Current Trends in Vascular Biology and Atherothrombosis

Page: [6 - 10] Pages: 5

  • * (Excluding Mailing and Handling)

[1]
Hong SN, Gona P, Fontes JD, et al. Atherosclerotic biomarkers and aortic atherosclerosis by cardiovascular magnetic resonance imaging in the Framingham Heart Study. J Am Heart Assoc 2013; 2 e000307
[2]
Agarwala A, Virani S, Couper D, et al. Biomarkers and degree of atherosclerosis are independently associated with incident atherosclerotic cardiovascular disease in a primary prevention cohort: The ARIC study. Atherosclerosis 2016; 253: 156-63.
[3]
Dhingra R, Vasan RS. Biomarkers in cardiovascular disease: statistical assessment and section on key novel heart failure biomarkers. Trends Cardiovasc Med 2017; 27: 123-33.
[4]
Melak T, Baynes HW. Circulating microRNAs as possible biomarkers for coronary artery disease: a narrative review. EJIFCC 2019; 30: 179-94.
[5]
Alipov VI, Sukhorukov VN, Karagodin VP, Grechko AV, Orekhov AN. Chemical composition of circulating native and desialylated low density lipoprotein: what is the difference? Vessel Plus 2017; 1: 107-15.
[6]
Mendis S. Global progress in prevention of cardiovascular disease. Cardiovasc Diagn Ther 2017; 67: S32-8.
[7]
Dron JS, Ho R, Hegele RA. Recent advances in the genetics of atherothrombotic disease and its determinants. Arterioscler Thromb Vasc Biol 2017; 37: e158-66.
[8]
Turner AW, Wong D, Dreisbach CN, Miller CL. GWAS reveal targets in vessel wall pathways to treat coronary artery disease. Front Cardiovasc Med 2018; 5: 72.
[9]
Frigerio B, Werba JP, Amato M, et al. Traditional risk factors are causally related to carotid intima-media thickness progression: inferences from observational cohort studies and interventional trials. Curr Pharm Des 2020; 26(1): 11-24.
[10]
Guo Y, Chen B, Pei X, Zhang D. Radix stephaniae tetrandrine: an emerging role for management of breast cancer. Curr Pharm Des 2020; 26(1): 25-36.
[11]
Melnikov IS, Kozlov SG, Saburova OS, Avtaeva YN, Prokofieva LV, Gabbasov ZA. Current position on the role of monomeric C-reactive protein in vascular pathology and atherothrombosis. Curr Pharm Des 2020; 26(1): 37-43.
[12]
Zibaee E, Kamalian S, Tajvar M, et al. Citrus species: a review of traditional uses, phytochemistry and pharmacology. Curr Pharm Des 2020; 26(1): 44-97.
[13]
Varaeva YR, Livantsova EN, Polenova NV, Kosyura SD, Nikityuk DB, Starodubova AV. Characteristics of blood lipid profiles of professional athletes: literature review. Curr Pharm Des 2020; 26(1): 98-102.
[14]
Zhunina OA, Yabbarov NG, Grechko AV, Yet SF, Sobenin IA, Orekhov AN. Neurodegenerative diseases associated with mitochondrial DNA mutations. Curr Pharm Des 2020; 26(1): 103-9.
[15]
Ramezani M, Amiri MS, Zibaee E, et al. A review on the phytochemistry, ethnobotanical uses and pharmacology of borago species. Curr Pharm Des 2020; 26(1): 110-28.
[16]
Tian C, An N, Yuan M, et al. A pooled analysis of the prognostic significance of brugada syndrome with atrial fibrillation. Curr Pharm Des 2020; 26(1): 129-37.
[17]
Ban Y, Xia T, Jing R, et al. Vitex diterpenoids: structural diversity and pharmacological activity. Curr Pharm Des 2020; 26(1): 138-59.
[18]
Chen Q, Rahman K, Wang SJ, Zhou S, Zhang H. Scutellaria barbata: a review of chemical constituents, pharmacological activities and clinical application. Curr Pharm Des 2020; 26(1): 160-75.
[19]
Mendes TC. doe Reis Lívero FA, de Souza P, Gebara KS, Gasparotto A Jr. Cellular and molecular mechanisms of antithrombogenic plants: a narrative review. Curr Pharm Des 2020; 26(1): 176-90.
[20]
Sobenin IA, Chistiakov DA, Bobryshev YV, Postnov AY, Orekhov AN. Mitochondrial mutations in atherosclerosis: new solutions in research and possible clinical applications. Curr Pharm Des 2013; 19: 5942-53.
[21]
Sobenin IA, Zhelankin AV, Mitrofanov KY, et al. Mutations of mitochondrial DNA in atherosclerosis and atherosclerosis-related diseases. Curr Pharm Des 2015; 21: 1158-63.
[22]
Volobueva A, Grechko A, Yet SF, Sobenin I, Orekhov A. Changes in mitochondrial genome associated with predisposition to atherosclerosis and related disease. Biomolecules 2019; 9: 377.
[23]
Kivelä AM, Huusko J, Ylä-Herttuala S. Prospect and progress of gene therapy in treating atherosclerosis. Expert Opin Biol Ther 2015; 15: 1699-712.
[24]
Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L. Promising directions in atherosclerosis treatment based on epigenetic regulation using microRNAs and long noncoding RNAs. Biomolecules 2019; 9: 226.
[25]
Libby P. Interleukin-1 beta as a target for atherosclerosis therapy. J Am Coll Cardiol 2017; 70: 2278-89.
[26]
Ding Q, Strong A, Patel KM, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 2014; 115: 488-92.
[27]
Huang L, Hua Z, Xiao H, et al. CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget 2017; 8: 37751-60.
[28]
Jarrett KE, Lee CM, Yeh YH, et al. Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease. Sci Rep 2017; 7: 44624.
[29]
Zhang Z, Salisbury D, Sallam T. Long noncoding RNAs in atherosclerosis. J Am Coll Cardiol 2018; 72: 2380-90.
[30]
Loyer X, Mallat Z, Boulanger CM, Tedgui A. MicroRNAs as therapeutic targets in atherosclerosis. Expert Opin Ther Targets 2015; 19: 489-96.
[31]
Sazonova MA, Sinyov VV, Ryzhkova AI, et al. Cybrid models of pathological cell processes in different diseases. Oxid Med Cell Longev 2018; 2018 4647214
[32]
Sazonova MA, Ryzhkova AI, Sinyov VV, et al. Creation of cultures containing mutations linked with cardiovascular diseases using transfection and genome editing. Curr Pharm Des 2019; 25: 693-9.
[33]
Verechshagina N, Nikitchina N, Yamada Y, et al. Future of human mitochondrial DNA editing technologies. Mitochondrial DNA A DNA Mapp Seq Anal 2019; 30: 214-21.
[34]
Kukat A, Kukat C, Brocher J, et al. Generation of rho0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses. Nucleic Acids Res 2008; 36 e44
[35]
Srivastava S. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 2001; 10: 3093-9.
[36]
Tanaka M, Borgeld HJ, Zhang J, et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 2002; 9: 534-41.
[37]
Alexeyev MF, Venediktova N, Pastukh V, Shokolenko I, Bonilla G, Wilson GL. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther 2008; 15: 516-23.
[38]
Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A. Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 2008; 36: 3926-38.
[39]
Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011; 39 e82
[40]
Patananan AN, Wu T-H, Chiou P-Y, Teitell MA. Modifying the mitochondrial genome. Cell Metab 2016; 23: 785-96.
[41]
Moraes CT. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy. Front Biosci 2016; 22: 991-1010.
[42]
Jo A, Ham S, Lee GH, et al. Efficient mitochondrial genome editing by CRISPR/Cas9. BioMed Res Int 2015; 2015 305716
[43]
Jeandard D, Smirnova A, Tarassov I, Barrey E, Smirnov A, Entelis N. Import of non-coding RNAs into human mitochondria: a critical review and emerging approaches. Cells 2019; 8: 286.
[44]
Salsman J, Dellaire G. Precision genome editing in the CRISPR era. Biochem Cell Biol 2016; 95: 187-201.
[45]
Dahal S, Dubey S, Raghavan SC. Homologous recombination-mediated repair of DNA double-strand breaks operates in mammalian mitochondria. Cell Mol Life Sci 2018; 75: 1641-55.
[46]
Jang Y, Lim K. Recent advances in mitochondria-targeted gene delivery. Molecules 2018; 23: 2316.
[47]
Yasuzaki Y, Yamada Y, Ishikawa T, Harashima H. Validation of mitochondrial gene delivery in liver and skeletal muscle via hydrodynamic injection using an artificial mitochondrial reporter DNA vector. Mol Pharm 2015; 12: 4311-20.
[48]
Bonnefoy N, Fox TD. Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination. Methods Mol Biol 2007; 372: 153-66.
[49]
Cardoso AM, Morais CM, Cruz AR, et al. Gemini surfactants mediate efficient mitochondrial gene delivery and expression. Mol Pharm 2015; 12: 716-30.
[50]
Costa D, Costa C, Caldeira M, Cortes L, Queiroz JA, Cruz C. Targeting of cellular organelles by fluorescent plasmid DNA nanoparticles. Biomacromolecules 2017; 18: 2928-36.
[51]
Weissig V. DQAsomes as the prototype of mitochondria-targeted pharmaceutical nanocarriers: preparation, characterization, and use. Methods Mol Biol 2015; 1265: 1-11.
[52]
Bae Y, Jung MK, Lee S, et al. Dequalinium-based functional nanosomes show increased mitochondria targeting and anticancer effect. Eur J Pharm Biopharm 2018; 124: 104-15.
[53]
Boddapati SV, D’Souza GGM, Erdogan S, Torchilin VP, Weissig V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett 2008; 8: 2559-63.
[54]
Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 2012; 159: 393-402.
[55]
Yamada Y, Fukuda Y, Harashima H. An analysis of membrane fusion between mitochondrial double membranes and MITO-Porter, mitochondrial fusogenic vesicles. Mitochondrion 2015; 24: 50-5.
[56]
Biswas S, Dodwadkar NS, Piroyan A, Torchilin VP. Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 2012; 33: 4773-82.
[57]
Battigelli A, Russier J, Venturelli E, et al. Peptide-based carbon nanotubes for mitochondrial targeting. Nanoscale 2013; 5: 9110-7.
[58]
Yu H, Mehta A, Wang G, et al. Next-generation sequencing of mitochondrial targeted AAV transfer of human ND4 in mice. Mol Vis 2013; 19: 1482-91.
[59]
Chuah JA, Matsugami A, Hayashi F, Numata K. Self-assembled peptide-based system for mitochondrial-targeted gene delivery: functional and structural insights. Biomacromolecules 2016; 17: 3547-57.
[60]
Yamada Y, Harashima H. Enhancement in selective mitochondrial association by direct modification of a mitochondrial targeting signal peptide on a liposomal based nanocarrier. Mitochondrion 2013; 13: 526-32.
[61]
Eid A, Alshareef S, Mahfouz MM. CRISPR base editors: genome editing without double-stranded breaks. Biochem J 2018; 475: 1955-64.
[62]
Fan W, Waymire KG, Narula N, et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 2008; 319: 958-62.
[63]
Shimizu A, Mito T, Hayashi C, et al. Transmitochondrial mice as models for primary prevention of diseases caused by mutation in the tRNALys gene. Proc Natl Acad Sci 2014; 111: 3104-9.
[64]
Shimizu A, Mito T, Hashizume O, et al. G7731A mutation in mouse mitochondrial tRNALys regulates late-onset disorders in transmitochondrial mice. Biochem Biophys Res Commun 2015; 459: 66-70.
[65]
Kauppila JHK, Baines HL, Bratic A, et al. A phenotype-driven approach to generate mouse models with pathogenic mtDNA mutations causing mitochondrial disease. Cell Rep 2016; 16: 2980-90.