Bio-organometallic Peptide Conjugates: Recent Advances in Their Synthesis and Prospects for Biomedical Application

Page: [2508 - 2523] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

One area of organometallic chemistry that has attracted great interest in recent years is the syntheses, characterization and study of organometallic complexes conjugated to biomolecules with different steric and electronic properties as potential therapeutic agents against cancer and malaria, as antibiotics and as radiopharmaceuticals. This minireview focuses on the unique structural diversity that has recently been discovered in α- amino acids and the reactions of metallocene complexes with peptides having different chemical behavior and potential medical applications. Replacing α-amino acids with metallocene fragments is an effective way of selectively influencing the physicochemical, structural, electrochemical and biological properties of the peptides. Consequently, research in the field of bioorganometallic chemistry offers the opportunity to develop bioactive metal compounds as an innovative and promising approach in the search for pharmacological control of different diseases.

Keywords: Organometallic-peptide, metallocene, sandwich structures, solid-phase peptide synthesis, biorganometallic chemistry, biological activity.

Graphical Abstract

[1]
Renfrew, A.K. Transition metal complexes with bioactive ligands: mechanisms for selective ligand release and applications for drug delivery. Metallomics, 2014, 6(8), 1324-1335.
[http://dx.doi.org/10.1039/C4MT00069B] [PMID: 24850462]
[2]
Wilson, J.J.; Lippard, S.J. Synthetic methods for the preparation of platinum anticancer complexes. Chem. Rev., 2014, 114(8), 4470-4495.
[http://dx.doi.org/10.1021/cr4004314] [PMID: 24283498]
[3]
Albada, B.; Metzler-Nolte, N. Organometallic-peptide bioconjugates: synthetic strategies and medicinal applications. Chem. Rev., 2016, 116(19), 11797-11839.
[http://dx.doi.org/10.1021/acs.chemrev.6b00166] [PMID: 27627217]
[4]
van Staveren, D.R.; Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene. Chem. Rev., 2004, 104(12), 5931-5985.
[http://dx.doi.org/10.1021/cr0101510] [PMID: 15584693]
[5]
Harding, M.M.; Mokdsi, G. Antitumour metallocenes: structure-activity studies and interactions with biomolecules. Curr. Med. Chem., 2000, 7(12), 1289-1303.
[http://dx.doi.org/10.2174/0929867003374066] [PMID: 11032972]
[6]
Hassan, A.S.; Hafez, T.S. Antimicrobial activities of ferrocenyl complexes: a review. J. Appl. Pharm. Sci., 2018, 8, 156-165.
[7]
Hillard, E.; Vessières, A.; Thouin, L.; Jaouen, G.; Amatore, C. Ferrocene-mediated proton-coupled electron transfer in a series of ferrocifen-type breast-cancer drug candidates. Angew. Chem. Int. Ed. Engl., 2005, 45(2), 285-290.
[http://dx.doi.org/10.1002/anie.200502925] [PMID: 16312004]
[8]
Jaouen, G.; Vessières, A.; Top, S. Ferrocifen type anti cancer drugs. Chem. Soc. Rev., 2015, 44(24), 8802-8817.
[http://dx.doi.org/10.1039/C5CS00486A] [PMID: 26486993]
[9]
Biot, C.; Nosten, F.; Fraisse, L.; Ter-Minassian, D.; Khalife, J.; Dive, D. The antimalarial ferroquine: from bench to clinic. Parasite, 2011, 18(3), 207-214.
[http://dx.doi.org/10.1051/parasite/2011183207] [PMID: 21894260]
[10]
Dubar, F.; Khalife, J.; Brocard, J.; Dive, D.; Biot, C. Ferroquine, an ingenious antimalarial drug: thoughts on the mechanism of action. Molecules, 2008, 13(11), 2900-2907.
[http://dx.doi.org/10.3390/molecules13112900] [PMID: 19020475]
[11]
Peter, S.; Aderibigbe, B.A. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules, 2019, 24(19), 3604.
[http://dx.doi.org/10.3390/molecules24193604] [PMID: 31591298]
[12]
Bray, B.L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov., 2003, 2(7), 587-593.
[http://dx.doi.org/10.1038/nrd1133] [PMID: 12815383]
[13]
Dirscherl, G.; Knape, R.; Hanson, P.; König, B. Solid-phase synthesis of metal-complex containing peptides. Tetrahedron, 2007, 63, 4918-4928.
[http://dx.doi.org/10.1016/j.tet.2007.03.147]
[14]
Chantson, J.T.; Verga Falzacappa, M.V.; Crovella, S.; Metzler-Nolte, N. Solid-phase synthesis, characterization, and antibacterial activities of metallocene-peptide bioconjugates. ChemMedChem, 2006, 1(11), 1268-1274.
[http://dx.doi.org/10.1002/cmdc.200600117] [PMID: 17004283]
[15]
Albada, B.; Metzler-Nolte, N. Highly potent antibacterial organometallic peptide conjugates. Acc. Chem. Res., 2017, 50(10), 2510-2518.
[http://dx.doi.org/10.1021/acs.accounts.7b00282] [PMID: 28953347]
[16]
Albada, H.B.; Chiriac, A-I.; Wenzel, M.; Penkova, M.; Bandow, J.E.; Sahl, H-G.; Metzler-Nolte, N. Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups. Beilstein J. Org. Chem., 2012, 8, 1753-1764.
[http://dx.doi.org/10.3762/bjoc.8.200] [PMID: 23209509]
[17]
Jäkle, F.; Sheridan, J.B. Ferrocenes: ligands, materials and biomolecules.Petr Š tě pnič ka, Ed.; Angew. Chemie Int. Ed; , 2008, 47, pp. 7587-7587.
[18]
Albada, H.B.; Prochnow, P.; Bobersky, S.; Langklotz, S.; Bandow, J.E.; Metzler-Nolte, N. Short antibacterial peptides with significantly reduced hemolytic activity can be identified by a systematic L-to-D exchange scan of their amino acid residues. ACS Comb. Sci., 2013, 15(11), 585-592.
[http://dx.doi.org/10.1021/co400072q] [PMID: 24147906]
[19]
Chavain, N.; Biot, C. Organometallic complexes: new tools for chemotherapy. Curr. Med. Chem., 2010, 17(25), 2729-2745.
[http://dx.doi.org/10.2174/092986710791859306] [PMID: 20586720]
[20]
Jaouen, G. Bioorganometallics; Wiley: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527607692]
[21]
Hartinger, C.G.; Dyson, P.J. Bioorganometallic chemistry--from teaching paradigms to medicinal applications. Chem. Soc. Rev., 2009, 38(2), 391-401.
[http://dx.doi.org/10.1039/B707077M] [PMID: 19169456]
[22]
Gómez, J.; Klahn, A.H.; Fuentealba, M.; Sierra, D.; Olea-Azar, C.; Medina, M.E. Unsymmetrical cyrhetrenyl and ferrocenyl azines derived from 5-nitrofurane: synthesis, structural characterization and electrochemistry. Inorg. Chem. Commun., 2015, 61, 204-206.
[http://dx.doi.org/10.1016/j.inoche.2015.10.007]
[23]
Gasser, G.; Metzler-Nolte, N. The potential of organometallic complexes in medicinal chemistry. Curr. Opin. Chem. Biol., 2012, 16(1-2), 84-91.
[http://dx.doi.org/10.1016/j.cbpa.2012.01.013] [PMID: 22366385]
[24]
Albada, H.B.; Prochnow, P.; Bobersky, S.; Bandow, J.E.; Metzler-Nolte, N. Highly active antibacterial ferrocenoylated or ruthenocenoylated Arg-Trp peptides can be discovered by an L -to- D substitution scan. Chem. Sci. (Camb.), 2014, 5, 4453-4459.
[http://dx.doi.org/10.1039/C4SC01822B]
[25]
Keller, S.; Ong, Y.C.; Lin, Y.; Cariou, K.; Gasser, G. A tutorial for the assessment of the stability of organometallic complexes in biological media. J. Organomet. Chem., 2020, 906121059
[http://dx.doi.org/10.1016/j.jorganchem.2019.121059]
[26]
Larik, F.A.; Saeed, A.; Fattah, T.A.; Muqadar, U.; Channar, P.A. Recent advances in the synthesis, biological activities and various applications of ferrocene derivatives. Appl. Organomet. Chem., 2017, 31e3664
[http://dx.doi.org/10.1002/aoc.3664]
[27]
Gómez, J.; Klahn, A.H.; Fuentealba, M.; Sierra, D.; Olea-Azar, C.; Maya, J.D.; Medina, M.E. Ferrocenyl and cyrhetrenyl azines containing a 5-nitroheterocyclic moiety: synthesis, structural characterization, electrochemistry and evaluation as anti- Trypanosoma cruzi agents. J. Organomet. Chem., 2017, 839, 108-115.
[http://dx.doi.org/10.1016/j.jorganchem.2017.03.014]
[28]
Ruelle, P.; Kesselring, U.W. The hydrophobic effect. 3. A key ingredient in predicting n-octanol-water partition coefficients. J. Pharm. Sci., 1998, 87(8), 1015-1024.
[http://dx.doi.org/10.1021/js9703030] [PMID: 9687346]
[29]
Poole, S.K.; Poole, C.F. Separation methods for estimating octanol-water partition coefficients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 797(1-2), 3-19.
[http://dx.doi.org/10.1016/j.jchromb.2003.08.032] [PMID: 14630140]
[30]
Abraham, M.H.; Benjelloun-Dakhama, N.; Gola, J.M.R.; Acree, W.E., Jr; Cain, W.S.; Cometto-Muniz, J.E. Solvation descriptors for ferrocene, and the estimation of some physicochemical and biochemical properties. New J. Chem., 2000, 24, 825-829.
[http://dx.doi.org/10.1039/b004291i]
[31]
Top, S.; Vessières, A.; Pigeon, P.; Rager, M-N.; Huché, M.; Salomon, E.; Cabestaing, C.; Vaissermann, J.; Jaouen, G. Selective Estrogen-Receptor Modulators (SERMs) in the cyclopentadienylrhenium tricarbonyl series: synthesis and biological behaviour. ChemBioChem, 2004, 5(8), 1104-1113.
[http://dx.doi.org/10.1002/cbic.200400067] [PMID: 15300835]
[32]
Philip, A.T.; Chacko, S.; Ramapanicker, R. Synthesis of stable C-linked ferrocenyl amino acids and their use in solution-phase peptide synthesis. J. Pept. Sci., 2015, 21(12), 887-892.
[http://dx.doi.org/10.1002/psc.2831] [PMID: 26477332]
[33]
Chantson, J.T.; Falzacappa, M.V.V.; Crovella, S.; Metzler-Nolte, N. Antibacterial activities of ferrocenoyl- and cobaltocenium-peptide bioconjugates. J. Organomet. Chem., 2005, 690, 4564-4572.
[http://dx.doi.org/10.1016/j.jorganchem.2005.07.007]
[34]
Xu, Y.; Kraatz, H-B. Efficient synthesis of unsymmetrically disubstituted ferrocenes: towards electrochemical dipeptide-Fc-biosensors. Tetrahedron Lett., 2001, 42, 2601-2603.
[http://dx.doi.org/10.1016/S0040-4039(01)00251-9]
[35]
Moriuchi, T.; Nomoto, A.; Yoshida, K.; Ogawa, A.; Hirao, T. Chirality organization of ferrocenes bearing podand dipeptide chains: synthesis and structural characterization. J. Am. Chem. Soc., 2001, 123(1), 68-75.
[http://dx.doi.org/10.1021/ja002869n] [PMID: 11273602]
[36]
Schneider, J.P.; Kelly, J.W. Synthesis and efficacy of square planar copper complexes designed to nucleate. beta.-sheet structure. J. Am. Chem. Soc., 1995, 117, 2533-2546.
[http://dx.doi.org/10.1021/ja00114a016]
[37]
Abd-El-Aziz, A.S.; Agatemor, C.; Etkin, N. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules. Biomaterials, 2017, 118, 27-50.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.002] [PMID: 27940381]
[38]
Wenzel, M.; Patra, M.; Senges, C.H.R.; Ott, I.; Stepanek, J.J.; Pinto, A.; Prochnow, P.; Vuong, C.; Langklotz, S.; Metzler-Nolte, N.; Bandow, J.E. Analysis of the mechanism of action of potent antibacterial hetero-tri-organometallic compounds: a structurally new class of antibiotics. ACS Chem. Biol., 2013, 8(7), 1442-1450.
[http://dx.doi.org/10.1021/cb4000844] [PMID: 23578171]
[39]
Patra, M.; Gasser, G.; Bobukhov, D.; Merz, K.; Shtemenko, A.V.; Metzler-Nolte, N. Sequential insertion of three different organometallics into a versatile building block containing a PNA backbone. Dalton Trans., 2010, 39(24), 5617-5619.
[http://dx.doi.org/10.1039/c003598j] [PMID: 20485811]
[40]
Slootweg, J.C.; Albada, H.B.; Siegmund, D.; Metzler-Nolte, N. Efficient reagent-saving method for the N-terminal labeling of bioactive peptides with organometallic carboxylic acids by solid-phase synthesis. Organometallics, 2016, 35, 3192-3196.
[http://dx.doi.org/10.1021/acs.organomet.6b00544]
[41]
Slootweg, J.C.; Prochnow, P.; Bobersky, S.; Bandow, J.E.; Metzler-Nolte, N. Exploring structure-activity relationships in Synthetic Antimicrobial Peptides (SynAMPs) by a ferrocene scan. Eur. J. Inorg. Chem., 2017, 2017(2), 360-367.
[http://dx.doi.org/10.1002/ejic.201600799]
[42]
Sudhir, V.S.; Kumar, N.Y.P.; Chandrasekaran, S. Click chemistry inspired synthesis of ferrocene amino acids and other derivatives. Tetrahedron, 2010, 66, 1327-1334.
[http://dx.doi.org/10.1016/j.tet.2009.12.011]
[43]
Schlögl, K. Über ferrocen-aminosäuren und verwandte verbindungen. Monatsh. Chem., 1957, 88, 601-621.
[http://dx.doi.org/10.1007/BF00901345]
[44]
Graham, P.J.; Lindsey, R.V.; Parshall, G.W.; Peterson, M.L.; Whitman, G.M. Some acyl ferrocenes and their reactions. J. Am. Chem. Soc., 1957, 79, 3416-3420.
[http://dx.doi.org/10.1021/ja01570a027]
[45]
Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85, 2149-2154.
[http://dx.doi.org/10.1021/ja00897a025]
[46]
Guzman, F.; Barberis, S.; Illanes, A. Peptide synthesis: chemical or enzymatic. Electron. J. Biotechnol., 2007, 10(2), 279-314.
[47]
Splith, K.; Hu, W.; Schatzschneider, U.; Gust, R.; Ott, I.; Onambele, L.A.; Prokop, A.; Neundorf, I. Protease-activatable organometal-peptide bioconjugates with enhanced cytotoxicity on cancer cells. Bioconjug. Chem., 2010, 21(7), 1288-1296.
[http://dx.doi.org/10.1021/bc100089z] [PMID: 20586419]
[48]
Falcone, N.; Kraatz, H.B. Supramolecular assembly of peptide and metallopeptide gelators and their stimuli-responsive properties in biomedical applications. Chemistry, 2018, 24(54), 14316-14328.
[http://dx.doi.org/10.1002/chem.201801247] [PMID: 29667727]
[49]
Albericio, F. Orthogonal protecting groups for N(α)-amino and C-terminal carboxyl functions in solid-phase peptide synthesis. Biopolymers, 2000, 55(2), 123-139.
[http://dx.doi.org/10.1002/1097-0282(2000)55:2<123:AID-BIP30>3.0.CO;2-F] [PMID: 11074410]
[50]
Kirin, S.I.; Noor, F.; Metzler-Nolte, N.; Mier, W. Manual solid-phase peptide synthesis of metallocene-peptide bioconjugates. J. Chem. Educ., 2007, 84, 108.
[http://dx.doi.org/10.1021/ed084p108]
[51]
Neundorf, I.; Rennert, R.; Hoyer, J.; Schramm, F.; Löbner, K.; Kitanovic, I.; Wölfl, S. Fusion of a short HA2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals (Basel), 2009, 2(2), 49-65.
[http://dx.doi.org/10.3390/ph2020049] [PMID: 27713223]
[52]
Splith, K.; Neundorf, I.; Hu, W.; N’Dongo, H.W.P.; Vasylyeva, V.; Merz, K.; Schatzschneider, U. Influence of the metal complex-to-peptide linker on the synthesis and properties of bioactive CpMn(CO)3 peptide conjugates. Dalton Trans., 2010, 39(10), 2536-2545.
[http://dx.doi.org/10.1039/b916907e] [PMID: 20179846]
[53]
Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A.M. 1,2,3-Triazole in heterocyclic compounds, endowed with biological activity, through 1,3-dipolar cycloadditions. Eur. J. Org. Chem., 2014, 2014, 3289-3306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[54]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[55]
Click Chemistry. https://www.organic-chemistry.org/namedreactions/click-chemistry.shtm . (Accessed August 12, 2019).
[56]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[57]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[58]
Gil, M.; Arévalo, M.; López, Ó. Click chemistry - what’s in a name? triazole synthesis and beyond. Synthesis (Stuttg), 2007, 2007, 1589-1620.
[http://dx.doi.org/10.1055/s-2007-966071]
[59]
Castro, V.; Rodríguez, H.; Albericio, F. CuAAC: an efficient click chemistry reaction on solid phase. ACS Comb. Sci., 2016, 18(1), 1-14.
[http://dx.doi.org/10.1021/acscombsci.5b00087] [PMID: 26652044]
[60]
Totobenazara, J.; Burke, A.J. New click-chemistry methods for 1,2,3-triazoles synthesis: recent advances and applications. Tetrahedron Lett., 2015, 56, 2853-2859.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.136]
[61]
Salmon, A.J.; Williams, M.L.; Wu, Q.K.; Morizzi, J.; Gregg, D.; Charman, S.A.; Vullo, D.; Supuran, C.T.; Poulsen, S-A. Metallocene-based inhibitors of cancer-associated carbonic anhydrase enzymes IX and XII. J. Med. Chem., 2012, 55(11), 5506-5517.
[http://dx.doi.org/10.1021/jm300427m] [PMID: 22540953]
[62]
Hou, J.; Liu, X.; Shen, J.; Zhao, G.; Wang, P.G. The impact of click chemistry in medicinal chemistry. Expert Opin. Drug Discov., 2012, 7(6), 489-501.
[http://dx.doi.org/10.1517/17460441.2012.682725] [PMID: 22607210]
[63]
Beal, D.M.; Jones, L.H. Molecular scaffolds using multiple orthogonal conjugations: applications in chemical biology and drug discovery. Angew. Chem. Int. Ed. Engl., 2012, 51(26), 6320-6326.
[http://dx.doi.org/10.1002/anie.201200002] [PMID: 22517597]
[64]
Hoffknecht, B.C.; Prochnow, P.; Bandow, J.E.; Metzler-Nolte, N. Influence of metallocene substitution on the antibacterial activity of multivalent peptide conjugates. J. Inorg. Biochem., 2016, 160, 246-249.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.036] [PMID: 26988572]
[65]
Mari, C.; Mosberger, S.; Llorente, N.; Spreckelmeyer, S.; Gasser, G. Insertion of organometallic moieties into peptides and peptide nucleic acids using alternative “Click” strategies. Inorg. Chem. Front., 2016, 3, 397-405.
[http://dx.doi.org/10.1039/C5QI00270B]
[66]
Mindt, T.L.; Struthers, H.; Brans, L.; Anguelov, T.; Schweinsberg, C.; Maes, V.; Tourwé, D.; Schibli, R. “Click to chelate”: synthesis and installation of metal chelates into biomolecules in a single step. J. Am. Chem. Soc., 2006, 128(47), 15096-15097.
[http://dx.doi.org/10.1021/ja066779f] [PMID: 17117854]
[67]
Meyer, J-P.; Adumeau, P.; Lewis, J.S.; Zeglis, B.M. Click chemistry and radiochemistry: the first 10 years. Bioconjug. Chem., 2016, 27(12), 2791-2807.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00561] [PMID: 27787983]
[68]
Zabarska, N.; Stumper, A.; Rau, S. CuAAC click reactions for the design of multifunctional luminescent ruthenium complexes. Dalton Trans., 2016, 45(6), 2338-2351.
[http://dx.doi.org/10.1039/C5DT04599A] [PMID: 26758682]
[69]
Römhild, K.; Fischer, C.A.; Mindt, T.L. Glycated 99m Tc-tricarbonyl-labeled peptide conjugates for tumor targeting by “click-to-chelate”. ChemMedChem, 2017, 12(1), 66-74.
[http://dx.doi.org/10.1002/cmdc.201600485] [PMID: 27902882]
[70]
Fouda, M.F.R.; Abd-Elzaher, M.M.; Abdelsamaia, R.A.; Labib, A.A. On the medicinal chemistry of ferrocene. Appl. Organomet. Chem., 2007, 21, 613-625.
[http://dx.doi.org/10.1002/aoc.1202]
[71]
Gasser, G.; Ott, I.; Metzler-Nolte, N. Organometallic anticancer compounds. J. Med. Chem., 2011, 54(1), 3-25.
[http://dx.doi.org/10.1021/jm100020w] [PMID: 21077686]
[72]
Ornelas, C. Application of ferrocene and its derivatives in cancer research. New J. Chem., 2011, 35, 1973-1985.
[http://dx.doi.org/10.1039/c1nj20172g]
[73]
Meier, S.M.; Novak, M.; Kandioller, W.; Jakupec, M.A.; Arion, V.B.; Metzler-Nolte, N.; Keppler, B.K.; Hartinger, C.G. Identification of the structural determinants for anticancer activity of a ruthenium arene peptide conjugate. Chemistry, 2013, 19(28), 9297-9307.
[http://dx.doi.org/10.1002/chem.201300889] [PMID: 23712572]
[74]
Rijt, S.H.; Kostrhunova, H.; Brabec, V.; Sadler, P.J. Functionalization of osmium arene anticancer complexes with (poly)arginine: effect on cellular uptake, internalization, and cytotoxicity. Bioconjug. Chem., 2011, 22(2), 218-226.
[http://dx.doi.org/10.1021/bc100369p] [PMID: 21271713]
[75]
Harry, A.G.; Murphy, J.P.; O’Donovan, N.; Crown, J.; Rai, D.K.; Kenny, P.T.M. The synthesis, structural characterization and biological evaluation of novel N -para -(ferrocenyl) ethynyl benzoyl amino acid and dipeptide methyl and ethyl esters as anticancer agents. J. Organomet. Chem., 2017, 846, 379-388.
[http://dx.doi.org/10.1016/j.jorganchem.2017.07.019]
[76]
Mukhopadhyay, S.; Barnés, C.M.; Haskel, A.; Short, S.M.; Barnes, K.R.; Lippard, S.J. Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature. Bioconjug. Chem., 2008, 19(1), 39-49.
[http://dx.doi.org/10.1021/bc070031k] [PMID: 17845003]
[77]
Gandioso, A.; Shaili, E.; Massaguer, A.; Artigas, G.; González-Cantó, A.; Woods, J.A.; Sadler, P.J.; Marchán, V. An integrin-targeted photoactivatable Pt(IV) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chem. Commun. (Camb.), 2015, 51(44), 9169-9172.
[http://dx.doi.org/10.1039/C5CC03180J] [PMID: 25947177]
[78]
Maecke, H.R.; Hofmann, M.; Haberkorn, U. 68Ga-labeled peptides in tumor imaging. J. Nucl. Med., 2005, 46(Suppl. 1), 172S-178S.
[PMID: 15653666]
[79]
Morais, M.; Cantante, C.; Gano, L.; Santos, I.; Lourenço, S.; Santos, C.; Fontes, C.; Aires da Silva, F.; Gonçalves, J.; Correia, J.D.G. Biodistribution of a 67Ga-labeled anti-TNF VHH single-domain antibody containing a bacterial albumin-binding domain (Zag). Nucl. Med. Biol., 2014, 41(Suppl.), e44-e48.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.01.009] [PMID: 24530366]
[80]
Bihari, Z.; Vultos, F.; Fernandes, C.; Gano, L.; Santos, I.; Correia, J.D.G.; Buglyó, P. Synthesis, characterization and biological evaluation of a 67Ga-labeled (η6-Tyr)Ru(η5-Cp) peptide complex with the HAV motif. J. Inorg. Biochem., 2016, 160, 189-197.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.011] [PMID: 26907798]
[81]
Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med. Res. Rev., 2013, 33(1), 190-234.
[http://dx.doi.org/10.1002/med.20252] [PMID: 21922503]
[82]
Gaspar, D.; Veiga, A.S.; Sinthuvanich, C.; Schneider, J.P.; Castanho, M.A.R.B. Anticancer peptide SVS-1: efficacy precedes membrane neutralization. Biochemistry, 2012, 51(32), 6263-6265.
[http://dx.doi.org/10.1021/bi300836r] [PMID: 22839778]
[83]
Sinthuvanich, C.; Veiga, A.S.; Gupta, K.; Gaspar, D.; Blumenthal, R.; Schneider, J.P. Anticancer β-hairpin peptides: membrane-induced folding triggers activity. J. Am. Chem. Soc., 2012, 134(14), 6210-6217.
[http://dx.doi.org/10.1021/ja210569f] [PMID: 22413859]
[84]
Zachowski, A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J., 1993, 294(Pt 1), 1-14.
[http://dx.doi.org/10.1042/bj2940001] [PMID: 8363559]
[85]
Utsugi, T.; Schroit, A.J.; Connor, J.; Bucana, C.D.; Fidler, I.J. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res., 1991, 51(11), 3062-3066.
[PMID: 2032247]
[86]
Riedl, S.; Zweytick, D.; Lohner, K. Membrane-active host defense peptides--challenges and perspectives for the development of novel anticancer drugs. Chem. Phys. Lipids, 2011, 164(8), 766-781.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.09.004] [PMID: 21945565]
[87]
Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta, 2008, 1778(2), 357-375.
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008] [PMID: 18078805]
[88]
Hisamatsu, Y.; Shibuya, A.; Suzuki, N.; Suzuki, T.; Abe, R.; Aoki, S. Design and synthesis of amphiphilic and luminescent tris-cyclometalated Iridium(III) complexes containing cationic peptides as inducers and detectors of cell death via a calcium-dependent pathway. Bioconjug. Chem., 2015, 26(5), 857-879.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00095] [PMID: 25875312]
[89]
Respondek, T.; Garner, R.N.; Herroon, M.K.; Podgorski, I.; Turro, C.; Kodanko, J.J. Light activation of a cysteine protease inhibitor: caging of a peptidomimetic nitrile with RuII(bpy)2. J. Am. Chem. Soc., 2011, 133(43), 17164-17167.
[http://dx.doi.org/10.1021/ja208084s] [PMID: 21973207]
[90]
Garner, R.N.; Gallucci, J.C.; Dunbar, K.R.; Turro, C. [Ru(bpy)2(5-cyanouracil)2]2+ as a potential light-activated dual-action therapeutic agent. Inorg. Chem., 2011, 50(19), 9213-9215.
[http://dx.doi.org/10.1021/ic201615u] [PMID: 21879748]
[91]
O´Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance: London, 2014.
[92]
Medicine, P.L.O.S. PLOS medicine editors. antimicrobial resistance: is the world unprepared? PLoS Med., 2016, 13(9)e1002130
[http://dx.doi.org/10.1371/journal.pmed.1002130] [PMID: 27618631]
[93]
Wright, G.D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol., 2007, 5(3), 175-186.
[http://dx.doi.org/10.1038/nrmicro1614] [PMID: 17277795]
[94]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[95]
Wax, R.G. Peptide Antibiotics: Discovery Modes of Action and Applications; Dutton, C.; Haxwell, M.; McArthur, H, 1st ed; Marcel Dekker Inc.: New York, 2001.
[96]
Chatterjee, C.; Paul, M.; Xie, L.; van der Donk, W.A. Biosynthesis and mode of action of lantibiotics. Chem. Rev., 2005, 105(2), 633-684.
[http://dx.doi.org/10.1021/cr030105v] [PMID: 15700960]
[97]
Bagley, M.C.; Dale, J.W.; Merritt, E.A.; Xiong, X. Thiopeptide antibiotics. Chem. Rev., 2005, 105(2), 685-714.
[http://dx.doi.org/10.1021/cr0300441] [PMID: 15700961]
[98]
Wenzel, M.; Chiriac, A.I.; Otto, A.; Zweytick, D.; May, C.; Schumacher, C.; Gust, R.; Albada, H.B.; Penkova, M.; Krämer, U.; Erdmann, R.; Metzler-Nolte, N.; Straus, S.K.; Bremer, E.; Becher, D.; Brötz-Oesterhelt, H.; Sahl, H-G.; Bandow, J.E. Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proc. Natl. Acad. Sci. USA, 2014, 111(14), e1409-e1418.
[http://dx.doi.org/10.1073/pnas.1319900111] [PMID: 24706874]
[99]
Sierra, M.A.; Casarrubios, L.; de la Torre, M.C. Bio-organometallic derivatives of antibacterial drugs. Chemistry, 2019, 25(30), 7232-7242.
[http://dx.doi.org/10.1002/chem.201805985] [PMID: 30730065]
[100]
Wang, H.; Yang, Z.; Adams, D.J. Controlling peptide- based hydrogelation. Mater. Today, 2012, 15(11), 500-507.
[101]
Zanna, N.; Tomasini, C. Peptide-based physical gels endowed with thixotropic behaviour. Gels, 2017, 3(4), 39.
[http://dx.doi.org/10.3390/gels3040039] [PMID: 30920535]
[102]
Piepenbrock, M.O.; Lloyd, G.O.; Clarke, N.; Steed, J.W. Metal- and anion-binding supramolecular gels. Chem. Rev., 2010, 110(4), 1960-2004.
[http://dx.doi.org/10.1021/cr9003067] [PMID: 20028020]
[103]
Xia, Y.; Xue, B.; Qin, M.; Cao, Y.; Li, Y.; Wang, W. Printable fluorescent hydrogels based on self-assembling peptides. Sci. Rep., 2017, 7(1), 9691.
[http://dx.doi.org/10.1038/s41598-017-10162-y] [PMID: 28852128]