Structural And Computational Perspectives of Selectively Targeting Mutant Proteins

Page: [365 - 378] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Diseases are often caused by mutant proteins. Many drugs have limited effectiveness and/or toxic side effects because of a failure to selectively target the disease-causing mutant variant, rather than the functional wild type protein. Otherwise, the drugs may even target different proteins with similar structural features. Designing drugs that successfully target mutant proteins selectively represents a major challenge. Decades of cancer research have led to an abundance of potential therapeutic targets, often touted to be “master regulators”. For many of these proteins, there are no FDA-approved drugs available; for others, off-target effects result in dose-limiting toxicity. Cancer-related proteins are an excellent medium to carry the story of mutant-specific targeting, as the disease is both initiated and sustained by mutant proteins; furthermore, current chemotherapies generally fail at adequate selective distinction. This review discusses some of the challenges associated with selective targeting from a structural biology perspective, as well as some of the developments in algorithm approach and computational workflow that can be applied to address those issues. One of the most widely researched proteins in cancer biology is p53, a tumor suppressor. Here, p53 is discussed as a specific example of a challenging target, with contemporary drugs and methodologies used as examples of burgeoning successes. The oncogene KRAS, which has been described as “undruggable”, is another extensively investigated protein in cancer biology. This review also examines KRAS to exemplify progress made towards selective targeting of diseasecausing mutant proteins. Finally, possible future directions relevant to the topic are discussed.

Keywords: Selective targeting, oncogenic mutant, oncogene, p53, KRAS, mutant proteins.

Graphical Abstract

[1]
Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet 2010; 376(9757): 2018-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61029-X] [PMID: 21131035]
[2]
Kakulas BA. The differential diagnosis of the human dystrophinopathies and related disorders. Curr Opin Neurol 1996; 9(5): 380-8.
[http://dx.doi.org/10.1097/00019052-199610000-00012] [PMID: 8894415]
[3]
Laemmle A, Gallagher RC, Keogh A, et al. Frequency and Pathophysiology of Acute Liver Failure in Ornithine Transcarbamylase Deficiency (OTCD). PLoS One 2016; 11(4): e0153358.
[http://dx.doi.org/10.1371/journal.pone.0153358] [PMID: 27070778]
[4]
Weatherall DJ. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet 2001; 2(4): 245-55.
[http://dx.doi.org/10.1038/35066048] [PMID: 11283697]
[5]
Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell 2013; 152(6): 1237-51.
[http://dx.doi.org/10.1016/j.cell.2013.02.014] [PMID: 23498934]
[6]
Pagel KA, Pejaver V, Lin GN, et al. When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. Bioinformatics 2017; 33(14): i389-98.
[http://dx.doi.org/10.1093/bioinformatics/btx272] [PMID: 28882004]
[7]
Ahner A, Gong X, Frizzell RA. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways. FEBS J 2013; 280(18): 4430-8.
[http://dx.doi.org/10.1111/febs.12415] [PMID: 23809253]
[8]
Yamamoto S, Iwakuma T. Regulators of Oncogenic Mutant TP53 Gain of Function. Cancers (Basel) 2018; 11(1)E4
[http://dx.doi.org/10.3390/cancers11010004] [PMID: 30577483]
[9]
Anna A, Monika G. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet 2018; 59(3): 253-68.
[http://dx.doi.org/10.1007/s13353-018-0444-7] [PMID: 29680930]
[10]
Kamanu FK, Medvedeva YA, Schaefer U, Jankovic BR, Archer JA, Bajic VB. Mutations and binding sites of human transcription factors. Front Genet 2012; 3: 100.
[http://dx.doi.org/10.3389/fgene.2012.00100] [PMID: 22670148]
[11]
Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013; 501(7465): 45-51.
[http://dx.doi.org/10.1038/nature12481] [PMID: 24005412]
[12]
Jarjanazi H, Savas S, Pabalan N, Dennis JW, Ozcelik H. Biological implications of SNPs in signal peptide domains of human proteins. Proteins 2008; 70(2): 394-403.
[http://dx.doi.org/10.1002/prot.21548] [PMID: 17680692]
[13]
Mort M, Ivanov D, Cooper DN, Chuzhanova NA. A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 2008; 29(8): 1037-47.
[http://dx.doi.org/10.1002/humu.20763] [PMID: 18454449]
[14]
Klauer AA, van Hoof A. Degradation of mRNAs that lack a stop codon: a decade of nonstop progress. Wiley Interdiscip Rev RNA 2012; 3(5): 649-60.
[http://dx.doi.org/10.1002/wrna.1124] [PMID: 22740367]
[15]
Fung KL, Pan J, Ohnuma S, et al. MDR1 synonymous polymorphisms alter transporter specificity and protein stability in a stable epithelial monolayer. Cancer Res 2014; 74(2): 598-608.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2064] [PMID: 24305879]
[16]
Cozzini P, Kellogg GE, Spyrakis F, et al. Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 2008; 51(20): 6237-55.
[http://dx.doi.org/10.1021/jm800562d] [PMID: 18785728]
[17]
Henzler-Wildman K, Kern D. Dynamic personalities of proteins. Nature 2007; 450(7172): 964-72.
[http://dx.doi.org/10.1038/nature06522] [PMID: 18075575]
[18]
Cohen I, Coban M, Shahar A, et al. Disulfide engineering of human Kunitz-type serine protease inhibitors enhances proteolytic stability and target affinity toward mesotrypsin. J Biol Chem 2019; 294(13): 5105-20.
[http://dx.doi.org/10.1074/jbc.RA118.007292] [PMID: 30700553]
[19]
Kayode O, Wang R, Pendlebury DF, et al. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis. J Biol Chem 2016; 291(51): 26304-19.
[http://dx.doi.org/10.1074/jbc.M116.758417] [PMID: 27810896]
[20]
Gur M, Blackburn EA, Ning J, et al. Molecular dynamics simulations of site point mutations in the TPR domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties. J Chem Phys 2018; 148(14): 145101.
[http://dx.doi.org/10.1063/1.5019457] [PMID: 29655319]
[21]
Vatansever S, Erman B, Gümüş ZH. Oncogenic G12D mutation alters local conformations and dynamics of K-Ras. Sci Rep 2019; 9(1): 11730.
[http://dx.doi.org/10.1038/s41598-019-48029-z] [PMID: 31409810]
[22]
Lemieux RU, Spohr U. How Emil Fischer was led to the lock and key concept for enzyme specificity. Adv Carbohydr Chem Biochem 1994; 50: 1-20.
[http://dx.doi.org/10.1016/S0065-2318(08)60149-3] [PMID: 7942253]
[23]
Koshland DE. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci USA 1958; 44(2): 98-104.
[http://dx.doi.org/10.1073/pnas.44.2.98] [PMID: 16590179]
[24]
Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res 2005; 33(Web Server issue): W382-8.
[http://dx.doi.org/10.1093/nar/gki387]
[25]
Buß O, Rudat J, Ochsenreither K. FoldX as Protein Engineering Tool: Better Than Random Based Approaches? Comput Struct Biotechnol J 2018; 16: 25-33.
[http://dx.doi.org/10.1016/j.csbj.2018.01.002] [PMID: 30275935]
[26]
Siderius M, Jagodzinski F. Mutation Sensitivity Maps: Identifying Residue Substitutions That Impact Protein Structure Via a Rigidity Analysis In Silico Mutation Approach. J Comput Biol 2018; 25(1): 89-102.
[http://dx.doi.org/10.1089/cmb.2017.0165] [PMID: 29035580]
[27]
Dorantes-Gilardi R, Bourgeat L, Pacini L, Vuillon L, Lesieur C. In proteins, the structural responses of a position to mutation rely on the Goldilocks principle: not too many links, not too few. Phys Chem Chem Phys 2018; 20(39): 25399-410.
[http://dx.doi.org/10.1039/C8CP04530E] [PMID: 30272062]
[28]
Venkatachalam CM, Jiang X, Oldfield T, Waldman M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 2003; 21(4): 289-307.
[http://dx.doi.org/10.1016/S1093-3263(02)00164-X] [PMID: 12479928]
[29]
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997; 267(3): 727-48.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[30]
Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47(7): 1739-49.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[31]
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[PMID: 19499576]
[32]
Gagnon JK, Law SM, Brooks CL III. Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM. J Comput Chem 2016; 37(8): 753-62.
[http://dx.doi.org/10.1002/jcc.24259] [PMID: 26691274]
[33]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004; 3(11): 935-49.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[34]
Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev 2017; 9(2): 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[35]
Isralewitz B, Gao M, Schulten K. Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 2001; 11(2): 224-30.
[http://dx.doi.org/10.1016/S0959-440X(00)00194-9] [PMID: 11297932]
[36]
Engels M, Jacoby E, Krüger P, Schlitter J, Wollmer A. The T<R structural transition of insulin; pathways suggested by targeted energy minimization. Protein Eng 1992; 5(7): 669-77.
[http://dx.doi.org/10.1093/protein/5.7.669] [PMID: 1480621]
[37]
Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 1999; 1999(314): 141-51.
[http://dx.doi.org/10.1016/S0009-2614(99)01123-9]
[38]
Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci USA 2002; 99(20): 12562-6.
[http://dx.doi.org/10.1073/pnas.202427399] [PMID: 12271136]
[39]
Peng Y, Yang Y, Li L, Jia Z, Cao W, Alexov E. DFMD: Fast and Effective DelPhiForce Steered Molecular Dynamics Approach to Model Ligand Approach Toward a Receptor: Application to Spermine Synthase Enzyme. Front Mol Biosci 2019; 6: 74.
[http://dx.doi.org/10.3389/fmolb.2019.00074] [PMID: 31552265]
[40]
Doerr S, Harvey MJ, Noé F, De Fabritiis G. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J Chem Theory Comput 2016; 12(4): 1845-52.
[http://dx.doi.org/10.1021/acs.jctc.6b00049] [PMID: 26949976]
[41]
Caulfield TR, Devkota B, Rollins GC. Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data. J Biophys 2011.: 2011219515.
[http://dx.doi.org/10.1155/2011/219515] [PMID: 21716650]
[42]
Zavadlav J, Marrink SJ, Praprotnik M. Adaptive Resolution Simulation of Supramolecular Water: The Concurrent Making, Breaking, and Remaking of Water Bundles. J Chem Theory Comput 2016; 12(8): 4138-45.
[http://dx.doi.org/10.1021/acs.jctc.6b00536] [PMID: 27409519]
[43]
Bax B, Chung CW, Edge C. Getting the chemistry right: protonation, tautomers and the importance of H atoms in biological chemistry. Acta Crystallogr D Struct Biol 2017; 73(Pt 2): 131-40.
[http://dx.doi.org/10.1107/S2059798316020283] [PMID: 28177309]
[44]
Ahmed HU, Blakeley MP, Cianci M, Cruickshank DW, Hubbard JA, Helliwell JR. The determination of protonation states in proteins. Acta Crystallogr D Biol Crystallogr 2007; 63(Pt 8): 906-22.
[http://dx.doi.org/10.1107/S0907444907029976] [PMID: 17642517]
[45]
Kwon H, Smith O, Raven EL, Moody PC. Combining X-ray and neutron crystallography with spectroscopy. Acta Crystallogr D Struct Biol 2017; 73(Pt 2): 141-7.
[http://dx.doi.org/10.1107/S2059798316016314] [PMID: 28177310]
[46]
Lippert T, Rarey M. Fast automated placement of polar hydrogen atoms in protein-ligand complexes. J Cheminform 2009; 1(1): 13.
[http://dx.doi.org/10.1186/1758-2946-1-13] [PMID: 20298519]
[47]
Jing Z, Liu C, Cheng SY, et al. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Annu Rev Biophys 2019; 48: 371-94.
[http://dx.doi.org/10.1146/annurev-biophys-070317-033349] [PMID: 30916997]
[48]
Ben-Shimon A, Shalev DE, Niv MY. Protonation States in molecular dynamics simulations of peptide folding and binding. Curr Pharm Des 2013; 19(23): 4173-81.
[http://dx.doi.org/10.2174/1381612811319230003] [PMID: 23170889]
[49]
Tripathi A, Fornabaio M, Spyrakis F, Mozzarelli A, Cozzini P, Kellogg GE. Complexity in modeling and understanding protonation states: computational titration of HIV-1-protease-inhibitor complexes. Chem Biodivers 2007; 4(11): 2564-77.
[http://dx.doi.org/10.1002/cbdv.200790210] [PMID: 18027371]
[50]
Park MS, Gao C, Stern HA. Estimating binding affinities by docking/scoring methods using variable protonation states. Proteins 2011; 79(1): 304-14.
[http://dx.doi.org/10.1002/prot.22883] [PMID: 21058298]
[51]
Finan C, Gaulton A, Kruger FA, et al. The druggable genome and support for target identification and validation in drug development. Sci Transl Med 2017; 9(383), eaag1166.
[http://dx.doi.org/10.1126/scitranslmed.aag1166] [PMID: 28356508]
[52]
Kesik-Brodacka M. Progress in biopharmaceutical development. Biotechnol Appl Biochem 2018; 65(3): 306-22.
[http://dx.doi.org/10.1002/bab.1617] [PMID: 28972297]
[53]
Lagassé HA, Alexaki A, Simhadri VL, et al. Recent advances in (therapeutic protein) drug development. F1000 Res 2017; 6: 113.
[http://dx.doi.org/10.12688/f1000research.9970.1] [PMID: 28232867]
[54]
Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem 2018; 26(10): 2700-7.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[55]
Nimjee SM, White RR, Becker RC, Sullenger BA. Aptamers as Therapeutics. Annu Rev Pharmacol Toxicol 2017; 57: 61-79.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104558] [PMID: 28061688]
[56]
Ran X, Gestwicki JE. Inhibitors of protein-protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Curr Opin Chem Biol 2018; 44: 75-86.
[http://dx.doi.org/10.1016/j.cbpa.2018.06.004] [PMID: 29908451]
[57]
Wu P, Clausen MH, Nielsen TE. Allosteric small-molecule kinase inhibitors. Pharmacol Ther 2015; 156: 59-68.
[http://dx.doi.org/10.1016/j.pharmthera.2015.10.002] [PMID: 26478442]
[58]
Ahn S, Pani B, Kahsai AW, et al. Small-Molecule Positive Allosteric Modulators of the β2-Adrenoceptor Isolated from DNA-Encoded Libraries. Mol Pharmacol 2018; 94(2): 850-61.
[http://dx.doi.org/10.1124/mol.118.111948] [PMID: 29769246]
[59]
Lu S, Zhang J. Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug-Target Interactions. J Med Chem 2019; 62(1): 24-45.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01844] [PMID: 29457894]
[60]
Bogaert E, Boeynaems S, Kato M, Guo L, Caulfield TR, Steyaert J, et al. Molecular Dissection of FUS Points at Synergistic Effect of Low-Complexity Domains in Toxicity. Cell Rep 2018; 24(3): 529-37. e4.
[http://dx.doi.org/10.1016/j.celrep.2018.06.070]
[61]
Caulfield T, Devkota B. Motion of transfer RNA from the A/T state into the A-site using docking and simulations. Proteins 2012; 80(11): 2489-500.
[http://dx.doi.org/10.1002/prot.24131] [PMID: 22730134]
[62]
Caulfield T, Medina-Franco JL. Molecular dynamics simulations of human DNA methyltransferase 3B with selective inhibitor nanaomycin A. J Struct Biol 2011; 176(2): 185-91.
[http://dx.doi.org/10.1016/j.jsb.2011.07.015] [PMID: 21839172]
[63]
Caulfield TR. Inter-ring rotation of apolipoprotein A-I protein monomers for the double-belt model using biased molecular dynamics. J Mol Graph Model 2011; 29(8): 1006-14.
[http://dx.doi.org/10.1016/j.jmgm.2011.04.005] [PMID: 21570882]
[64]
Caulfield TR, Fiesel FC, Moussaud-Lamodière EL, Dourado DFAR, Flores SC, Springer W. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin. PLOS Comput Biol 2014; 10(11)e1003935.
[http://dx.doi.org/10.1371/journal.pcbi.1003935] [PMID: 25375667]
[65]
Caulfield TR, Fiesel FC, Springer W. Activation of the E3 ubiquitin ligase Parkin. Biochem Soc Trans 2015; 43(2): 269-74.
[http://dx.doi.org/10.1042/BST20140321] [PMID: 25849928]
[66]
Caulfield TR, Richter JE Jr, Brown EE, Mohammad AN, Judge DP, Atwal PS. Protein molecular modeling techniques investigating novel TAB2 variant R347X causing cardiomyopathy and congenital heart defects in multigenerational family. Mol Genet Genomic Med 2018.
[http://dx.doi.org/10.1002/mgg3.401] [PMID: 29700987]
[67]
Chitta K, Paulus A, Akhtar S, et al. Targeted inhibition of the deubiquitinating enzymes, USP14 and UCHL5, induces proteotoxic stress and apoptosis in Waldenström macroglobulinaemia tumour cells. Br J Haematol 2015; 169(3): 377-90.
[http://dx.doi.org/10.1111/bjh.13304] [PMID: 25691154]
[68]
Fifield AL, Hanavan PD, Faigel DO, Sergienko E, Bobkov A, Meurice N, et al. Molecular Inhibitor of QSOX1 Suppresses Tumor Growth in vivo. Mol Cancer Ther 2019.
[PMID: 31575656]
[69]
Hanna Al Shaikh R, Caulfield T, Strongosky AJ, et al. TRIO gene segregation in a family with cerebellar ataxia. Neurol Neurochir Pol 2018; 52(6): 743-9.
[http://dx.doi.org/10.1016/j.pjnns.2018.09.006] [PMID: 30279051]
[70]
Harris AL, Blackburn PR, Richter JE Jr, et al. Whole exome sequencing and molecular modeling of a missense variant in TNFAIP3 that segregates with disease in a family with chronic urticaria and angioedema. Case Rep Genet 2018.: 20186968395.
[http://dx.doi.org/10.1155/2018/6968395] [PMID: 29682366]
[71]
Hines SL, Mohammad AN, Jackson J, Macklin S, Caulfield TR. Integrative data fusion for comprehensive assessment of a novel CHEK2 variant using combined genomics, imaging, and functional-structural assessments via protein informatics. Mol Omics 2019; 15(1): 59-66.
[http://dx.doi.org/10.1039/C8MO00137E] [PMID: 30633282]
[72]
Hines SL, Richter JE Jr, Mohammad AN, Mahim J, Atwal PS, Caulfield TR. Protein informatics combined with multiple data sources enriches the clinical characterization of novel TRPV4 variant causing an intermediate skeletal dysplasia. Mol Genet Genomic Med 2019; 7(3)e566.
[http://dx.doi.org/10.1002/mgg3.566] [PMID: 30693671]
[73]
Kayode O, Huang Z, Soares AS, et al. Small molecule inhibitors of mesotrypsin from a structure-based docking screen. PLoS One 2017; 12(5)e0176694.
[http://dx.doi.org/10.1371/journal.pone.0176694] [PMID: 28463992]
[74]
Lara-Velazquez M, Perdomo-Pantoja A, Blackburn PR, Gass JM, Caulfield TR, Atwal PS. A novel splice site variant in CYP11A1 in trans with the p.E314K variant in a male patient with congenital adrenal insufficiency. Mol Genet Genomic Med 2017; 5(6): 781-7.
[http://dx.doi.org/10.1002/mgg3.322] [PMID: 29178636]
[75]
Macklin S, Mohammed A, Jackson J, Hines SL, Atwal PS, Caulfield T. Personalized molecular modeling for pinpointing associations of protein dysfunction and variants associated with hereditary cancer syndromes. Mol Genet Genomic Med 2018; 6(5): 805-10.
[http://dx.doi.org/10.1002/mgg3.447] [PMID: 30043523]
[76]
Madamsetty VS, Pal K, Dutta SK, et al. Design and Evaluation of PEGylated Liposomal Formulation of a Novel Multikinase Inhibitor for Enhanced Chemosensitivity and Inhibition of Metastatic Pancreatic Ductal Adenocarcinoma. Bioconjug Chem 2019; 30(10): 2703-13.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00632] [PMID: 31584260]
[77]
Pal K, Al-Suraih F, Gonzalez-Rodriguez R, et al. Multifaceted peptide assisted one-pot synthesis of gold nanoparticles for plectin-1 targeted gemcitabine delivery in pancreatic cancer. Nanoscale 2017; 9(40): 15622-34.
[http://dx.doi.org/10.1039/C7NR03172F] [PMID: 28991294]
[78]
Paulus A, Akhtar S, Caulfield TR, et al. Coinhibition of the deubiquitinating enzymes, USP14 and UCHL5, with VLX1570 is lethal to ibrutinib- or bortezomib-resistant Waldenstrom macroglobulinemia tumor cells. Blood Cancer J 2016; 6(11)e492.
[http://dx.doi.org/10.1038/bcj.2016.93] [PMID: 27813535]
[79]
Paulus A, Akhtar S, Yousaf H, et al. Waldenstrom macroglobulinemia cells devoid of BTKC481S or CXCR4WHIM-like mutations acquire resistance to ibrutinib through upregulation of Bcl-2 and AKT resulting in vulnerability towards venetoclax or MK2206 treatment. Blood Cancer J 2017; 7(5)e565.
[http://dx.doi.org/10.1038/bcj.2017.40] [PMID: 28548645]
[80]
Richter JE, Robles HG, Mauricio E, Mohammad A, Atwal PS, Caulfield TR. Protein molecular modeling shows residue T599 is critical to wild-type function of POLG and description of a novel variant associated with the SANDO phenotype. Hum Genome Var 2018; 5: 18016.
[http://dx.doi.org/10.1038/hgv.2018.16] [PMID: 29644085]
[81]
Richter JE Jr, Samreen A, Vadlamudi C, et al. Genomic Observations of a Rare/Pathogenic SMAD3 Variant in Loeys−Dietz Syndrome 3 Confirmed by Protein Informatics and Structural Investigations. Medicina (Kaunas) 2019; 55(5)E137.
[http://dx.doi.org/10.3390/medicina55050137] [PMID: 31096651]
[82]
Richter JE Jr, Zimmermann MT, Blackburn PR, et al. Protein modeling and clinical description of a novel in-frame GLB1 deletion causing GM1 gangliosidosis type II. Mol Genet Genomic Med 2018; 6(6): 1229-35.
[http://dx.doi.org/10.1002/mgg3.454] [PMID: 30187681]
[83]
Vivoli M, Caulfield TR, Martínez-Mayorga K, Johnson AT, Jiao GS, Lindberg I. Inhibition of prohormone convertases PC1/3 and PC2 by 2,5-dideoxystreptamine derivatives. Mol Pharmacol 2012; 81(3): 440-54.
[http://dx.doi.org/10.1124/mol.111.077040] [PMID: 22169851]
[84]
von Roemeling CA, Caulfield TR, Marlow L, et al. Accelerated bottom-up drug design platform enables the discovery of novel stearoyl-CoA desaturase 1 inhibitors for cancer therapy. Oncotarget 2017; 9(1): 3-20.
[PMID: 29416592]
[85]
von Roemeling CA, Marlow LA, Wei JJ, et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res 2013; 19(9): 2368-80.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3249] [PMID: 23633458]
[86]
Wang X, D’Arcy P, Caulfield TR, et al. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem Biol Drug Des 2015; 86(5): 1036-48.
[http://dx.doi.org/10.1111/cbdd.12571] [PMID: 25854145]
[87]
Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 2019; 15(9): 501-18.
[http://dx.doi.org/10.1038/s41582-019-0228-7] [PMID: 31367008]
[88]
Zhang YJ, Caulfield T, Xu YF, et al. The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet 2013; 22(15): 3112-22.
[http://dx.doi.org/10.1093/hmg/ddt166] [PMID: 23575225]
[89]
Zhang YJ, Jansen-West K, Xu YF, et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 2014; 128(4): 505-24.
[http://dx.doi.org/10.1007/s00401-014-1336-5] [PMID: 25173361]
[90]
Pena DA, Andrade VP, Silva GA, et al. Rational design and validation of an anti-protein kinase C active-state specific antibody based on conformational changes. Sci Rep 2016; 6: 22114.
[http://dx.doi.org/10.1038/srep22114] [PMID: 26911897]
[91]
Charpentier TH, Waldo GL, Lowery-Gionta EG, et al. Potent and Selective Peptide-based Inhibition of the G Protein Gαq. J Biol Chem 2016; 291(49): 25608-16.
[http://dx.doi.org/10.1074/jbc.M116.740407] [PMID: 27742837]
[92]
Arsiwala A, Castro A, Frey S, Stathos M, Kane RS. Designing Multivalent Ligands to Control Biological Interactions: From Vaccines and Cellular Effectors to Targeted Drug Delivery. Chem Asian J 2019; 14(2): 244-55.
[http://dx.doi.org/10.1002/asia.201801677] [PMID: 30523672]
[93]
Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol 2019; 37(9): 1038-40.
[http://dx.doi.org/10.1038/s41587-019-0224-x] [PMID: 31477924]
[94]
Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int J Mol Sci 2019; 20(4)E952.
[http://dx.doi.org/10.3390/ijms20040952] [PMID: 30813239]
[95]
Kim DW, Kim KC, Kim KB, Dunn CT, Park KS. Transcriptional deregulation underlying the pathogenesis of small cell lung cancer. Transl Lung Cancer Res 2018; 7(1): 4-20.
[http://dx.doi.org/10.21037/tlcr.2017.10.07] [PMID: 29535909]
[96]
Duffy MJ, Synnott NC, Crown J. Mutant p53 in breast cancer: potential as a therapeutic target and biomarker. Breast Cancer Res Treat 2018; 170(2): 213-9.
[http://dx.doi.org/10.1007/s10549-018-4753-7] [PMID: 29564741]
[97]
Rodriguez-Ramirez C, Nör JE. p53 and Cell Fate: Sensitizing Head and Neck Cancer Stem Cells to Chemotherapy. Crit Rev Oncog 2018; 23(3-4): 173-87.
[http://dx.doi.org/10.1615/CritRevOncog.2018027353] [PMID: 30311573]
[98]
Li S, Gao M, Li Z, et al. p53 and P-glycoprotein influence chemoresistance in hepatocellular carcinoma. Front Biosci (Elite Ed) 2018; 10: 461-8.
[http://dx.doi.org/10.2741/e833] [PMID: 29772519]
[99]
Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 1998; 12(19): 2973-83.
[http://dx.doi.org/10.1101/gad.12.19.2973] [PMID: 9765199]
[100]
Hientz K, Mohr A, Bhakta-Guha D, Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 2017; 8(5): 8921-46.
[http://dx.doi.org/10.18632/oncotarget.13475] [PMID: 27888811]
[101]
Harms KL, Chen X. The C terminus of p53 family proteins is a cell fate determinant. Mol Cell Biol 2005; 25(5): 2014-30.
[http://dx.doi.org/10.1128/MCB.25.5.2014-2030.2005] [PMID: 15713654]
[102]
Lin J, Chen J, Elenbaas B, Levine AJ. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 1994; 8(10): 1235-46.
[http://dx.doi.org/10.1101/gad.8.10.1235] [PMID: 7926727]
[103]
Zhu J, Zhou W, Jiang J, Chen X. Identification of a novel p53 functional domain that is necessary for mediating apoptosis. J Biol Chem 1998; 273(21): 13030-6.
[http://dx.doi.org/10.1074/jbc.273.21.13030] [PMID: 9582339]
[104]
Zhu J, Jiang J, Zhou W, Zhu K, Chen X. Differential regulation of cellular target genes by p53 devoid of the PXXP motifs with impaired apoptotic activity. Oncogene 1999; 18(12): 2149-55.
[http://dx.doi.org/10.1038/sj.onc.1202533] [PMID: 10321740]
[105]
Larsen S, Yokochi T, Isogai E, Nakamura Y, Ozaki T, Nakagawara A. LMO3 interacts with p53 and inhibits its transcriptional activity. Biochem Biophys Res Commun 2010; 392(3): 252-7.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.010] [PMID: 19995558]
[106]
Marchenko ND, Hanel W, Li D, Becker K, Reich N, Moll UM. Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-alpha3 binding. Cell Death Differ 2010; 17(2): 255-67.
[http://dx.doi.org/10.1038/cdd.2009.173] [PMID: 19927155]
[107]
Demir Ö, Ieong PU, Amaro RE. Full-length p53 tetramer bound to DNA and its quaternary dynamics. Oncogene 2017; 36(10): 1451-60.
[http://dx.doi.org/10.1038/onc.2016.321] [PMID: 27641333]
[108]
Bouaoun L, Sonkin D, Ardin M, et al. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data. Hum Mutat 2016; 37(9): 865-76.
[http://dx.doi.org/10.1002/humu.23035] [PMID: 27328919]
[109]
Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2(5): 401-4.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[110]
Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 2018; 173(2): 371-85. e18.
[111]
Chen H, Li C, Peng X, Zhou Z, Weinstein JN. Cancer Genome Atlas Research N, et al. A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell 2018; 173(2): 386-99. e12.
[112]
Soussi T. The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci 2000; 910: 121-37.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06705.x] [PMID: 10911910]
[113]
Soussi T, Wiman KG. TP53: an oncogene in disguise. Cell Death Differ 2015; 22(8): 1239-49.
[http://dx.doi.org/10.1038/cdd.2015.53] [PMID: 26024390]
[114]
Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25(3): 304-17.
[http://dx.doi.org/10.1016/j.ccr.2014.01.021] [PMID: 24651012]
[115]
Terzian T, Suh YA, Iwakuma T, et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 2008; 22(10): 1337-44.
[http://dx.doi.org/10.1101/gad.1662908] [PMID: 18483220]
[116]
Zhang YX, Pan WY, Chen J. p53 and its isoforms in DNA double-stranded break repair. J Zhejiang Univ Sci B 2019; 20(6): 457-66.
[http://dx.doi.org/10.1631/jzus.B1900167] [PMID: 31090271]
[117]
Halazonetis TD, Kandil AN. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J 1993; 12(13): 5057-64.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06199.x] [PMID: 8262048]
[118]
Abarzúa P, LoSardo JE, Gubler ML, et al. Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene 1996; 13(11): 2477-82.
[PMID: 8957091]
[119]
Brachmann RK, Yu K, Eby Y, Pavletich NP, Boeke JD. Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J 1998; 17(7): 1847-59.
[http://dx.doi.org/10.1093/emboj/17.7.1847] [PMID: 9524109]
[120]
Nikolova PV, Wong KB, DeDecker B, Henckel J, Fersht AR. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. EMBO J 2000; 19(3): 370-8.
[http://dx.doi.org/10.1093/emboj/19.3.370] [PMID: 10654936]
[121]
Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science 1999; 286(5449): 2507-10.
[http://dx.doi.org/10.1126/science.286.5449.2507] [PMID: 10617466]
[122]
Bykov VJ, Issaeva N, Shilov A, et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 2002; 8(3): 282-8.
[http://dx.doi.org/10.1038/nm0302-282] [PMID: 11875500]
[123]
Synnott NC, Madden SF, Bykov VJN, Crown J, Wiman KG, Duffy MJ. The Mutant p53-Targeting Compound APR-246 Induces ROS-Modulating Genes in Breast Cancer Cells. Transl Oncol 2018; 11(6): 1343-9.
[http://dx.doi.org/10.1016/j.tranon.2018.08.009] [PMID: 30196236]
[124]
Punganuru SR, Madala HR, Venugopal SN, Samala R, Mikelis C, Srivenugopal KS. Design and synthesis of a C7-aryl piperlongumine derivative with potent antimicrotubule and mutant p53-reactivating properties. Eur J Med Chem 2016; 107: 233-44.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.052] [PMID: 26599530]
[125]
Soragni A, Janzen DM, Johnson LM, et al. A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas. Cancer Cell 2016; 29(1): 90-103.
[http://dx.doi.org/10.1016/j.ccell.2015.12.002] [PMID: 26748848]
[126]
Xu J, Reumers J, Couceiro JR, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 2011; 7(5): 285-95.
[http://dx.doi.org/10.1038/nchembio.546] [PMID: 21445056]
[127]
Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 2014; 15(6): 384-96.
[http://dx.doi.org/10.1038/nrm3810] [PMID: 24854788]
[128]
Baud MGJ, Bauer MR, Verduci L, et al. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Eur J Med Chem 2018; 152: 101-14.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.035] [PMID: 29702446]
[129]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[130]
Saraste M, Sibbald PR, Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 1990; 15(11): 430-4.
[http://dx.doi.org/10.1016/0968-0004(90)90281-F] [PMID: 2126155]
[131]
Wittinghofer A, Vetter IR. Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 2011; 80: 943-71.
[http://dx.doi.org/10.1146/annurev-biochem-062708-134043] [PMID: 21675921]
[132]
Liu S, Cerione RA, Clardy J. Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 2002; 99(5): 2743-7.
[http://dx.doi.org/10.1073/pnas.042454899] [PMID: 11867708]
[133]
Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science 2001; 294(5545): 1299-304.
[http://dx.doi.org/10.1126/science.1062023] [PMID: 11701921]
[134]
Hancock JF, Paterson H, Marshall CJ. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 1990; 63(1): 133-9.
[http://dx.doi.org/10.1016/0092-8674(90)90294-O] [PMID: 2208277]
[135]
Zeng M, Lu J, Li L, Feru F, Quan C, Gero TW, et al. Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C. Cell Chem Biol 2017; 24(8): 1005-16. e3.
[136]
Edkins S, O’Meara S, Parker A, et al. Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol Ther 2006; 5(8): 928-32.
[http://dx.doi.org/10.4161/cbt.5.8.3251] [PMID: 16969076]
[137]
Berndt N, Hamilton AD, Sebti SM. Targeting protein prenylation for cancer therapy. Nat Rev Cancer 2011; 11(11): 775-91.
[http://dx.doi.org/10.1038/nrc3151] [PMID: 22020205]
[138]
Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM. Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 1997; 272(22): 14093-7.
[http://dx.doi.org/10.1074/jbc.272.22.14093] [PMID: 9162034]
[139]
Lane KT, Beese LS. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 2006; 47(4): 681-99.
[http://dx.doi.org/10.1194/jlr.R600002-JLR200] [PMID: 16477080]
[140]
Chandra A, Grecco HE, Pisupati V, et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol 2011; 14(2): 148-58.
[http://dx.doi.org/10.1038/ncb2394] [PMID: 22179043]
[141]
Spoerner M, Nuehs A, Ganser P, Herrmann C, Wittinghofer A, Kalbitzer HR. Conformational states of Ras complexed with the GTP analogue GppNHp or GppCH2p: implications for the interaction with effector proteins. Biochemistry 2005; 44(6): 2225-36.
[http://dx.doi.org/10.1021/bi0488000] [PMID: 15697248]
[142]
Sayyed-Ahmad A, Prakash P, Gorfe AA. Distinct dynamics and interaction patterns in H- and K-Ras oncogenic P-loop mutants. Proteins 2017; 85(9): 1618-32.
[http://dx.doi.org/10.1002/prot.25317] [PMID: 28498561]
[143]
Taveras AG, Remiszewski SW, Doll RJ, et al. Ras oncoprotein inhibitors: the discovery of potent, ras nucleotide exchange inhibitors and the structural determination of a drug-protein complex. Bioorg Med Chem 1997; 5(1): 125-33.
[http://dx.doi.org/10.1016/S0968-0896(96)00202-7] [PMID: 9043664]
[144]
Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013; 503(7477): 548-51.
[http://dx.doi.org/10.1038/nature12796] [PMID: 24256730]
[145]
Erlanson DA, Braisted AC, Raphael DR, et al. Site-directed ligand discovery. Proc Natl Acad Sci USA 2000; 97(17): 9367-72.
[http://dx.doi.org/10.1073/pnas.97.17.9367] [PMID: 10944209]
[146]
Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, et al. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell 2018; 172(3): 578-89. e17.
[147]
Kato-Stankiewicz J, Hakimi I, Zhi G, et al. Inhibitors of Ras/Raf-1 interaction identified by two-hybrid screening revert Ras-dependent transformation phenotypes in human cancer cells. Proc Natl Acad Sci USA 2002; 99(22): 14398-403.
[http://dx.doi.org/10.1073/pnas.222222699] [PMID: 12391290]
[148]
Grant BJ, Lukman S, Hocker HJ, et al. Novel allosteric sites on Ras for lead generation. PLoS One 2011; 6(10)e25711.
[http://dx.doi.org/10.1371/journal.pone.0025711] [PMID: 22046245]
[149]
Brenke R, Kozakov D, Chuang GY, et al. Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics 2009; 25(5): 621-7.
[http://dx.doi.org/10.1093/bioinformatics/btp036] [PMID: 19176554]
[150]
Harris R, Olson AJ, Goodsell DS. Automated prediction of ligand-binding sites in proteins. Proteins 2008; 70(4): 1506-17.
[http://dx.doi.org/10.1002/prot.21645] [PMID: 17910060]
[151]
Shima F, Yoshikawa Y, Ye M, et al. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc Natl Acad Sci USA 2013; 110(20): 8182-7.
[http://dx.doi.org/10.1073/pnas.1217730110] [PMID: 23630290]
[152]
Welsch ME, Kaplan A, Chambers JM, Stokes ME, Bos PH, Zask A, et al. Multivalent Small-Molecule Pan-RAS Inhibitors. Cell 2017; 168(5): 878-89. e29.
[http://dx.doi.org/10.1016/j.cell.2017.02.006]
[153]
Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 2015; 16(5): 281-98.
[http://dx.doi.org/10.1038/nrm3979] [PMID: 25907612]
[154]
Ambrogio C, Kohler J, Zhou ZW, Wang H, Paranal R, Li J, et al. KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS. Cell 2018; 172(4): 857-68. e15.
[http://dx.doi.org/10.1016/j.cell.2017.12.020]
[155]
Spencer-Smith R, Koide A, Zhou Y, et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol 2017; 13(1): 62-8.
[http://dx.doi.org/10.1038/nchembio.2231] [PMID: 27820802]
[156]
Sha F, Salzman G, Gupta A, Koide S. Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci 2017; 26(5): 910-24.
[http://dx.doi.org/10.1002/pro.3148] [PMID: 28249355]