Background: Recent studies have demonstrated that endometrial DNA methylation is essential for embryo implantation during early pregnancy. Dnmt3a is one of the key enzymes for DNA methylation and could be expressed in the endometrium regularly at this stage.
Objective and Methods: In this study, we conditionally ablated uterine Dnmt3a using progesterone receptor-cre (Pgrcre) to define the physiological roles of Dnmt3a in female reproduction. Results: We found that ovarian function was not apparently altered and the number of embryo implantation sites in Dnmt3aloxP/loxP Pgrcre/+ (cKO) was not significantly varied during early pregnancy. Western blotting and immunohistochemistry results showed no difference in expression or location of the estrogen receptor α (ERα) and mucin 1 (Muc1), the marker of uterine receptivity. Although the expression of decidual markers, matrix metalloproteinase-2 (Mmp2), matrix metalloproteinase-9(Mmp9), and bone morphogenetic protein-2 (Bmp2), was slightly decreased in Dnmt3a cKO females, the gross morphology of mice uteri during decidualization was not significantly influenced. In the artificial induction of the decidualization model, there was also no remarkable difference in visually observed morphology or uterine weight in Dnmt3a cKO. Lastly, a continuous breeding study showed that the fertility of Dnmt3a cKO female mice was not strikingly altered. Conclusion: Overall, these results demonstrated that although some decidual markers are expressed abnormally, conditional knockout of Dnmt3a in the uterus did not significantly affect the endometrial function during embryo implantation; the embryo could implant into the endometrium normally.Keywords: Dnmt3a, endometrial receptivity, decidualization, conditional knockout, embryo implantation, uterus.