Multiple Risk Factors: A Challenge in the Management of Autism

Page: [743 - 754] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Autism Spectrum Disorder (ASD) is an emerging health problem involving 1 out of every 68 children. The incidence rate of autism has increased 3 folds during the last 3 decades. Due to the illusive picture of aetiology, a considerable number of autistic children fail to receive proper behavioural and medicational treatment. The present study provides a cumulative account of autism risk factors. Several factors including the gene expression and gene mutations, environmental pollution, metal ion accumulation, exposure to pesticides, immune deficiencies, viral infections, mother’s age, health, mental status, mother’s interactions with the foetus, vaccination of mother and children, and modulations in gut microbiota have been debated. These risk factors may contribute to the development of autism either independently or synergistically leading to a broad spectrum of characteristics observed in autistic patients. The variable quantitative influence of a wide spectrum of risk factors may result in a unique set of features in each autistic individual. However, the exact mechanism behind the combined impact of various aetiological factors is poorly understood hindering the adaptation of specified and effective therapies.

Keywords: Autism, young children, overlapping disorders, risk factors, aetiology, spectrum.

[1]
Topal Z, Demir Samurcu N, Taskiran S, Tufan AE, Semerci B. Social communication disorder: a narrative review on current insights. Neuropsychiatr Dis Treat 2018; 14: 2039-46.
[http://dx.doi.org/10.2147/NDT.S121124] [PMID: 30147317]
[2]
Barrett SL, Uljarević M, Jones CRG, Leekam SR. Assessing subtypes of restricted and repetitive behaviour using the Adult Repetitive Behaviour Questionnaire-2 in autistic adults. Mol Autism 2018; 9(1): 58.
[http://dx.doi.org/10.1186/s13229-018-0242-4] [PMID: 30505424]
[3]
Kanner L. Autistic disturbances of affective contact. Nerv Child 1943; 2(3): 217-50.
[PMID: 4880460]
[4]
Asperger H. Die “Autistischen Psychopathen” im Kindesalter. Arch Psychiatr Nervenkr 1944; 117(1): 76-136.
[http://dx.doi.org/10.1007/BF01837709]
[5]
MRC Review of Autism Research: epidemiology and Causes, December 2001. Med Res Council 2001 Available at:. https://mrc.ukri.org/documents/pdf/autism-research-review/
[6]
Hadoush H, Alafeef M, Abdulhay E. Brain complexity in children with mild and severe autism spectrum disorders: analysis of multiscale entropy in EEG. Brain Topogr 2019; 32(5): 914-21.
[http://dx.doi.org/10.1007/s10548-019-00711-1] [PMID: 31006838]
[7]
Bujnakova I, Ondrejka I, Mestanik M, et al. Autism spectrum disorder is associated with autonomic underarousal. Physiol Res 2016; 65(Suppl. 5): S673-82.
[PMID: 28006949]
[8]
Precenzano F, Ruberto M, Parisi L, et al. Sleep habits in children affected by autism spectrum disorders: a preliminary case-control study. Acta Med Mediter 2017; 33: 405-9.
[9]
Frye RE, James SJ. Metabolic pathology of autism in relation to redox metabolism. Biomarkers Med 2014; 8(3): 321-30.
[http://dx.doi.org/10.2217/bmm.13.158] [PMID: 24712422]
[10]
Tierney E, Bukelis I, Thompson RE, et al. Abnormalities of cholesterol metabolism in autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 2006; 141B(6): 666-8.
[http://dx.doi.org/10.1002/ajmg.b.30368] [PMID: 16874769]
[11]
Rose S, Melnyk S, Pavliv O, et al. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2012; 2(7) e134
[http://dx.doi.org/10.1038/tp.2012.61] [PMID: 22781167]
[12]
Novarino G, El-Fishawy P, Kayserili H, et al. Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 2012; 338(6105): 394-7.
[http://dx.doi.org/10.1126/science.1224631] [PMID: 22956686]
[13]
Celestino-Soper PB, Violante S, Crawford EL, et al. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism. Proc Natl Acad Sci USA 2012; 109(21): 7974-81.
[http://dx.doi.org/10.1073/pnas.1120210109] [PMID: 22566635]
[14]
Frye RE, Sequeira JM, Quadros EV, James SJ, Rossignol DA. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol Psychiatry 2013; 18(3): 369-81.
[http://dx.doi.org/10.1038/mp.2011.175] [PMID: 22230883]
[15]
Ferguson BJ, Dovgan K, Takahashi N, et al. The relationship among gastrointestinal symptoms, problem behaviors, and internalizing symptoms in children and adolescents with autism spectrum disorder. Front Psychol 2019; 10: 194.
[http://dx.doi.org/10.3389/fpsyt.2019.00194]
[16]
Leigh JP, Du J. Brief report: Forecasting the economic burden of autism in 2015 and 2025 in the United States. J Autism Dev Disord 2015; 45(12): 4135-9.
[http://dx.doi.org/10.1007/s10803-015-2521-7] [PMID: 26183723]
[17]
Boat TF, Wu JT, Sciences S. Clinical characteristics of intellectual disabilities. In: Mental disorders and disabilities among low-income children. National Academies Press (US). 2015; 168: pp. (9)904-12.
[http://dx.doi.org/10.17226/21780]
[18]
Kim YS, Leventhal BL, Koh YJ, et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry 2011; 168(9): 904-12.
[http://dx.doi.org/10.1176/appi.ajp.2011.10101532] [PMID: 21558103]
[19]
Baio J, Wiggins L, Christensen DL, et al. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 2018; 67(6): 1-23.
[http://dx.doi.org/10.15585/mmwr.ss6706a1] [PMID: 29701730]
[20]
Croen LA, Grether JK, Hoogstrate J, Selvin S. The changing prevalence of autism in California. J Autism Dev Disord 2002; 32(3): 207-15.
[http://dx.doi.org/10.1023/A:1015453830880] [PMID: 12108622]
[21]
Boyle CA, Boulet S, Schieve LA, et al. Trends in the prevalence of developmental disabilities in US children, 1997-2008. Pediatrics 2011; 127(6): 1034-42.
[http://dx.doi.org/10.1542/peds.2010-2989] [PMID: 21606152]
[22]
Autism and developmental disabilities monitoring (ADDM) network. CDC Retrieved November 2012 3: 2012.
[http://dx.doi.org/10.1186/s12916-017-0993-3]
[23]
Hirota T, So R, Kim YS, Leventhal B, Epstein RA. A systematic review of screening tools in non-young children and adults for autism spectrum disorder. Res Dev Disabil 2018; 80: 1-12.
[http://dx.doi.org/10.1016/j.ridd.2018.05.017] [PMID: 29879612]
[24]
Buescher AV, Cidav Z, Knapp M, Mandell DS. Costs of autism spectrum disorders in the United Kingdom and the United States. JAMA Pediatr 2014; 168(8): 721-8.
[http://dx.doi.org/10.1001/jamapediatrics.2014.210] [PMID: 24911948]
[25]
Thabtah F. Machine learning in autistic spectrum disorder behavioral research: a review and ways forward. Inform Health Soc Care 2019; 44(3): 278-97.
[http://dx.doi.org/10.1080/17538157.2017.1399132] [PMID: 29436887]
[26]
Fombonne E. Editorial: the rising prevalence of autism. J Child Psychol Psychiatry 2018; 59(7): 717-20.
[http://dx.doi.org/10.1111/jcpp.12941] [PMID: 29924395]
[27]
Brugha TS, McManus S, Bankart J, et al. Epidemiology of autism spectrum disorders in adults in the community in England. Arch Gen Psychiatry 2011; 68(5): 459-65.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.38] [PMID: 21536975]
[28]
Fitzgerald M. The clinical gestalts of autism: over 40 years of clinical experience with autism.Michael Fitzgerald, Jan Yip. Autism-paradigms, recent research and clinical applications 2017; pp. 15-25.
[http://dx.doi.org/10.5772/65906]
[29]
Association AP. Diagnostic and Statistical Manual of Mental Health Disorders (DSM-III-R). American Psychiatric Association 1987. Avaialble at:. https://www.psychiatry.org/ psychiatrists/practice/dsm/history-of-the-dsm
[30]
Frances AJ, Widiger T. Psychiatric diagnosis: lessons from the DSM-IV past and cautions for the DSM-5 future. Annu Rev Clin Psychol 2012; 8: 109-30.
[http://dx.doi.org/10.1146/annurev-clinpsy-032511-143102] [PMID: 22035240]
[31]
Lord C, Rutter M, DiLavore PC, et al. Autism diagnostic observation schedule: ADOS: Western Psychological Services Los Angeles, CA 2003.
[http://dx.doi.org/10.1007/978-1-4419-1698-3_896]
[32]
Pomeroy EC, Parrish DE. The New DSM-5: where have we been and where are we going? Soc Work 2012; 57(3): 195-200.
[http://dx.doi.org/10.1093/sw/sws027]
[33]
Kanne SM, Gerber AJ, Quirmbach LM, Sparrow SS, Cicchetti DV, Saulnier CA. The role of adaptive behavior in autism spectrum disorders: implications for functional outcome. J Autism Dev Disord 2011; 41(8): 1007-18.
[http://dx.doi.org/10.1007/s10803-010-1126-4] [PMID: 21042872]
[34]
Kanduc D, Polito A. From viral infections to autistic neurodevelopmental disorders via cross-reactivity. J Psych Brain Sci 2018; 3(6)
[http://dx.doi.org/10.20900/jpbs.20180014]
[35]
Vianna P, Gomes JDA, Boquett JA, et al. Zika virus as a possible risk factor for autism spectrum disorder: neuroimmunological aspects. Neuroimmunomodulation 2018; 25(5-6): 320-7.
[http://dx.doi.org/10.1159/000495660] [PMID: 30630174]
[36]
Hoirisch-Clapauch S, Nardi AE. Autism spectrum disorders: let’s talk about glucose? Transl Psychiatry 2019; 9(1): 51.
[http://dx.doi.org/10.1038/s41398-019-0370-4] [PMID: 30705254]
[37]
Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008; 9(5): 341-55.
[http://dx.doi.org/10.1038/nrg2346] [PMID: 18414403]
[38]
Morales DR, Slattery J, Evans S, Kurz X. Antidepressant use during pregnancy and risk of autism spectrum disorder and attention deficit hyperactivity disorder: systematic review of observational studies and methodological considerations. BMC Med 2018; 16(1): 6.
[http://dx.doi.org/10.1186/s12916-017-0993-3] [PMID: 29332605]
[39]
Gherardi RK, Eidi H, Crépeaux G, Authier FJ, Cadusseau J. Biopersistence and brain translocation of aluminum adjuvants of vaccines. Front Neurol 2015; 6: 4.
[http://dx.doi.org/10.3389/fneur.2015.00004] [PMID: 25699008]
[40]
Madsen KM, Hviid A, Vestergaard M, et al. A population-based study of measles, mumps, and rubella vaccination and autism. N Engl J Med 2002; 347(19): 1477-82.
[http://dx.doi.org/10.1056/NEJMoa021134] [PMID: 12421889]
[41]
Taylor LE, Swerdfeger AL, Eslick GD. Vaccines are not associated with autism: an evidence-based meta-analysis of case-control and cohort studies. Vaccine 2014; 32(29): 3623-9.
[http://dx.doi.org/10.1016/j.vaccine.2014.04.085] [PMID: 24814559]
[42]
Hassan MM, Mokhtar HM. Investigating autism etiology and heterogeneity by decision tree algorithm. Informat Med Unlocked 2019; 16 100215
[http://dx.doi.org/10.1016/j.imu.2019.100215]
[43]
Li X, Zou H, Brown WT. Genes associated with autism spectrum disorder. Brain Res Bull 2012; 88(6): 543-52.
[http://dx.doi.org/10.1016/j.brainresbull.2012.05.017] [PMID: 22688012]
[44]
Ly V, Bottelier M, Hoekstra PJ, Arias Vasquez A, Buitelaar JK, Rommelse NN. Elimination diets’ efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry 2017; 26(9): 1067-79.
[http://dx.doi.org/10.1007/s00787-017-0959-1] [PMID: 28190137]
[45]
Carter Leno V, Chandler S, White P, et al. Testing the specificity of executive functioning impairments in adolescents with ADHD, ODD/CD and ASD. Eur Child Adolesc Psychiatry 2018; 27(7): 899-908.
[http://dx.doi.org/10.1007/s00787-017-1089-5] [PMID: 29224173]
[46]
Andersen CH, Thomsen PH, Nohr EA, Lemcke S. Maternal body mass index before pregnancy as a risk factor for ADHD and autism in children. Eur Child Adolesc Psychiatry 2018; 27(2): 139-48.
[http://dx.doi.org/10.1007/s00787-017-1027-6] [PMID: 28712019]
[47]
Faraone SV, Sergeant J, Gillberg C, Biederman J. The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2003; 2(2): 104-13.
[PMID: 16946911]
[48]
Bishop DV, Baird G. Parent and teacher report of pragmatic aspects of communication: use of the children’s communication checklist in a clinical setting. Dev Med Child Neurol 2001; 43(12): 809-18.
[http://dx.doi.org/10.1017/S0012162201001475] [PMID: 11769267]
[49]
Davis NO, Kollins SH. Treatment for co-occurring attention deficit/hyperactivity disorder and autism spectrum disorder. Neurotherapeutics 2012; 9(3): 518-30.
[http://dx.doi.org/10.1007/s13311-012-0126-9] [PMID: 22678458]
[50]
Johnson MH, Gliga T, Jones E, Charman T. Annual research review: infant development, autism, and ADHD - early pathways to emerging disorders. J Child Psychol Psychiatry 2015; 56(3): 228-47.
[http://dx.doi.org/10.1111/jcpp.12328] [PMID: 25266278]
[51]
Visser JC, Rommelse NN, Greven CU, Buitelaar JK. Autism spectrum disorder and attention-deficit/hyperactivity disorder in early childhood: a review of unique and shared characteristics and developmental antecedents. Neurosci Biobehav Rev 2016; 65: 229-63.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.019] [PMID: 27026637]
[52]
Kentrou V, de Veld DM, Mataw KJ, Begeer S. Delayed autism spectrum disorder recognition in children and adolescents previously diagnosed with attention-deficit/hyperactivity disorder. Autism 2019; 23(4): 1065-72.
[http://dx.doi.org/10.1177/1362361318785171] [PMID: 30244604]
[53]
Leitner Y. The co-occurrence of autism and attention deficit hyperactivity disorder in children - what do we know? Front Hum Neurosci 2014; 8: 268.
[http://dx.doi.org/10.3389/fnhum.2014.00268] [PMID: 24808851]
[54]
Craig F, Lamanna AL, Margari F, Matera E, Simone M, Margari L. Overlap between autism spectrum disorders and attention deficit hyperactivity disorder: searching for distinctive/common clinical features. Autism Res 2015; 8(3): 328-37.
[http://dx.doi.org/10.1002/aur.1449] [PMID: 25604000]
[55]
Almandil NB, Alkuroud DN. AbdulAzeez S, AlSulaiman A, Elaissari A, Borgio JF. Environmental and genetic factors in autism spectrum disorders: Special emphasis on data from Arabian studies. Int J Environ Res Public Health 2019; 16(4): 658.
[http://dx.doi.org/10.3390/ijerph16040658] [PMID: 30813406]
[56]
Lawler CP, Croen LA, Grether JK, Van de Water J. Identifying environmental contributions to autism: provocative clues and false leads. Ment Retard Dev Disabil Res Rev 2004; 10(4): 292-302.
[http://dx.doi.org/10.1002/mrdd.20043] [PMID: 15666339]
[57]
Herbert MR, Russo JP, Yang S, et al. Autism and environmental genomics. Neurotoxicology 2006; 27(5): 671-84.
[http://dx.doi.org/10.1016/j.neuro.2006.03.017] [PMID: 16644012]
[58]
Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 2014; 4(2) e360
[http://dx.doi.org/10.1038/tp.2014.4] [PMID: 24518398]
[59]
Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci 2018; 47(6): 534-48.
[http://dx.doi.org/10.1111/ejn.13595] [PMID: 28452083]
[60]
Santos JX, Rasga C, Marques AR, et al. A role for gene-environment interactions in Autism Spectrum Disorder is suggested by variants in genes regulating exposure to environmental factors bioRxiv. 2019; pp. 520-44. Pre-print
[http://dx.doi.org/10.1101/520-544]
[61]
Wiśniowiecka-Kowalnik B, Nowakowska BA. Genetics and epigenetics of autism spectrum disorder-current evidence in the field. J Appl Genet 2019; 60(1): 37-47.
[http://dx.doi.org/10.1007/s13353-018-00480-w] [PMID: 30627967]
[62]
Xiong J, Chen S, Pang N, et al. Neurological diseases with autism spectrum disorder: role of ASD risk genes. Front Neurosci 2019; 13: 349.
[http://dx.doi.org/10.3389/fnins.2019.00349] [PMID: 31031587]
[63]
Meng H, Xu HQ, Yu L, et al. The SCN1A mutation database: updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum Mutat 2015; 36(6): 573-80.
[http://dx.doi.org/10.1002/humu.22782] [PMID: 25754450]
[64]
Li J, Wang L, Guo H, et al. Targeted sequencing and functional analysis reveal brain-size-related genes and their networks in autism spectrum disorders. Mol Psychiatry 2017; 22(9): 1282-90.
[http://dx.doi.org/10.1038/mp.2017.140] [PMID: 28831199]
[65]
Numis AL, Major P, Montenegro MA, Muzykewicz DA, Pulsifer MB, Thiele EA. Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology 2011; 76(11): 981-7.
[http://dx.doi.org/10.1212/WNL.0b013e3182104347] [PMID: 21403110]
[66]
Dean C, Dresbach T. Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 2006; 29(1): 21-9.
[http://dx.doi.org/10.1016/j.tins.2005.11.003] [PMID: 16337696]
[67]
Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci 2014; 8: 276.
[http://dx.doi.org/10.3389/fncel.2014.00276] [PMID: 25309321]
[68]
De Rubeis S, Buxbaum JD. Genetics and genomics of autism spectrum disorder: embracing complexity. Hum Mol Genet 2015; 24(R1): R24-31.
[http://dx.doi.org/10.1093/hmg/ddv273] [PMID: 26188008]
[69]
De Rubeis S, He X, Goldberg AP, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 2014; 515(7526): 209-15.
[http://dx.doi.org/10.1038/nature13772] [PMID: 25363760]
[70]
Wang Y, Tang S, Xu S, Weng S, Liu Z. Maternal body mass index and risk of autism spectrum disorders in offspring: a meta-analysis. Sci Rep 2016; 6: 34248.
[http://dx.doi.org/10.1038/srep34248] [PMID: 27687989]
[71]
Guo H, Peng Y, Hu Z, et al. Genome-wide copy number variation analysis in a Chinese autism spectrum disorder cohort. Sci Rep 2017; 7: 44155.
[http://dx.doi.org/10.1038/srep44155] [PMID: 28281572]
[72]
Castermans D, Wilquet V, Steyaert J, Van de Ven W, Fryns JP, Devriendt K. Chromosomal anomalies in individuals with autism: a strategy towards the identification of genes involved in autism. Autism 2004; 8(2): 141-61.
[http://dx.doi.org/10.1177/1362361304042719] [PMID: 15165431]
[73]
Devlin B, Scherer SW. Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 2012; 22(3): 229-37.
[http://dx.doi.org/10.1016/j.gde.2012.03.002] [PMID: 22463983]
[74]
Liu X, Takumi T. Genomic and genetic aspects of autism spectrum disorder. Biochem Biophys Res Commun 2014; 452(2): 244-53.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.108] [PMID: 25173933]
[75]
Hogart A, Wu D, LaSalle JM, Schanen NC. The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiol Dis 2010; 38(2): 181-91.
[http://dx.doi.org/10.1016/j.nbd.2008.08.011] [PMID: 18840528]
[76]
Menold MM, Shao Y, Wolpert CM, et al. Association analysis of chromosome 15 gabaa receptor subunit genes in autistic disorder. J Neurogenet 2001; 15(3-4): 245-59.
[http://dx.doi.org/10.3109/01677060109167380] [PMID: 12092907]
[77]
Nishimura Y, Martin CL, Vazquez-Lopez A, et al. Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet 2007; 16(14): 1682-98.
[http://dx.doi.org/10.1093/hmg/ddm116] [PMID: 17519220]
[78]
Bucan M, Abrahams BS, Wang K, et al. Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet 2009; 5(6) e1000536
[http://dx.doi.org/10.1371/journal.pgen.1000536] [PMID: 19557195]
[79]
Puffenberger EG, Jinks RN, Wang H, et al. A homozygous missense mutation in HERC2 associated with global developmental delay and autism spectrum disorder. Hum Mutat 2012; 33(12): 1639-46.
[http://dx.doi.org/10.1002/humu.22237] [PMID: 23065719]
[80]
Ascano M Jr, Mukherjee N, Bandaru P, et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 2012; 492(7429): 382-6.
[http://dx.doi.org/10.1038/nature11737] [PMID: 23235829]
[81]
Ellis SE, Gupta S, Moes A, West AB, Arking DE. Exaggerated CpH methylation in the autism-affected brain. Mol Autism 2017; 8(1): 6.
[http://dx.doi.org/10.1186/s13229-017-0119-y] [PMID: 28316770]
[82]
Schiele MA, Domschke K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav 2018; 17(3) e12423
[http://dx.doi.org/10.1111/gbb.12423] [PMID: 28873274]
[83]
Duffney LJ, Valdez P, Tremblay MW, et al. Epigenetics and autism spectrum disorder: a report of an autism case with mutation in H1 linker histone HIST1H1E and literature review. Am J Med Genet B Neuropsychiatr Genet 2018; 177(4): 426-33.
[http://dx.doi.org/10.1002/ajmg.b.32631] [PMID: 29704315]
[84]
Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet 2006; 368(9553): 2167-78.
[http://dx.doi.org/10.1016/S0140-6736(06)69665-7] [PMID: 17174709]
[85]
Landrigan PJ. What causes autism? Exploring the environmental contribution. Curr Opin Pediatr 2010; 22(2): 219-25.
[http://dx.doi.org/10.1097/MOP.0b013e328336eb9a] [PMID: 20087185]
[86]
Sealey LA, Hughes BW, Sriskanda AN, et al. Environmental factors in the development of autism spectrum disorders. Environ Int 2016; 88: 288-98.
[http://dx.doi.org/10.1016/j.envint.2015.12.021] [PMID: 26826339]
[87]
Ye BS, Leung AOW, Wong MH. The association of environmental toxicants and autism spectrum disorders in children. Environ Pollut 2017; 227: 234-42.
[http://dx.doi.org/10.1016/j.envpol.2017.04.039] [PMID: 28475976]
[88]
Bölte S, Girdler S, Marschik PB. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell Mol Life Sci 2019; 76(7): 1275-97.
[http://dx.doi.org/10.1007/s00018-018-2988-4] [PMID: 30570672]
[89]
Roberts JR, Dawley EH, Reigart JR. Children’s low-level pesticide exposure and associations with autism and ADHD: a review. Pediatr Res 2019; 85(2): 234-41.
[http://dx.doi.org/10.1038/s41390-018-0200-z] [PMID: 30337670]
[90]
Eskenazi B, Marks AR, Bradman A, et al. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 2007; 115(5): 792-8.
[http://dx.doi.org/10.1289/ehp.9828] [PMID: 17520070]
[91]
Brown AS, Cheslack-Postava K, Rantakokko P, et al. Association of maternal insecticide levels with autism in offspring from a national birth cohort. Am J Psychiatry 2018; 175(11): 1094-101.
[http://dx.doi.org/10.1176/appi.ajp.2018.17101129] [PMID: 30111184]
[92]
von Ehrenstein OS, Ling C, Cui X, et al. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: population based case-control study. BMJ 2019; 364: l962.
[http://dx.doi.org/10.1136/bmj.l962] [PMID: 30894343]
[93]
Lee BK, Magnusson C, Gardner RM, et al. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav Immun 2015; 44: 100-5.
[http://dx.doi.org/10.1016/j.bbi.2014.09.001] [PMID: 25218900]
[94]
Gómez-Giménez B, Llansola M, Hernández-Rabaza V, et al. Sex-dependent effects of developmental exposure to different pesticides on spatial learning. The role of induced neuroinflammation in the hippocampus. Food Chem Toxicol 2017; 99: 135-48.
[http://dx.doi.org/10.1016/j.fct.2016.11.028] [PMID: 27908700]
[95]
Gorini F, Muratori F, Morales MA. The role of heavy metal pollution in neurobehavioral disorders: a focus on autism. Review J Autism Dev Disord 2014; 1(4): 354-72.
[http://dx.doi.org/10.1007/s40489-014-0028-3]
[96]
Long M, Ghisari M, Kjeldsen L, et al. Autism spectrum disorders, endocrine disrupting compounds, and heavy metals in amniotic fluid: a case-control study. Mol Autism 2019; 10(1): 1.
[http://dx.doi.org/10.1186/s13229-018-0253-1] [PMID: 30647876]
[97]
Mohamed FE, Zaky EA, El-Sayed AB, et al. Assessment of hair aluminum, lead, and mercury in a sample of autistic Egyptian children: environmental risk factors of heavy metals in autism. Behav Neurol 2015; 2015: 545674-9.
[http://dx.doi.org/10.1155/2015/545674]
[98]
Mold M, Umar D, King A, Exley C. Aluminium in brain tissue in autism. J Trace Elem Med Biol 2018; 46: 76-82.
[http://dx.doi.org/10.1016/j.jtemb.2017.11.012] [PMID: 29413113]
[99]
Lee MJ, Chou MC, Chou WJ, et al. Heavy metals’ effect on susceptibility to attention-deficit/hyperactivity disorder: implication of lead, cadmium, and antimony. Int J Environ Res Public Health 2018; 15(6): 1221.
[http://dx.doi.org/10.3390/ijerph15061221] [PMID: 29890770]
[100]
Kern JK, Geier DA, Sykes LK, Haley BE, Geier MR. The relationship between mercury and autism: a comprehensive review and discussion. J Trace Elem Med Biol 2016; 37: 8-24.
[http://dx.doi.org/10.1016/j.jtemb.2016.06.002] [PMID: 27473827]
[101]
Golding J, Rai D, Gregory S, et al. Prenatal mercury exposure and features of autism: a prospective population study. Mol Autism 2018; 9(1): 30.
[http://dx.doi.org/10.1186/s13229-018-0215-7] [PMID: 29713443]
[102]
Pagalan L, Bickford C, Weikum W, et al. Association of prenatal exposure to air pollution with autism spectrum disorder. JAMA Pediatr 2019; 173(1): 86-92.
[http://dx.doi.org/10.1001/jamapediatrics.2018.3101] [PMID: 30452514]
[103]
Constantino JN, Todorov A, Hilton C, et al. Autism recurrence in half siblings: strong support for genetic mechanisms of transmission in ASD. Mol Psychiatry 2013; 18(2): 137-8.
[http://dx.doi.org/10.1038/mp.2012.9] [PMID: 22371046]
[104]
Mezzavilla M, Vozzi D, Badii R, et al. Increased rate of deleterious variants in long runs of homozygosity of an inbred population from Qatar. Hum Hered 2015; 79(1): 14-9.
[http://dx.doi.org/10.1159/000371387] [PMID: 25720536]
[105]
Xie S, Karlsson H, Dalman C, et al. Family history of mental and neurological disorders and risk of autism. JAMA Netw Open 2019; 2(3) e190154
[http://dx.doi.org/10.1001/jamanetworkopen.2019.0154] [PMID: 30821823]
[106]
Alshaban F, Aldosari M, El Sayed Z, et al. Autism spectrum disorder in Qatar: profiles and correlates of a large clinical sample. Autism Develop Language Impairments 2017; 2: 1-7.
[http://dx.doi.org/10.1177/2396941517699215]
[107]
Hiller RM, Young RL, Weber N. Sex differences in pre-diagnosis concerns for children later diagnosed with autism spectrum disorder. Autism 2016; 20(1): 75-84.
[http://dx.doi.org/10.1177/1362361314568899] [PMID: 25717130]
[108]
Hess CR, Landa RJ. Predictive and concurrent validity of parent concern about young children at risk for autism. J Autism Dev Disord 2012; 42(4): 575-84.
[http://dx.doi.org/10.1007/s10803-011-1282-1] [PMID: 21584850]
[109]
Dworzynski K, Ronald A, Bolton P, Happé F. How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders? J Am Acad Child Adolesc Psychiatry 2012; 51(8): 788-97.
[http://dx.doi.org/10.1016/j.jaac.2012.05.018] [PMID: 22840550]
[110]
Little LM, Wallisch A, Salley B, Jamison R. Do early caregiver concerns differ for girls with autism spectrum disorders? Autism 2017; 21(6): 728-32.
[http://dx.doi.org/10.1177/1362361316664188] [PMID: 27542396]
[111]
Martin JL, Ross HS. Sibling aggression: sex differences and parents’ reactions. Int J Behav Dev 2005; 29(2): 129-38.
[http://dx.doi.org/10.1080/01650250444000469]
[112]
Geelhand P, Bernard P, Klein O, van Tiel B, Kissine M. The role of gender in the perception of autism symptom severity and future behavioral development. Mol Autism 2019; 10(1): 16.
[http://dx.doi.org/10.1186/s13229-019-0266-4] [PMID: 30976383]
[113]
Stoner R, Chow ML, Boyle MP, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med 2014; 370(13): 1209-19.
[http://dx.doi.org/10.1056/NEJMoa1307491] [PMID: 24670167]
[114]
Zerbo O, Iosif AM, Walker C, Ozonoff S, Hansen RL, Hertz-Picciotto I. Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (Childhood Autism Risks from Genetics and Environment) study. J Autism Dev Disord 2013; 43(1): 25-33.
[http://dx.doi.org/10.1007/s10803-012-1540-x] [PMID: 22562209]
[115]
Brucato M, Ladd-Acosta C, Li M, et al. Prenatal exposure to fever is associated with autism spectrum disorder in the boston birth cohort. Autism Res 2017; 10(11): 1878-90.
[http://dx.doi.org/10.1002/aur.1841] [PMID: 28799289]
[116]
Harony H, Wagner S. The contribution of oxytocin and vasopressin to mammalian social behavior: potential role in autism spectrum disorder. Neurosignals 2010; 18(2): 82-97.
[http://dx.doi.org/10.1159/000321035] [PMID: 21150165]
[117]
Cloarec R, Riffault B, Dufour A, et al. Pyramidal neuron growth and increased hippocampal volume during labor and birth in autism. Sci Ddv 2019; 5(1)eaav0394
[http://dx.doi.org/10.1126/sciadv.aav0394]
[118]
Brimacombe M, Ming X, Lamendola M. Prenatal and birth complications in autism. Matern Child Health J 2007; 11(1): 73-9.
[http://dx.doi.org/10.1007/s10995-006-0142-7] [PMID: 17053965]
[119]
Buchmayer S, Johansson S, Johansson A, Hultman CM, Sparén P, Cnattingius S. Can association between preterm birth and autism be explained by maternal or neonatal morbidity? Pediatrics 2009; 124(5): e817-25.
[http://dx.doi.org/10.1542/peds.2008-3582] [PMID: 19841112]
[120]
Burstyn I, Sithole F, Zwaigenbaum L. Autism spectrum disorders, maternal characteristics and obstetric complications among singletons born in Alberta, Canada. Chronic Dis Can 2010; 30(4): 125-34.
[PMID: 20946713]
[121]
Dodds L, Fell DB, Shea S, et al. The role of prenatal, obstetric and neonatal factors in the development of Autism J Autism and developmental disorders 2011; 41(7): 891-902.
[http://dx.doi.org/10.1007/s10803-010-1114-8]
[122]
Giulivi C, Zhang YF, Omanska-Klusek A, et al. Mitochondrial dysfunction in autism. JAMA 2010; 304(21): 2389-96.
[http://dx.doi.org/10.1001/jama.2010.1706] [PMID: 21119085]
[123]
Goines PE, Croen LA, Braunschweig D, et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Mol Autism 2011; 2(1): 13.
[http://dx.doi.org/10.1186/2040-2392-2-13] [PMID: 21810230]
[124]
Shevell M. Global developmental delay and mental retardation or intellectual disability: conceptualization, evaluation, and etiology. Pediatr Clin North Am 2008; 55(5): 1071-84. xi
[http://dx.doi.org/10.1016/j.pcl.2008.07.010] [PMID: 18929052]
[125]
Srour M, Shevell M. Genetics and the investigation of developmental delay/intellectual disability. Arch Dis Child 2014; 99(4): 386-9.
[http://dx.doi.org/10.1136/archdischild-2013-304063] [PMID: 24344174]
[126]
Neerhof MG, Thaete LG. The fetal response to chronic placental insufficiency. Semin Perinatol 32(3): 201-5.
[http://dx.doi.org/10.1053/j.semperi.2007.11.002]
[127]
Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012; 18(12): 1754-67.
[http://dx.doi.org/10.1038/nm.3012] [PMID: 23223073]
[128]
Triunfo S, Lobmaier S, Parra-Saavedra M, et al. Angiogenic factors at diagnosis of late-onset small-for-gestational age and histological placental underperfusion. Placenta 2014; 35(6): 398-403.
[http://dx.doi.org/10.1016/j.placenta.2014.03.021] [PMID: 24746262]
[129]
Nosarti C, Reichenberg A, Murray RM, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry 2012; 69(6): E1-8.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.1374] [PMID: 22660967]
[130]
Kratimenos P, Penn AA. Placental programming of neuropsychiatric disease. Pediatr Res 2019; 86(2): 157-64.
[http://dx.doi.org/10.1038/s41390-019-0405-9] [PMID: 31003234]
[131]
Yip BHK, Leonard H, Stock S, et al. Caesarean section and risk of autism across gestational age: a multi-national cohort study of 5 million births. Int J Epidemiol 2017; 46(2): 429-39.
[PMID: 28017932]
[132]
Mackay DF, Smith GC, Dobbie R, Cooper SA, Pell JP. Obstetric factors and different causes of special educational need: retrospective cohort study of 407,503 schoolchildren. BJOG 2013; 120(3): 297-307.
[http://dx.doi.org/10.1111/1471-0528.12071] [PMID: 23189965]
[133]
Obstetricians AC. ACOG committee opinion no. 559: Cesarean delivery on maternal request. Obstet Gynecol 2013; 121(4): 904-7.
[http://dx.doi.org/10.1097/01.AOG.0000428647.67925.d3] [PMID: 23635708]
[134]
Leavey A, Zwaigenbaum L, Heavner K, Burstyn I. Gestational age at birth and risk of autism spectrum disorders in Alberta, Canada. J Pediatr 2013; 162(2): 361-8.
[http://dx.doi.org/10.1016/j.jpeds.2012.07.040] [PMID: 22947654]
[135]
Jensen CM, Steinhausen HC, Lauritsen MB. Time trends over 16 years in incidence-rates of autism spectrum disorders across the lifespan based on nationwide Danish register data. J Autism Dev Disord 2014; 44(8): 1808-18.
[http://dx.doi.org/10.1007/s10803-014-2053-6] [PMID: 24554161]
[136]
Vinkhuyzen AAE, Eyles DW, Burne THJ, et al. Gestational vitamin D deficiency and autism-related traits: the Generation R Study. Mol Psychiatry 2018; 23(2): 240-6.
[http://dx.doi.org/10.1038/mp.2016.213] [PMID: 27895322]
[137]
Schmidt RJ, Iosif AM, Guerrero Angel E, Ozonoff S. Association of maternal prenatal vitamin use with risk for autism spectrum disorder recurrence in young siblings. JAMA Psychiatry 2019; 76(4): 391-8.
[http://dx.doi.org/10.1001/jamapsychiatry.2018.3901] [PMID: 30810722]
[138]
Surén P, Roth C, Bresnahan M, et al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 2013; 309(6): 570-7.
[http://dx.doi.org/10.1001/jama.2012.155925] [PMID: 23403681]
[139]
Iglesias Vázquez L, Canals J, Arija V. Review and meta-analysis found that prenatal folic acid was associated with a 58% reduction in autism but had no effect on mental and motor development. Acta Paediatr 2019; 108(4): 600-10.
[PMID: 30466185]
[140]
Baron-Cohen S, Auyeung B, Nørgaard-Pedersen B, et al. Elevated fetal steroidogenic activity in autism. Mol Psychiatry 2015; 20(3): 369-76.
[http://dx.doi.org/10.1038/mp.2014.48] [PMID: 24888361]
[141]
Taylor GT, Manzella FM, Huffman J, Cabrera OH, Hoffman J. Cognition in female rats after blocking conversion of androgens to estrogens. Horm Behav 2017; 90: 84-9.
[http://dx.doi.org/10.1016/j.yhbeh.2017.02.011] [PMID: 28257758]
[142]
Shalev H, Solt I, Chodick G. Month of birth and risk of autism spectrum disorder: a retrospective cohort of male children born in Israel. BMJ Open 2017; 7(11) e014606
[http://dx.doi.org/10.1136/bmjopen-2016-014606] [PMID: 29150463]
[143]
Gardener H, Spiegelman D, Buka SL. Perinatal and neonatal risk factors for autism: a comprehensive meta-analysis. Pediatrics 2011; 128(2): 344-55.
[http://dx.doi.org/10.1542/peds.2010-1036] [PMID: 21746727]
[144]
Jain A, Marshall J, Buikema A, Bancroft T, Kelly JP, Newschaffer CJ. Autism occurrence by MMR vaccine status among US children with older siblings with and without autism. JAMA 2015; 313(15): 1534-40.
[http://dx.doi.org/10.1001/jama.2015.3077] [PMID: 25898051]
[145]
Hviid A, Hansen JV, Frisch M, Melbye M. Measles, mumps, rubella vaccination and autism: a nationwide cohort study. Ann Intern Med 2019; 170(8): 513-20.
[http://dx.doi.org/10.7326/M18-2101] [PMID: 30831578]
[146]
Hurley AM, Tadrous M, Miller ES. Thimerosal-containing vaccines and autism: a review of recent epidemiologic studies. J Pediatr Pharmacol Ther 2010; 15(3): 173-81.
[PMID: 22477809]
[147]
Gadad BS, Li W, Yazdani U, et al. Administration of thimerosal-containing vaccines to infant rhesus macaques does not result in autism-like behavior or neuropathology. Proc Natl Acad Sci USA 2015; 112(40): 12498-503.
[http://dx.doi.org/10.1073/pnas.1500968112] [PMID: 26417083]
[148]
Yasuda H, Yasuda Y, Tsutsui T. Estimation of autistic children by metallomics analysis. Sci Rep 2013; 3: 1199.
[http://dx.doi.org/10.1038/srep01199] [PMID: 23383369]
[149]
Arora M, Reichenberg A, Willfors C, et al. Fetal and postnatal metal dysregulation in autism. Nat Commun 2017; 8: 15493.
[http://dx.doi.org/10.1038/ncomms15493] [PMID: 28569757]
[150]
Omotosho IO, Akinade AO, Lagunju IA. calcium and magnesium levels are down regulated in nigerian children with autism spectrum disorder and cerebral palsy. Neurosci Med 2018; 9(03): 159.
[http://dx.doi.org/10.4236/nm.2018.93016]
[151]
Guo M, Li L, Zhang Q, et al. Vitamin and mineral status of children with autism spectrum disorder in Hainan Province of China: associations with symptoms. Nutr Neurosci 2018; 1-8. (Online ahead of print)
[http://dx.doi.org/10.1080/1028415X.2018.1558762] [PMID: 30570388]
[152]
Altun H, Kurutaş EB, Şahin N, Güngör O, Fındıklı E. The levels of vitamin D, vitamin D receptor, homocysteine and complex B vitamin in children with autism spectrum disorders. Clin Psychopharmacol Neurosci 2018; 16(4): 383-90.
[http://dx.doi.org/10.9758/cpn.2018.16.4.383] [PMID: 30466210]
[153]
Wu DM, Wen X, Han XR, et al. Relationship between neonatal vitamin D at birth and risk of autism spectrum disorders: the NBSIB study. J Bone Miner Res 2018; 33(3): 458-66.
[http://dx.doi.org/10.1002/jbmr.3326] [PMID: 29178513]
[154]
Sandin S, Schendel D, Magnusson P, et al. Autism risk associated with parental age and with increasing difference in age between the parents. Mol Psychiatry 2016; 21(5): 693-700.
[http://dx.doi.org/10.1038/mp.2015.70] [PMID: 26055426]
[155]
Janecka M, Hansen SN, Modabbernia A, et al. Parental age and differential estimates of risk for neuropsychiatric disorders: findings from the Danish birth cohort. J Am Acad Child Adolesc Psychiatry 2019; 58(6): 618-27.
[http://dx.doi.org/10.1016/j.jaac.2018.09.447] [PMID: 30825496]
[156]
Croen LA, Najjar DV, Fireman B, Grether JK. Maternal and paternal age and risk of autism spectrum disorders. Arch Pediatr Adolesc Med 2007; 161(4): 334-40.
[http://dx.doi.org/10.1001/archpedi.161.4.334] [PMID: 17404129]
[157]
Reichenberg A, Gross R, Weiser M, et al. Advancing paternal age and autism. Arch Gen Psychiatry 2006; 63(9): 1026-32.
[http://dx.doi.org/10.1001/archpsyc.63.9.1026] [PMID: 16953005]
[158]
Durkin MS, Maenner MJ, Newschaffer CJ, et al. Advanced parental age and the risk of autism spectrum disorder. Am J Epidemiol 2008; 168(11): 1268-76.
[http://dx.doi.org/10.1093/aje/kwn250] [PMID: 18945690]
[159]
Khashan AS, Abel KM, McNamee R, et al. Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry 2008; 65(2): 146-52.
[http://dx.doi.org/10.1001/archgenpsychiatry.2007.20] [PMID: 18250252]
[160]
Charil A, Laplante DP, Vaillancourt C, King S. Prenatal stress and brain development. Brain Res Brain Res Rev 2010; 65(1): 56-79.
[http://dx.doi.org/10.1016/j.brainresrev.2010.06.002] [PMID: 20550950]
[161]
Khashan AS, McNamee R, Henriksen TB, et al. Risk of affective disorders following prenatal exposure to severe life events: a Danish population-based cohort study. J Psychiatr Res 2011; 45(7): 879-85.
[http://dx.doi.org/10.1016/j.jpsychires.2010.12.005] [PMID: 21208629]
[162]
King MD, Fountain C, Dakhlallah D, Bearman PS. Estimated autism risk and older reproductive age. Am J Public Health 2009; 99(9): 1673-9.
[http://dx.doi.org/10.2105/AJPH.2008.149021] [PMID: 19608957]
[163]
Park S, Kim BN, Kim JW, et al. Associations between maternal stress during pregnancy and offspring internalizing and externalizing problems in childhood. Int J Ment Health Syst 2014; 8(1): 44.
[http://dx.doi.org/10.1186/1752-4458-8-44] [PMID: 25926872]
[164]
Say GN, Karabekiroğlu K, Babadağı Z, Yüce M. Maternal stress and perinatal features in autism and attention deficit/hyperactivity disorder. Pediatr Int (Roma) 2016; 58(4): 265-9.
[http://dx.doi.org/10.1111/ped.12822] [PMID: 26338105]
[165]
Varcin KJ, Alvares GA, Uljarević M, Whitehouse AJO. Prenatal maternal stress events and phenotypic outcomes in Autism Spectrum Disorder. Autism Res 2017; 10(11): 1866-77.
[http://dx.doi.org/10.1002/aur.1830] [PMID: 28681538]
[166]
Manzari N, Matvienko-Sikar K, Baldoni F, et al. Prenatal maternal stress and risk of neurodevelopmental disorders in the offspring: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol 2019; 54(11): 1299-309.
[http://dx.doi.org/10.1007/s00127-019-01745-3]
[167]
Linderkamp O, Janus L, Linder R, et al. Time table of normal foetal brain development. Int J Prenatal Perinat Psychol Med 2009; 21(1/2): 4-16.
[168]
Wang SH, Sun ZL, Guo YJ, Yuan Y, Li L. PPARgamma-mediated advanced glycation end products regulation of neural stem cells. Mol Cell Endocrinol 2009; 307(1-2): 176-84.
[http://dx.doi.org/10.1016/j.mce.2009.02.012] [PMID: 19524138]
[169]
Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology 2010; 35(1): 147-68.
[http://dx.doi.org/10.1038/npp.2009.115] [PMID: 19794405]
[170]
Ma RC, Tutino GE, Lillycrop KA, Hanson MA, Tam WH. Maternal diabetes, gestational diabetes and the role of epigenetics in their long term effects on offspring. Prog Biophys Mol Biol 2015; 118(1-2): 55-68.
[http://dx.doi.org/10.1016/j.pbiomolbio.2015.02.010] [PMID: 25792090]
[171]
Goldani AA, Downs SR, Widjaja F, Lawton B, Hendren RL. Biomarkers in autism. Front Psychiatry 2014; 5: 100.
[http://dx.doi.org/10.3389/fpsyt.2014.00100] [PMID: 25161627]
[172]
Krstic D, Rodriguez M, Knuesel I. Regulated proteolytic processing of Reelin through interplay of tissue plasminogen activator (tPA), ADAMTS-4, ADAMTS-5, and their modulators. PLoS One 2012; 7(10) e47793
[http://dx.doi.org/10.1371/journal.pone.0047793] [PMID: 23082219]
[173]
Wan H, Zhang C, Li H, Luan S, Liu C. Association of maternal diabetes with autism spectrum disorders in offspring: a systemic review and meta-analysis. Medicine (Baltimore) 2018; 97(2) e9438
[http://dx.doi.org/10.1097/MD.0000000000009438] [PMID: 29480832]
[174]
Xu G, Jing J, Bowers K, Liu B, Bao W. Maternal diabetes and the risk of autism spectrum disorders in the offspring: a systematic review and meta-analysis. J Autism Dev Disord 2014; 44(4): 766-75.
[http://dx.doi.org/10.1007/s10803-013-1928-2] [PMID: 24057131]
[175]
Xiang AH, Wang X, Martinez MP, Page K, Buchanan TA, Feldman RK. Maternal type 1 diabetes and risk of autism in offspring. JAMA 2018; 320(1): 89-91.
[http://dx.doi.org/10.1001/jama.2018.7614] [PMID: 29936530]
[176]
Hoirisch-Clapauch S, Porto MAS, Nardi AE. May maternal lifestyle have an impact on neonatal glucose levels? Med Hypotheses 2016; 87: 80-6.
[http://dx.doi.org/10.1016/j.mehy.2015.11.017] [PMID: 26774163]
[177]
Fisher SC, Kim SY, Sharma AJ, Rochat R, Morrow B. Is obesity still increasing among pregnant women? Prepregnancy obesity trends in 20 states, 2003-2009. Prev Med 2013; 56(6): 372-8.
[http://dx.doi.org/10.1016/j.ypmed.2013.02.015] [PMID: 23454595]
[178]
Deputy NP, Dub B, Sharma AJ. Prevalence and trends in prepregnancy normal weight-48 States, New York City, and District of Columbia, 2011-2015. MMWR Morb Mortal Wkly Rep 2018; 66(51-52): 1402-7.
[http://dx.doi.org/10.15585/mmwr.mm665152a3] [PMID: 29300720]
[179]
Deputy NP, Sharma AJ, Kim SY, Hinkle SN. Prevalence and characteristics associated with gestational weight gain adequacy. Obstet Gynecol 2015; 125(4): 773-81.
[http://dx.doi.org/10.1097/AOG.0000000000000739] [PMID: 25751216]
[180]
King JC. Maternal obesity, metabolism, and pregnancy outcomes. Annu Rev Nutr 2006; 26: 271-91.
[http://dx.doi.org/10.1146/annurev.nutr.24.012003.132249] [PMID: 16704347]
[181]
Aune D, Saugstad OD, Henriksen T, Tonstad S. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. JAMA 2014; 311(15): 1536-46.
[http://dx.doi.org/10.1001/jama.2014.2269] [PMID: 24737366]
[182]
Windham GC, Anderson M, Lyall K, et al. Maternal pre-pregnancy body mass index and gestational weight gain in relation to autism spectrum disorder and other developmental disorders in offspring. Autism Res 2019; 12(2): 316-27.
[http://dx.doi.org/10.1002/aur.2057] [PMID: 30575327]
[183]
Jo H, Schieve LA, Sharma AJ, Hinkle SN, Li R, Lind JN. Maternal prepregnancy body mass index and child psychosocial development at 6 years of age. Pediatrics 2015; 135(5): e1198-209.
[http://dx.doi.org/10.1542/peds.2014-3058] [PMID: 25917989]
[184]
Yeung EH, Sundaram R, Ghassabian A, Xie Y, Buck Louis G. Parental obesity and early childhood development. Pediatrics 2017; 139(2) e20161459
[http://dx.doi.org/10.1542/peds.2016-1459] [PMID: 28044047]
[185]
Cordero C, Windham GC, Schieve LA, et al. Maternal diabetes and hypertensive disorders in association with autism spectrum disorder. Autism Res 2019; 12(6): 967-75.
[http://dx.doi.org/10.1002/aur.2105] [PMID: 30969030]
[186]
Kramer MS, Berg C, Abenhaim H, et al. Incidence, risk factors, and temporal trends in severe postpartum hemorrhage. Am J Obs Gynecol 209(5): 449.
[http://dx.doi.org/10.1016/j.ajog.2013.07.007]
[187]
Wang C, Geng H, Liu W, Zhang G. Prenatal, perinatal, and postnatal factors associated with autism: a meta-analysis. Medicine (Baltimore) 2017; 96(18) e6696
[http://dx.doi.org/10.1097/MD.0000000000006696] [PMID: 28471964]
[188]
Jenabi E, Karami M, Khazaei S, Bashirian S. The association between preeclampsia and autism spectrum disorders among children: a meta-analysis. Korean J Pediatr 2019; 62(4): 126-30.
[http://dx.doi.org/10.3345/kjp.2018.07010] [PMID: 30590001]
[189]
Jung Y, Lee AM, McKee SA, Picciotto MR. Maternal smoking and autism spectrum disorder: meta-analysis with population smoking metrics as moderators. Sci Rep 2017; 7(1): 4315.
[http://dx.doi.org/10.1038/s41598-017-04413-1] [PMID: 28659613]
[190]
Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism 2017; 8(1): 13.
[http://dx.doi.org/10.1186/s13229-017-0121-4] [PMID: 28331572]
[191]
Caramaschi D, Taylor AE, Richmond RC, et al. Maternal smoking during pregnancy and autism: using causal inference methods in a birth cohort study. Transl Psychiatry 2018; 8(1): 262.
[http://dx.doi.org/10.1038/s41398-018-0313-5] [PMID: 30498225]
[192]
Mandic-Maravic V, Coric V, Mitkovic-Voncina M, et al. Interaction of glutathione S-transferase polymorphisms and tobacco smoking during pregnancy in susceptibility to autism spectrum disorders. Sci Rep 2019; 9(1): 3206.
[http://dx.doi.org/10.1038/s41598-019-39885-w] [PMID: 30824761]
[193]
Lyall K, Schmidt RJ, Hertz-Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol 2014; 43(2): 443-64.
[http://dx.doi.org/10.1093/ije/dyt282] [PMID: 24518932]
[194]
Joelsson P, Chudal R, Talati A, Suominen A, Brown AS, Sourander A. Prenatal smoking exposure and neuropsychiatric comorbidity of ADHD: a Finnish nationwide population-based cohort study. BMC Psychiatry 2016; 16(1): 306.
[http://dx.doi.org/10.1186/s12888-016-1007-2] [PMID: 27581195]
[195]
Eliasen M, Tolstrup JS, Nybo Andersen AM, Grønbaek M, Olsen J, Strandberg-Larsen K. Prenatal alcohol exposure and autistic spectrum disorders - a population-based prospective study of 80,552 children and their mothers. Int J Epidemiol 2010; 39(4): 1074-81.
[http://dx.doi.org/10.1093/ije/dyq056] [PMID: 20371506]
[196]
Singer AB, Aylsworth AS, Cordero C, et al. Prenatal alcohol exposure in relation to autism spectrum disorder: findings from the study to explore early development (SEED). Paediatr Perinat Epidemiol 2017; 31(6): 573-82.
[http://dx.doi.org/10.1111/ppe.12404] [PMID: 28881390]
[197]
Pahnke R, Mau-Moeller A, Junge M, et al. Oral contraceptives impair complex emotion recognition in healthy women. Front Neurosci 2019; 12: 1041.
[http://dx.doi.org/10.3389/fnins.2018.01041] [PMID: 30804733]
[198]
Mosher W D, Jones J. Use of contraception in the United States: 1982-2008. Vital and health statistics Series 23, Data from the National Survey of Family Growth 2010; (29): 1-44.
[199]
Jones J, Mosher W, Daniels K. Current contraceptive use in the United States, 2006-2010, and changes in patterns of use since 1995. Natl Health Stat Rep 2012; 60(60): 1-25.
[PMID: 24988814]
[200]
Strifert K. The link between oral contraceptive use and prevalence in autism spectrum disorder. Med Hypotheses 2014; 83(6): 718-25.
[http://dx.doi.org/10.1016/j.mehy.2014.09.026] [PMID: 25459142]
[201]
Mamidala MP, Polinedi A, Kumar PT, et al. Maternal hormonal interventions as a risk factor for Autism Spectrum Disorder: an epidemiological assessment from India. J Biosci 2013; 38(5): 887-92.
[http://dx.doi.org/10.1007/s12038-013-9376-x] [PMID: 24296891]
[202]
Whitaker-Azmitia PM, Lobel M, Moyer A. Low maternal progesterone may contribute to both obstetrical complications and autism. Med Hypotheses 2014; 82(3): 313-8.
[http://dx.doi.org/10.1016/j.mehy.2013.12.018] [PMID: 24485701]
[203]
Ervin KS, Lymer JM, Matta R, Clipperton-Allen AE, Kavaliers M, Choleris E. Estrogen involvement in social behavior in rodents: rapid and long-term actions. Horm Behav 2015; 74: 53-76.
[http://dx.doi.org/10.1016/j.yhbeh.2015.05.023] [PMID: 26122289]
[204]
Crider A, Thakkar R, Ahmed AO, Pillai A. Dysregulation of estrogen receptor beta (ERβ), aromatase (CYP19A1), and ER co-activators in the middle frontal gyrus of autism spectrum disorder subjects. Mol Autism 2014; 5(1): 46.
[http://dx.doi.org/10.1186/2040-2392-5-46] [PMID: 25221668]
[205]
Zou Y, Lu Q, Zheng D, et al. Prenatal levonorgestrel exposure induces autism-like behavior in offspring through ERβ suppression in the amygdala. Mol Autism 2017; 8(1): 46.
[http://dx.doi.org/10.1186/s13229-017-0159-3] [PMID: 28824796]
[206]
Xie W, Ge X, Li L, et al. Resveratrol ameliorates prenatal progestin exposure-induced autism-like behavior through ERβ activation. Mol Autism 2018; 9(1): 43.
[http://dx.doi.org/10.1186/s13229-018-0225-5] [PMID: 30123446]
[207]
Salehi B, Mishra AP, Nigam M, et al. Resveratrol: a double-edged sword in health benefits. Biomedicines 2018; 6(3): 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[208]
Kong D, Yan Y, He XY, et al. Effects of resveratrol on the mechanisms of antioxidants and estrogen in Alzheimer’s disease. BioMed Res Int 2019; 2019(8983752): 1-8.
[http://dx.doi.org/10.1155/2019/8983752]
[209]
Molenaar NM, Brouwer ME, Duvekot JJ, et al. Antidepressants during pregnancy: guideline adherence and current practice amongst Dutch gynaecologists and midwives. Midwifery 2018; 61: 29-35.
[http://dx.doi.org/10.1016/j.midw.2018.02.018] [PMID: 29524773]
[210]
Boukhris T, Sheehy O, Mottron L, Bérard A. Antidepressant use during pregnancy and the risk of autism spectrum disorder in children. JAMA Pediatr 2016; 170(2): 117-24.
[http://dx.doi.org/10.1001/jamapediatrics.2015.3356] [PMID: 26660917]
[211]
Andalib S, Emamhadi MR, Yousefzadeh-Chabok S, et al. Maternal SSRI exposure increases the risk of autistic offspring: a meta-analysis and systematic review. Eur Psychiatry 2017; 45: 161-6.
[http://dx.doi.org/10.1016/j.eurpsy.2017.06.001] [PMID: 28917161]
[212]
Brown HK, Ray JG, Wilton AS, Lunsky Y, Gomes T, Vigod SN. Association between serotonergic antidepressant use during pregnancy and autism spectrum disorder in children. JAMA 2017; 317(15): 1544-52.
[http://dx.doi.org/10.1001/jama.2017.3415] [PMID: 28418480]
[213]
Yamamoto-Sasaki M, Yoshida S, Takeuchi M, et al. Association between antidepressant use during pregnancy and autism spectrum disorder in children: a retrospective cohort study based on Japanese claims data. Matern Health Neonatol Perinatol 2019; 5(1): 1.
[http://dx.doi.org/10.1186/s40748-018-0096-y] [PMID: 30652008]
[214]
Perna R, Loughan A, Perkey H, et al. Terbutaline and associated risks for neurodevelopmental disorders. Child Dev Res 2014; 2014258608
[http://dx.doi.org/10.1155/2014/358608]
[215]
Connors SL, Crowell DE, Eberhart CG, et al. β2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins. J Child Neurol 2005; 20(11): 876-84.
[http://dx.doi.org/10.1177/08830738050200110401] [PMID: 16417856]
[216]
Gidaya NB, Lee BK, Burstyn I, Michael Y, Newschaffer CJ, Mortensen EL. In utero exposure to β-2-adrenergic receptor agonist drugs and risk for autism spectrum disorders. Pediatrics 2016; 137(2) e20151316
[http://dx.doi.org/10.1542/peds.2015-1316] [PMID: 26738885]
[217]
Sharma N, Gautam S, Devi U, et al. Preclinical appraisal of terbutaline analogues in precipitation of autism spectrum disorder. RSC Advances 2015; 5(49): 39003-11.
[http://dx.doi.org/10.1039/C5RA04213E]
[218]
Bercum FM, Rodgers KM, Benison AM, et al. Maternal stress combined with terbutaline leads to comorbid autistic-like behavior and epilepsy in a rat model. J Neurosci 2015; 35(48): 15894-902.
[http://dx.doi.org/10.1523/JNEUROSCI.2803-15.2015] [PMID: 26631470]
[219]
Hantsoo L, Kornfield S, Anguera MC, Epperson CN. Inflammation: a proposed intermediary between maternal stress and offspring neuropsychiatric risk. Biol Psychiatry 2019; 85(2): 97-106.
[http://dx.doi.org/10.1016/j.biopsych.2018.08.018] [PMID: 30314641]
[220]
Bossu JL, Roux S. The valproate model of autism. Med Sci (Paris) 2019; 35(3): 236-43.
[http://dx.doi.org/10.1051/medsci/2019036] [PMID: 30931908]
[221]
Christensen J, Pedersen L, Sun Y, Dreier JW, Brikell I, Dalsgaard S. Association of prenatal exposure to valproate and other antiepileptic drugs with risk for attention-deficit/hyperactivity disorder in offspring. JAMA Netw Open 2019; 2(1) e186606
[http://dx.doi.org/10.1001/jamanetworkopen.2018.6606] [PMID: 30646190]
[222]
Kälviäinen R, Straus S, Dogne JM, Bakchine S, Haas M. Reducing valproate use in women with epilepsy. Lancet Neurol 2018; 17(7): 580-1.
[http://dx.doi.org/10.1016/S1474-4422(18)30172-8] [PMID: 29914703]
[223]
Atladóttir HÓ, Thorsen P, Østergaard L, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 2010; 40(12): 1423-30.
[http://dx.doi.org/10.1007/s10803-010-1006-y] [PMID: 20414802]
[224]
Lee I, Eriksson P, Fredriksson A, Buratovic S, Viberg H. Developmental neurotoxic effects of two pesticides: behavior and neuroprotein studies on endosulfan and cypermethrin. Toxicology 2015; 335: 1-10.
[http://dx.doi.org/10.1016/j.tox.2015.06.010] [PMID: 26143737]
[225]
Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH. Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun 2012; 26(4): 607-16.
[http://dx.doi.org/10.1016/j.bbi.2012.01.011] [PMID: 22310922]
[226]
Chen SW, Zhong XS, Jiang LN, et al. Maternal autoimmune diseases and the risk of autism spectrum disorders in offspring: a systematic review and meta-analysis. Behav Brain Res 2016; 296: 61-9.
[http://dx.doi.org/10.1016/j.bbr.2015.08.035] [PMID: 26327239]
[227]
Nardone S, Elliott E. The interaction between the immune system and epigenetics in the etiology of autism spectrum disorders. Front Neurosci 2016; 10: 329.
[http://dx.doi.org/10.3389/fnins.2016.00329] [PMID: 27462204]
[228]
Kuban KC, O’Shea TM, Allred EN, et al. The breadth and type of systemic inflammation and the risk of adverse neurological outcomes in extremely low gestation newborns. Pediatr Neurol 2015; 52(1): 42-8.
[http://dx.doi.org/10.1016/j.pediatrneurol.2014.10.005] [PMID: 25459361]
[229]
Abib RT, Gaman A, Dargél AA, et al. Intracellular pathogen infections and immune response in autism. Neuroimmunomodulation 2018; 25(5-6): 271-9.
[http://dx.doi.org/10.1159/000491821] [PMID: 30130799]
[230]
Croen LA, Qian Y, Ashwood P, et al. Family history of immune conditions and autism spectrum and developmental disorders: Findings from the study to explore early development. Autism Res 2019; 12(1): 123-35.
[http://dx.doi.org/10.1002/aur.1979] [PMID: 30095240]
[231]
Singer AB, Burstyn I, Thygesen M, Mortensen PB, Fallin MD, Schendel DE. Parental exposures to occupational asthmagens and risk of autism spectrum disorder in a Danish population-based case-control study. Environ Health 2017; 16(1): 31.
[http://dx.doi.org/10.1186/s12940-017-0230-8] [PMID: 28359263]
[232]
Gong T, Lundholm C, Rejnö G, et al. Parental asthma and risk of autism spectrum disorder in offspring: a population and family-based case-control study. Clin Exp Allergy 2019; 49(6): 883-91.
[http://dx.doi.org/10.1111/cea.13353] [PMID: 30742718]
[233]
Jyonouchi H, Geng L, Rose S, Bennuri SC, Frye RE. Variations in mitochondrial respiration differ in IL-1ß/IL-10 ratio based subgroups in autism spectrum disorders. Front Psychiatry 2019; 10: 71.
[http://dx.doi.org/10.3389/fpsyt.2019.00071] [PMID: 30842746]
[234]
Baron-Cohen S, Tsompanidis A, Auyeung B, et al. Foetal oestrogens and autism. Mol Psychiatry 2019; 29: 1-9.
[PMID: 31358906]
[235]
Azziz R, Chang WY, Stanczyk FZ, Woods K. Effect of bilateral oophorectomy on adrenocortical function in women with polycystic ovary syndrome. Fertil Steril 2013; 99(2): 599-604.
[http://dx.doi.org/10.1016/j.fertnstert.2012.10.016] [PMID: 23122827]
[236]
Cherskov A, Pohl A, Allison C, Zhang H, Payne RA, Baron-Cohen S. Polycystic ovary syndrome and autism: a test of the prenatal sex steroid theory. Transl Psychiatry 2018; 8(1): 136.
[http://dx.doi.org/10.1038/s41398-018-0186-7] [PMID: 30065244]
[237]
Stener-Victorin E, Manti M, Fornes R, Risal S, Lu H, Benrick A. Origins and impact of psychological traits in polycystic ovary syndrome. Med Sci (Basel) 2019; 7(8): 86.
[http://dx.doi.org/10.3390/medsci7080086] [PMID: 31387252]
[238]
Beking T, Geuze RH, van Faassen M, Kema IP, Kreukels BPC, Groothuis TGG. Prenatal and pubertal testosterone affect brain lateralization. Psychoneuroendocrinology 2018; 88: 78-91.
[http://dx.doi.org/10.1016/j.psyneuen.2017.10.027] [PMID: 29195161]
[239]
Spencer D, Pasterski V, Neufeld S, et al. Prenatal androgen exposure and children’s aggressive behavior and activity level. Horm Behav 2017; 96: 156-65.
[http://dx.doi.org/10.1016/j.yhbeh.2017.09.012] [PMID: 28939371]
[240]
Widdifield J, Paterson JM, Bernatsky S, et al. The rising burden of rheumatoid arthritis surpasses rheumatology supply in Ontario. Can J Public Health 2013; 104(7): e450-5.
[http://dx.doi.org/10.17269/cjph.104.4115] [PMID: 24495819]
[241]
Park JY, Pillinger MH. Interleukin-6 in the pathogenesis of rheumatoid arthritis. Bull NYU Hosp Jt Dis 2007; 65(Suppl. 1): S4-S10.
[PMID: 17708744]
[242]
Wojcik S, Bernatsky S, Platt RW, et al. Risk of autism spectrum disorders in children born to mothers with rheumatoid arthritis: a systematic literature review. Arthritis Care Res (Hoboken) 2017; 69(12): 1926-31.
[http://dx.doi.org/10.1002/acr.23235] [PMID: 28319657]
[243]
Rom AL, Wu CS, Olsen J, Jawaheer D, Hetland ML, Mørch LS. Parental rheumatoid arthritis and autism spectrum disorders in offspring: a Danish nationwide cohort study. J Am Acad Child Adolesc Psychiatry 2018; 57(1): 28-32.e1.
[http://dx.doi.org/10.1016/j.jaac.2017.10.002] [PMID: 29301665]
[244]
Chaidez V, Hansen RL, Hertz-Picciotto I. Gastrointestinal problems in children with autism, developmental delays or typical development. J Autism Dev Disord 2014; 44(5): 1117-27.
[http://dx.doi.org/10.1007/s10803-013-1973-x] [PMID: 24193577]
[245]
Miyazaki C, Koyama M, Ota E, et al. Allergies in children with autism spectrum disorder: a systematic review and meta-analysis. Rev J Autism Develop Disord 2015; 2(4): 374-401.
[http://dx.doi.org/10.1007/s40489-015-0059-4]
[246]
Tye C, Runicles AK, Whitehouse AJO, Alvares GA. Characterizing the interplay between autism spectrum disorder and comorbid medical conditions: an integrative review. Front Psychiatry 2019; 9: 751.
[http://dx.doi.org/10.3389/fpsyt.2018.00751] [PMID: 30733689]
[247]
Tonacci A, Bagnato G, Pandolfo G, et al. MicroRNA cross-involvement in autism spectrum disorders and atopic dermatitis: a literature review. J Clin Med 2019; 8(1): 88.
[http://dx.doi.org/10.3390/jcm8010088] [PMID: 30646527]
[248]
Rice MW, Pandya JD, Shear DA. Gut microbiota as a therapeutic target to ameliorate the biochemical, neuroanatomical, and behavioral effects of traumatic brain injuries. Front Neurol 2019; 10: 875.
[http://dx.doi.org/10.3389/fneur.2019.00875] [PMID: 31474930]
[249]
Sudo N. Role of gut microbiota in brain function and stress-related pathology. Biosci Microbiota Food Health 2019; 38(3): 75-80.
[http://dx.doi.org/10.12938/bmfh.19-006] [PMID: 31384518]
[250]
Pulikkan J, Mazumder A, Grace T. Role of the gut microbiome in autism spectrum disorders. In: Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disord. Cham: Springer. Adv Exp Med Biol 2019; 1118: 253-69.
[http://dx.doi.org/10.1007/978-3-030-05542-4_13]
[251]
Fattorusso A, Di Genova L, Dell’Isola GB, Mencaroni E, Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients 2019; 11(3): 521.
[http://dx.doi.org/10.3390/nu11030521] [PMID: 30823414]
[252]
Kang DW, Adams JB, Coleman DM, et al. Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Sci Rep 2019; 9(1): 5821.
[http://dx.doi.org/10.1038/s41598-019-42183-0] [PMID: 30967657]
[253]
Coretti L, Paparo L, Riccio MP, et al. Gut microbiota features in young children with autism spectrum disorders. Front Microbiol 2018; 9: 3146.
[http://dx.doi.org/10.3389/fmicb.2018.03146] [PMID: 30619212]
[254]
Wang M, Wan J, Rong H, et al. Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder. mSystems 2019; 4(1): e00321-18.
[http://dx.doi.org/10.1128/mSystems.00321-18] [PMID: 30701194]
[255]
Li N, Yang J, Zhang J, et al. Correlation of gut microbiome between ASD children and mothers and potential biomarkers for risk assessment. Genomics Proteomics Bioinformatics 2019; 17(1): 26-38.
[http://dx.doi.org/10.1016/j.gpb.2019.01.002] [PMID: 31026579]