels. Int. J. Chem. React. Eng., 2005, 2005, 3.
[47]
Julião, D.; Gomes, A. C.; Cunha-Silva, L.; Pillinger, M.; Lopes, A. D.; Valença, R.; Ribeiro, J. C.; Gonçalves, I. S.; Balula, S. S. Dichlorodioxomolybdenum (VI) complexes bearing oxygen-donor ligands as catalysts for oxidative desulfurization of simulated and real diesel. J Catalysis Communications, 2019, 105704.
[57]
Hosseini, H.; Hamidi, A. Sulfur Removal of Crude Oil by Ultrasound-Assisted Oxidative Method., 2014.
[58]
Flores, R.; Rodas, A.; Chavarria, W. Desulfurization of fuel oils using an advanced oxidation method., 2004, 49 .
[62]
Khan, Z.; Ali, S. Oxidative desulphurization followed by catalytic adsorption method. South African J. Chem. Eng., 2013, 18(2), 14-28.
[65]
Hosseini, H.; Hamidi, A. In Sulfur Removal of Crude Oil by Ultrasound- Assisted Oxidative MethodProceedings of the International Conference on Biological, Civil and Environmental Engineering (BCEE-2014); Dubai, United Arab Emirates, 2014, pp. 17-18.
[79]
Etemadi, N.; Sepahy, A. A.; Mohebali, G.; Yazdian, F.; Omidi, M. Enhancement of bio-desulfurization capability of a newly isolated
thermophilic bacterium using starch/iron nanoparticles in a controlled
system. Int. J. Biol. Macromol., 2018, 120(Pt B), 1801-1809.
[80]
Silva, T.A.; Schwartz, M.; Souza, P.M.; Garrard, I.; Campos-Takaki, G.M.; Tambourgi, E.B. Desulfurization of Dibenzothiophene
by Pseudomonas fluorescens (UCP 1514) Leading to the
Production of Biphenyl. In: Recent Insights in Petroleum Science
and Engineering; IntechOpen, 2017.
[89]
Mehdizadeh, A.; Ahmadi, A.N.; Fateminassab, F. Deep Desulfurization of Fuel Diesels Using Alkyl Sulfate and Nitrate Containing Imidazolium as Ionic Liquids %J. J. Appl. Chem. Res., 2013, 7(1), 75-85.
[102]
Faghihian, H.; Naeimi, S. Removal of benzothiophene from organic solution by a combined photodegradation-adsorption method. Petrochemical Technology (IJCPT), 2012, 2(1), 16-25.
[107]
Baeza, P.; Aguila, G.; Gracia, F.; Araya, P. Desulfurization by adsorption with copper supported on zirconia. catalysis communications. 2008, 9(5), 751-755.
[118]
Thepwatee, S.; Chekuntod, N.; Chanchawee, A. InLight-Enhanced Adsorptive Desulfurization of Dibenzothiophene Using Supported TiO2-ZrO2; Key Engineering Materials, Trans Tech Publ:, 2019, pp. 391-396.