Uterine Dnmt3a is not Required for Mouse Embryo Implantation

Page: [633 - 642] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Recent studies have demonstrated that endometrial DNA methylation is essential for embryo implantation during early pregnancy. Dnmt3a is one of the key enzymes for DNA methylation and could be expressed in the endometrium regularly at this stage.

Objective and Methods: In this study, we conditionally ablated uterine Dnmt3a using progesterone receptor-cre (Pgrcre) to define the physiological roles of Dnmt3a in female reproduction.

Results: We found that ovarian function was not apparently altered and the number of embryo implantation sites in Dnmt3aloxP/loxP Pgrcre/+ (cKO) was not significantly varied during early pregnancy. Western blotting and immunohistochemistry results showed no difference in expression or location of the estrogen receptor α (ERα) and mucin 1 (Muc1), the marker of uterine receptivity. Although the expression of decidual markers, matrix metalloproteinase-2 (Mmp2), matrix metalloproteinase-9(Mmp9), and bone morphogenetic protein-2 (Bmp2), was slightly decreased in Dnmt3a cKO females, the gross morphology of mice uteri during decidualization was not significantly influenced. In the artificial induction of the decidualization model, there was also no remarkable difference in visually observed morphology or uterine weight in Dnmt3a cKO. Lastly, a continuous breeding study showed that the fertility of Dnmt3a cKO female mice was not strikingly altered.

Conclusion: Overall, these results demonstrated that although some decidual markers are expressed abnormally, conditional knockout of Dnmt3a in the uterus did not significantly affect the endometrial function during embryo implantation; the embryo could implant into the endometrium normally.

Keywords: Dnmt3a, endometrial receptivity, decidualization, conditional knockout, embryo implantation, uterus.

[1]
Dey SK, Lim H, Das SK, et al. Molecular cues to implantation. Endocr Rev 2004; 25(3): 341-73.
[http://dx.doi.org/10.1210/er.2003-0020] [PMID: 15180948]
[2]
Kelleher AM, Milano-Foster J, Behura SK, et al. Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success. Nat Commun 2018; 9(1): 2435.
[http://dx.doi.org/10.1038/s41467-018-04848-8]
[3]
Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 2006; 7(3): 185-99.
[http://dx.doi.org/10.1038/nrg1808] [PMID: 16485018]
[4]
Zhang S, Lin H, Kong S, et al. Physiological and molecular determinants of embryo implantation. Mol Aspects Med 2013; 34(5): 939-80.
[http://dx.doi.org/10.1016/j.mam.2012.12.011] [PMID: 23290997]
[5]
Wang X, Lin H, Chen M, Wang J, Jin Y. Effect of acupuncture on in vitro fertilization: An updated systematic review and data mining protocol. Medicine (Baltimore) 2018; 97(24)e10998
[http://dx.doi.org/10.1097/MD.0000000000010998] [PMID: 29901590]
[6]
Roca FJ, Loomans HA, Wittman AT, Creighton CJ, Hawkins SM. Ten-Eleven Translocation Genes are Downregulated in Endometriosis. Curr Mol Med 2016; 16(3): 288-98.
[http://dx.doi.org/10.2174/1566524016666160225153844] [PMID: 26917261]
[7]
Nugent BM, O’Donnell CM, Epperson CN, Bale TL. Placental H3K27me3 establishes female resilience to prenatal insults. Nat Commun 2018; 9(1): 2555.
[http://dx.doi.org/10.1038/s41467-018-04992-1] [PMID: 29967448]
[8]
Grimaldi G, Christian M, Steel JH, Henriet P, Poutanen M, Brosens JJ. Down-regulation of the histone methyltransferase EZH2 contributes to the epigenetic programming of decidualizing human endometrial stromal cells. Mol Endocrinol 2011; 25(11): 1892-903.
[http://dx.doi.org/10.1210/me.2011-1139] [PMID: 21903722]
[9]
Grimaldi G, Christian M, Quenby S, Brosens JJ. Expression of epigenetic effectors in decidualizing human endometrial stromal cells. Mol Hum Reprod 2012; 18(9): 451-8.
[http://dx.doi.org/10.1093/molehr/gas020] [PMID: 22570358]
[10]
Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 2016; 17(12): 733-43.
[http://dx.doi.org/10.1038/nrg.2016.106] [PMID: 27694809]
[11]
Bozorg-Ghalati F, Hedayati M. Molecular Biomarkers of Anaplastic Thyroid Carcinoma. Curr Mol Med 2017; 17(3): 181-8.
[http://dx.doi.org/10.2174/1566524017666170822102417] [PMID: 28828971]
[12]
Moore LD, Le T, Fan G. DNA methylation and its basic function Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112]
[13]
Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 2018; 19(2): 81-92.
[http://dx.doi.org/10.1038/nrg.2017.80] [PMID: 29033456]
[14]
Gao F, Ma X, Rusie A, et al. Epigenetic changes through DNA methylation contribute to uterine stromal cell decidualization. Endocrinology 2012; 153(12): 6078-90.
[http://dx.doi.org/10.1210/en.2012-1457] [PMID: 23033272]
[15]
Rahnama F, Thompson B, Steiner M, Shafiei F, Lobie PE, Mitchell MD. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology 2009; 150(3): 1466-72.
[http://dx.doi.org/10.1210/en.2008-1142] [PMID: 18974268]
[16]
Kangaspeska S, Stride B, Métivier R, et al. Transient cyclical methylation of promoter DNA. Nature 2008; 452(7183): 112-5.
[http://dx.doi.org/10.1038/nature06640] [PMID: 18322535]
[17]
Vincent ZL, Farquhar CM, Mitchell MD, et al. Expression and regulation of DNA methyltransferases in human endometriumFertility and sterility 2011; 95(4): 1522-5. e1
[http://dx.doi.org/10.1016/j.fertnstert.2010.09.030]
[18]
Yamagata Y, Asada H, Tamura I, et al. DNA methyltransferase expression in the human endometrium: down-regulation by progesterone and estrogen. Hum Reprod 2009; 24(5): 1126-32.
[http://dx.doi.org/10.1093/humrep/dep015] [PMID: 19202141]
[19]
Ding YB, He JL, Liu XQ, Chen XM, Long CL, Wang YX. Expression of DNA methyltransferases in the mouse uterus during early pregnancy and susceptibility to dietary folate deficiency. Reproduction 2012; 144(1): 91-100.
[http://dx.doi.org/10.1530/REP-12-0006] [PMID: 22580371]
[20]
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99(3): 247-57.
[http://dx.doi.org/10.1016/S0092-8674 (00)81656-6] [PMID: 10555141]
[21]
Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69(6): 915-26.
[http://dx.doi.org/10.1016/0092-8674 (92)90611-F] [PMID: 1606615]
[22]
Ran H, Kong S, Zhang S, et al. Nuclear Shp2 directs normal embryo implantation via facilitating the ERα tyrosine phosphorylation by the Src kinase. Proc Natl Acad Sci USA 2017; 114(18): 4816-21.
[http://dx.doi.org/10.1073/pnas.1700978114] [PMID: 28424251]
[23]
Xin Q, Kong S, Yan J, et al. Polycomb subunit BMI1 determines uterine progesterone responsiveness essential for normal embryo implantation. J Clin Invest 2018; 128(1): 175-89.
[http://dx.doi.org/10.1172/JCI92862] [PMID: 29202468]
[24]
Zhang S, Kong S, Wang B, et al. Uterine Rbpj is required for embryonic-uterine orientation and decidual remodeling via Notch pathway-independent and -dependent mechanisms. Cell Res 2014; 24(8): 925-42.
[http://dx.doi.org/10.1038/cr.2014.82] [PMID: 24971735]
[25]
Gao Q, Steine EJ, Barrasa MI, et al. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci USA 2011; 108(44): 18061-6.
[http://dx.doi.org/10.1073/pnas.1114946108] [PMID: 22011581]
[26]
Ledford BE, Rankin JC, Markwald RR, Baggett B. Biochemical and morphological changes following artificially stimulated decidualization in the mouse uterus. Biol Reprod 1976; 15(4): 529-35.
[http://dx.doi.org/10.1095/biolreprod15.4.529] [PMID: 974204]
[27]
Deb K, Reese J, Paria BC. Methodologies to study implantation in mice. Methods Mol Med 2006; 121: 9-34.
[PMID: 16251731]
[28]
Wang Q, Lu J, Zhang S, et al. Wnt6 is essential for stromal cell proliferation during decidualization in mice. Biol Reprod 2013; 88(1): 5.
[http://dx.doi.org/10.1095/biolreprod.112.104687] [PMID: 23175771]
[29]
Tranguch S, Cheung-Flynn J, Daikoku T, et al. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc Natl Acad Sci USA 2005; 102(40): 14326-31.
[http://dx.doi.org/10.1073/pnas.0505775102] [PMID: 16176985]
[30]
Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998; 19(3): 219-20.
[http://dx.doi.org/10.1038/890] [PMID: 9662389]
[31]
Xie S, Wang Z, Okano M, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 1999; 236(1): 87-95.
[http://dx.doi.org/10.1016/S0378-1119 (99)00252-8] [PMID: 10433969]
[32]
Pinto R, De Summa S, Pilato B, Tommasi S. DNA methylation and miRNAs regulation in hereditary breast cancer: epigenetic changes, players in transcriptional and post- transcriptional regulation in hereditary breast cancer. Curr Mol Med 2014; 14(1): 45-57.
[http://dx.doi.org/10.2174/1566524013666131203101405] [PMID: 24295492]
[33]
Jia Y, Li P, Fang L, et al. Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer. Cell Discov 2016; 2: 16007.
[http://dx.doi.org/10.1038/celldisc.2016.7] [PMID: 27462454]
[34]
Zhang S, Kong S, Lu J, et al. deciphering the molecular basis of uterine receptivity. Mol Reprod Dev 2013; 80(1): 8-21.
[http://dx.doi.org/10.1002/mrd.22118] [PMID: 23070972]
[35]
Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012; 18(12): 1754-67.
[http://dx.doi.org/10.1038/nm.3012] [PMID: 23223073]
[36]
Lim HJ, Wang H. Uterine disorders and pregnancy complications: insights from mouse models. J Clin Invest 2010; 120(4): 1004-15.
[http://dx.doi.org/10.1172/JCI41210] [PMID: 20364098]
[37]
Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 1993; 90(23): 11162-6.
[http://dx.doi.org/10.1073/pnas.90.23.11162] [PMID: 8248223]
[38]
Meseguer M, Pellicer A, Simón C. MUC1 and endometrial receptivity. Mol Hum Reprod 1998; 4(12): 1089-98.
[http://dx.doi.org/10.1093/molehr/4.12.1089] [PMID: 9872358]
[39]
Dharmaraj N, Gendler SJ, Carson DD. Expression of human MUC1 during early pregnancy in the human MUC1 transgenic mouse model. Biol Reprod 2009; 81(6): 1182-8.
[http://dx.doi.org/10.1095/biolreprod.109.079418] [PMID: 19684334]
[40]
Li MQ, Yao MN, Yan JQ, et al. The decline of pregnancy rate and abnormal uterine responsiveness of steroid hormones in aging mice. Reprod Biol 2017; 17(4): 305-11.
[http://dx.doi.org/10.1016/j.repbio.2017.09.001] [PMID: 28927797]
[41]
Surveyor GA, Gendler SJ, Pemberton L, et al. Expression and steroid hormonal control of Muc-1 in the mouse uterus. Endocrinology 1995; 136(8): 3639-47.
[http://dx.doi.org/10.1210/endo.136.8.7628404] [PMID: 7628404]
[42]
Tajima S, Suetake I, Takeshita K, Nakagawa A, Kimura H. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. Adv Exp Med Biol 2016; 945: 63-86.
[http://dx.doi.org/10.1007/978-3-319-43624-1_4] [PMID: 27826835]
[43]
Ko YG, Nishino K, Hattori N, Arai Y, Tanaka S, Shiota K. Stage-by-stage change in DNA methylation status of Dnmt1 locus during mouse early development. J Biol Chem 2005; 280(10): 9627-34.
[http://dx.doi.org/10.1074/jbc.M413822200] [PMID: 15634679]
[44]
Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H. De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 2007; 204(4): 715-22.
[http://dx.doi.org/10.1084/jem.20060750] [PMID: 17420264]
[45]
Rhee I, Jair KW, Yen RW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 2000; 404(6781): 1003-7.
[http://dx.doi.org/10.1038/35010000] [PMID: 10801130]
[46]
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141(1): 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[47]
Rucci N, Sanità P, Angelucci A. Roles of metalloproteases in metastatic niche. Curr Mol Med 2011; 11(8): 609-22.
[http://dx.doi.org/10.2174/156652411797536705] [PMID: 21707518]
[48]
Mansoor N, Wahid F, Azam M, et al. Molecular Mechanisms of Complement System Proteins and Matrix Metalloproteinases in the Pathogenesis of Age-Related Macular Degeneration. Curr Mol Med 2019; 19(10): 705-18.
[http://dx.doi.org/10.2174/1566524019666190828150625] [PMID: 31456517]
[49]
Alexander CM, Hansell EJ, Behrendtsen O, et al. Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 1996; 122(6): 1723-36.
[PMID: 8674412]
[50]
Zwergel C, Schnekenburger M, Sarno F, et al. Identification of a novel quinoline-based DNA demethylating compound highly potent in cancer cells. Clin Epigenetics 2019; 11(1): 68.
[http://dx.doi.org/10.1186/s13148-019-0663-8] [PMID: 31060628]
[51]
Wu J, Tao Y, Shang A, et al. Effect of the interaction between MiR-200b-3p and DNMT3A on cartilage cells of osteoarthritis patients. J Cell Mol Med 2017; 21(10): 2308-16.
[http://dx.doi.org/10.1111/jcmm.13152] [PMID: 28345813]
[52]
Aumsuwan P, Khan SI, Khan IA, et al. The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro. Arch Biochem Biophys 2016; 591: 98-110.
[http://dx.doi.org/10.1016/j.abb.2015.12.001] [PMID: 26682631]
[53]
Kuhmann C, Li C, Kloor M, et al. Altered regulation of DNA ligase IV activity by aberrant promoter DNA methylation and gene amplification in colorectal cancer. Hum Mol Genet 2014; 23(8): 2043-54.
[http://dx.doi.org/10.1093/hmg/ddt599] [PMID: 24282031]