Genetic Variants and Oxidative Stress in Alzheimer’s Disease

Page: [208 - 223] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

In an aging society, the number of people suffering from Alzheimer's Disease (AD) is still growing. Currently, intensive research is being carried out on the pathogenesis of AD. The results of these studies indicated that oxidative stress plays an important role in the onset and development of this disease. Moreover, in AD oxidative stress is generated by both genetic and biochemical factors as well as the functioning of the systems responsible for their formation and removal. The genetic factors associated with the regulation of the redox system include TOMM40, APOE, LPR, MAPT, APP, PSEN1 and PSEN2 genes. The most important biochemical parameters related to the formation of oxidative species in AD are p53, Homocysteine (Hcy) and a number of others. The formation of Reactive Oxygen Species (ROS) is also related to the efficiency of the DNA repair system, the effectiveness of the apoptosis, autophagy and mitophagy processes as well as the antioxidant potential. However, these factors are responsible for the development of many disorders, often with similar clinical symptoms, especially in the early stages of the disease. The discovery of markers of the early diagnosis of AD may contribute to the introduction of pharmacotherapy and slow down the progression of this disease.

Keywords: Genetic variants, mitochondrial dysfunction, ROS, biomarkers, Alzheimer’s disease, neurodegenerative disorder.

[1]
Prince M, Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina M. World Alzheimer Report 2015 The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends updates.Alzheimer’s Disease International (ADI) 87 2015.
[2]
Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer Report 2016 Improving: Healthcare for people living with dementia Coverage, Quality and costs now and in the future Alzheimer’s Disease International. ADI 2016; pp. 1-140.
[3]
Dubois B, Hampel H, Feldman HH, et al. Proceedings of the Meeting of the International Working Group (IWG) and the American Alzheimer’s Association on “The Preclinical State of AD”; July 23, 2015; Washington DC, USA.Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement 2016; 12(3): 292-323.
[http://dx.doi.org/10.1016/j.jalz.2016.02.002] [PMID: 27012484]
[4]
Holle R, Grässel E, Ruckdäschel S, et al. Dementia care initiative in primary practice: study protocol of a cluster randomized trial on dementia management in a general practice setting. BMC Health Serv Res 2009; 9(1): 91.
[http://dx.doi.org/10.1186/1472-6963-9-91] [PMID: 19500383]
[5]
Jóźwiak A. Otępienie u osób w wieku starszym - Dementia in the elderly. Geriatria 2008; 2: 237-46. [In Polish].
[6]
Cummings J, Aisen PS, DuBois B, et al. Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res Ther 2016; 8(1): 39.
[http://dx.doi.org/10.1186/s13195-016-0207-9] [PMID: 27646601]
[7]
Alonso Vilatela ME, López-López M, Yescas-Gómez P. Genetics of Alzheimer’s disease. Arch Med Res 2012; 43(8): 622-31.
[http://dx.doi.org/10.1016/j.arcmed.2012.10.017] [PMID: 23142261]
[8]
Dorszewska J. Cell biology of normal brain aging: synaptic plasticity-cell death. Aging Clin Exp Res 2013; 25(1): 25-34.
[http://dx.doi.org/10.1007/s40520-013-0004-2] [PMID: 23740630]
[9]
Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W. Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 2016; 13(9): 952-63.
[http://dx.doi.org/10.2174/1567205013666160314150501] [PMID: 26971934]
[10]
Prendecki M, Florczak-Wyspianska J, Kowalska M, Lianeri M, Kozubski W, Dorszewska J. Normal aging and dementia. Update on Dementia. InTech 2016; pp. 251-72.
[http://dx.doi.org/10.5772/64203]
[11]
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 1991; 12(10): 383-8.
[http://dx.doi.org/10.1016/0165-6147(91)90609-V] [PMID: 1763432]
[12]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[13]
Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 2013; 9(2): 106-18.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[14]
Michaelson DM. APOE ε4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement 2014; 10(6): 861-8.
[http://dx.doi.org/10.1016/j.jalz.2014.06.015] [PMID: 25217293]
[15]
AlzGene [Internet]. [cited 2018 Sep 21]. Available from http://www.alzgene.org/
[16]
Loy CT, Schofield PR, Turner AM, Kwok JB. Genetics of dementia. Lancet 2014; 383(9919): 828-40.
[http://dx.doi.org/10.1016/S0140-6736(13)60630-3] [PMID: 23927914]
[17]
Panza F, Seripa D, Solfrizzi V, et al. Emerging drugs to reduce abnormal β-amyloid protein in Alzheimer’s disease patients. Expert Opin Emerg Drugs 2016; 21(4): 377-91.
[http://dx.doi.org/10.1080/14728214.2016.1241232] [PMID: 27678025]
[18]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939-44.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[19]
Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6(8): 734-46.
[http://dx.doi.org/10.1016/S1474-4422(07)70178-3] [PMID: 17616482]
[20]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[21]
Shea YF, Ha J, Chu L-W. Comparisons of clinical symptoms in biomarker-confirmed Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia patients in a local memory clinic. Psychogeriatrics 2015; 15(4): 235-41.
[http://dx.doi.org/10.1111/psyg.12103] [PMID: 25533477]
[22]
National Institute of Neurological Disorders and Stroke. Lewy Body Dementia: information for patients, families, and professionals (NINDS). National Institute of Health. 2018. [cited 2018 Sep 16].Available from: . https://catalog.ninds.nih.gov/ninds/product/Lewy-Body-Dementia-Information-for-Patients-Families-and-Professionals/18-AG-7907
[23]
McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017; 89(1): 88-100.
[http://dx.doi.org/10.1212/WNL.0000000000004058] [PMID: 28592453]
[24]
Shiner T, Mirelman A, Gana Weisz M, et al. High frequency of gba gene mutations in dementia with lewy bodies among ashkenazi jews. JAMA Neurol 2016; 73(12): 1448-53.
[http://dx.doi.org/10.1001/jamaneurol.2016.1593] [PMID: 27723861]
[25]
Orme T, Guerreiro R, Bras J. The genetics of dementia with Lewy bodies: Current understanding and future directions. Curr Neurol Neurosci Rep 2018; 18(10): 67.
[http://dx.doi.org/10.1007/s11910-018-0874-y] [PMID: 30097731]
[26]
McKeith IG, Dickson DW, Lowe J, et al. Consortium on DLB.Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005; 65(12): 1863-72.
[http://dx.doi.org/10.1212/01.wnl.0000187889.17253.b1] [PMID: 16237129]
[27]
Finger EC. Frontotemporal dementias contin lifelong learn. Neurol 2016; 22(2): 464-89.
[http://dx.doi.org/10.1212/CON.0000000000000300]
[28]
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011; 134(Pt 9): 2456-77.
[http://dx.doi.org/10.1093/brain/awr179] [PMID: 21810890]
[29]
Balasa M, Gelpi E, Martín I, et al. Catalan collaborative Study Group for FTLD.Diagnostic accuracy of behavioral variant frontotemporal dementia consortium criteria (FTDC) in a clinicopathological cohort. Neuropathol Appl Neurobiol 2015; 41(7): 882-92.
[http://dx.doi.org/10.1111/nan.12194] [PMID: 25381753]
[30]
Buée L, Delacourte A. Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 1999; 9(4): 681-93.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00550.x] [PMID: 10517507]
[31]
Sonobe Y, Ghadge G, Masaki K, Sendoel A, Fuchs E, Roos RP. Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress. Neurobiol Dis 2018; 116: 155-65.
[http://dx.doi.org/10.1016/j.nbd.2018.05.009] [PMID: 29792928]
[32]
Tsai RM, Boxer AL. Treatment of frontotemporal dementia. Curr Treat Options Neurol 2014; 16(11): 319.
[http://dx.doi.org/10.1007/s11940-014-0319-0] [PMID: 25238733]
[33]
Kerchner GA, Tartaglia MC, Boxer A. Abhorring the vacuum: use of Alzheimer’s disease medications in frontotemporal dementia. Expert Rev Neurother 2011; 11(5): 709-17.
[http://dx.doi.org/10.1586/ern.11.6] [PMID: 21728274]
[34]
Kishi T, Matsunaga S, Iwata N. Memantine for the treatment of frontotemporal dementia: a meta-analysis. Neuropsychiatr Dis Treat 2015; 11: 2883-5.
[http://dx.doi.org/10.2147/NDT.S94430] [PMID: 26648724]
[35]
Lobo A, Launer LJ, Fratiglioni L, et al. Neurologic Diseases in the Elderly Research Group.Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurology 2000; 54(11): S4-9.
[PMID: 10854354]
[36]
Hachinski VC, Lassen NA, Marshall J. Multi-infarct dementia. A cause of mental deterioration in the elderly. Lancet 1974; 2(7874): 207-10.
[http://dx.doi.org/10.1016/S0140-6736(74)91496-2] [PMID: 4135618]
[37]
O’Brien JT, Erkinjuntti T, Reisberg B, et al. Vascular cognitive impairment. Lancet Neurol 2003; 2(2): 89-98.
[http://dx.doi.org/10.1016/S1474-4422(03)00305-3] [PMID: 12849265]
[38]
Solfrizzi V, Scafato E, Capurso C, et al. Italian Longitudinal Study on Ageing Working Group.Metabolic syndrome and the risk of vascular dementia: the Italian Longitudinal Study on Ageing. J Neurol Neurosurg Psychiatry 2010; 81(4): 433-40.
[http://dx.doi.org/10.1136/jnnp.2009.181743] [PMID: 19965842]
[39]
Moon Y, Han S-H, Moon W-J. Patterns of brain iron accumulation in vascular dementia and Alzheimer’s dementia using quantitative susceptibility mapping imaging. J Alzheimers Dis 2016; 51(3): 737-45.
[http://dx.doi.org/10.3233/JAD-151037] [PMID: 26890777]
[40]
Cacabelos R, Meyyazhagan A, Carril JC, Cacabelos P, Teijido Ó. Pharmacogenetics of vascular risk factors in Alzheimer’s disease. J Pers Med 2018; 8(1)E3
[http://dx.doi.org/10.3390/jpm8010003] [PMID: 29301387]
[41]
Ikram MA, Bersano A, Manso-Calderón R, et al. Genetics of vascular dementia - review from the ICVD working group. BMC Med 2017; 15(1): 48.
[http://dx.doi.org/10.1186/s12916-017-0813-9] [PMID: 28260527]
[42]
Yin Y-W, Li JC, Wang JZ, et al. Association between apolipoprotein E gene polymorphism and the risk of vascular dementia: a meta-analysis. Neurosci Lett 2012; 514(1): 6-11.
[http://dx.doi.org/10.1016/j.neulet.2012.02.031] [PMID: 22381401]
[43]
Zeng L, Zou Y, Kong L, et al. Can Chinese herbal medicine adjunctive therapy improve outcomes of senile vascular dementia? Systematic review with meta-analysis of clinical trials. Phytother Res 2015; 29(12): 1843-57.
[http://dx.doi.org/10.1002/ptr.5481] [PMID: 26443194]
[44]
Skrobot OA, McKnight AJ, Passmore PA, et al. Genetic and Environmental Risk for Alzheimer’s disease Consortium (GERAD1). A validation study of vascular cognitive impairment genetics meta-analysis findings in an independent collaborative cohort. J Alzheimers Dis 2016; 53(3): 981-9.
[http://dx.doi.org/10.3233/JAD-150862] [PMID: 27314523]
[45]
Mackness M, Mackness B. Paraoxonase 1 and atherosclerosis: is the gene or the protein more important? Free Radic Biol Med 2004; 37(9): 1317-23.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.07.034] [PMID: 15454272]
[46]
Dantoine TF, Drouet M, Debord J, Merle L, Cogne M, Charmes JP. Paraoxonase 1 192/55 gene polymorphisms in Alzheimer’s disease. Ann N Y Acad Sci 2002; 977: 239-44.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04821.x] [PMID: 12480756]
[47]
Alam R, Tripathi M, Mansoori N, et al. Synergistic epistasis of paraoxonase 1 (rs662 and rs85460) and apolipoprotein E4 genes in pathogenesis of Alzheimer’s disease and vascular dementia. Am J Alzheimers Dis Other Demen 2014; 29(8): 769-76.
[http://dx.doi.org/10.1177/1533317514539541] [PMID: 24965284]
[48]
Zuliani G, Ble’ A, Zanca R, et al. Genetic polymorphisms in older subjects with vascular or Alzheimer’s dementia. Acta Neurol Scand 2001; 103(5): 304-8.
[http://dx.doi.org/10.1034/j.1600-0404.2001.103005304.x] [PMID: 11328206]
[49]
Bednarska-Makaruk ME, Krzywkowski T, Graban A, et al. Paraoxonase 1 (PON1) gene-108C>T and p.Q192R polymorphisms and arylesterase activity of the enzyme in patients with dementia. Folia Neuropathol 2013; 51(2): 111-9.
[http://dx.doi.org/10.5114/fn.2013.35953] [PMID: 23821382]
[50]
Liu H, Yang M, Li GM, et al. The MTHFR C677T polymorphism contributes to an increased risk for vascular dementia: a meta-analysis. J Neurol Sci 2010; 294(1-2): 74-80.
[http://dx.doi.org/10.1016/j.jns.2010.04.001] [PMID: 20441995]
[51]
Dwyer R, Skrobot OA, Dwyer J, Munafo M, Kehoe PG. Using Alzgene-like approaches to investigate susceptibility genes for vascular cognitive impairment. J Alzheimers Dis 2013; 34(1): 145-54.
[http://dx.doi.org/10.3233/JAD-121069] [PMID: 23186985]
[52]
Sun J-H, Tan L, Wang HF, et al. Genetics of vascular dementia: Systematic review and meta-analysis. J Alzheimers Dis 2015; 46(3): 611-29.
[http://dx.doi.org/10.3233/JAD-143102] [PMID: 25835425]
[53]
Dorszewska J, Oczkowska A, Prendecki M, Lianeri M, Kozubski W. MTHFR and other enzymes associated with the circulation of methyl in neurodegenerative diseases Methylenetetrahydrofolate reductase (MTHFR) in health and disease. Nova Science Publishers 2001; pp. 1-39.
[54]
Ferreira de Oliveira F, Berretta JM, Suchi Chen E, Cardoso Smith M, Ferreira Bertolucci PH. Pharmacogenetic effects of angiotensin-converting enzyme inhibitors over age-related urea and creatinine variations in patients with dementia due to Alzheimer diseaseColomb medica (Cali) 2016; 47(2): 76-80.
[http://dx.doi.org/10.25100/cm.v47i2.2188]
[55]
de Oliveira FF, Chen ES, Smith MC, Bertolucci PHF. Pharmacogenetics of angiotensin-converting enzyme inhibitors in patients with Alzheimer’s disease dementia Curr Alzheimer Res 2018 2018; 15(4): 386-98.
[http://dx.doi.org/10.2174/1567205014666171016101816]
[56]
Press D, Alexander M. Treatment of dementia [Internet]. [cited 2018 Sep 21] UpToDate. 2018.Available from: . https://www.uptodate. com/contents/treatment-of-dementia
[57]
Miranda LFJR, Gomes KB, Silveira JN, et al. Predictive factors of clinical response to cholinesterase inhibitors in mild and moderate Alzheimer’s disease and mixed dementia: a one-year naturalistic study. J Alzheimers Dis 2015; 45(2): 609-20.
[http://dx.doi.org/10.3233/JAD-142148] [PMID: 25589728]
[58]
Bond M, Rogers G, Peters J, et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): a systematic review and economic model. Health Technol Assess 2012; 16(21): 1-470.
[http://dx.doi.org/10.3310/hta16210] [PMID: 22541366]
[59]
Clegg A, Bryant J, Nicholson T, et al. Clinical and cost-effectiveness of donepezil, rivastigmine and galantamine for Alzheimer’s disease: a rapid and systematic review. Health Technol Assess 2001; 5(1): 1-137.
[PMID: 11262420]
[60]
Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging 2008; 3(2): 211-25.
[PMID: 18686744]
[61]
Ballard C, Khan Z, Clack H, Corbett A. Nonpharmacological treatment of Alzheimer disease. Can J Psychiatry 2011; 56(10): 589-95.
[http://dx.doi.org/10.1177/070674371105601004] [PMID: 22014691]
[62]
Olazarán J, Reisberg B, Clare L, et al. Nonpharmacological therapies in Alzheimer’s disease: a systematic review of efficacy. Dement Geriatr Cogn Disord 2010; 30(2): 161-78.
[http://dx.doi.org/10.1159/000316119] [PMID: 20838046]
[63]
Chen R, Chan P-T, Chu H, et al. Treatment effects between monotherapy of donepezil versus combination with memantine for Alzheimer disease: A meta-analysis. PLoS One 2017; 12(8)e0183586
[http://dx.doi.org/10.1371/journal.pone.0183586] [PMID: 28827830]
[64]
Cacabelos R. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat 2007; 3(3): 303-33.
[PMID: 19300564]
[65]
Ishiwata K, Kawamura K, Yanai K, Hendrikse NH. In vivo evaluation of P-glycoprotein modulation of 8 PET radioligands used clinically. J Nucl Med 2007; 48(1): 81-7.
[PMID: 17204702]
[66]
Sita G, Hrelia P, Tarozzi A, Morroni F. P-glycoprotein (ABCB1) and oxidative stress: focus on Alzheimer’s disease. Oxid Med Cell Longev 2017; 20177905486
[http://dx.doi.org/10.1155/2017/7905486] [PMID: 29317984]
[67]
Noetzli M, Guidi M, Ebbing K, et al. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations. Ther Drug Monit 2013; 35(2): 270-5.
[http://dx.doi.org/10.1097/FTD.0b013e318282ff02] [PMID: 23503455]
[68]
Patocka J, Kuca K, Jun D. Acetylcholinesterase and butyrylcholinesterase-important enzymes of human bodyActa Medica (Hradec Kral 2004; 47(4): 215-8.
[http://dx.doi.org/10.14712/18059694.2018.95]
[69]
Campos C, Rocha NB, Vieira RT, et al. Treatment of Cognitive Deficits in Alzheimer’s disease: A psychopharmacological review. Psychiatr Danub 2016; 28(1): 2-12.
[PMID: 26938815]
[70]
Geula C, Darvesh S. Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer’s disease. Drugs Today (Barc) 2004; 40(8): 711-21.
[http://dx.doi.org/10.1358/dot.2004.40.8.850473] [PMID: 15510242]
[71]
Karolczak D, Sawicka E, Dorszewska J, et al. Memantine - neuroprotective drug in aging brain. Pol J Pathol 2013; 64(3): 196-203.
[http://dx.doi.org/10.5114/pjp.2013.38139] [PMID: 24166606]
[72]
Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 2002; 41(10): 719-39.
[http://dx.doi.org/10.2165/00003088-200241100-00003] [PMID: 12162759]
[73]
Noetzli M, Eap CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin Pharmacokinet 2013; 52(4): 225-41.
[http://dx.doi.org/10.1007/s40262-013-0038-9] [PMID: 23408070]
[74]
Campbell NL, Skaar TC, Perkins AJ, et al. Characterization of hepatic enzyme activity in older adults with dementia: potential impact on personalizing pharmacotherapy. Clin Interv Aging 2015; 10: 269-75.
[http://dx.doi.org/10.2147/CIA.S65980] [PMID: 25609939]
[75]
Zúñiga Santamaría T, Yescas Gómez P, Fricke Galindo I, González González M, Ortega Vázquez A, López López M. Pharmacogenetic studies in Alzheimer diseaseNeurologia 2018. pii: S0213-4853(18): 30156-7.
[PMID: 29898857]
[76]
Scacchi R, Gambina G, Moretto G, Corbo RM. Variability of AChE, BChE, and ChAT genes in the late-onset form of Alzheimer’s disease and relationships with response to treatment with Donepezil and Rivastigmine. Am J Med Genet B Neuropsychiatr Genet 2009; 150B(4): 502-7.
[http://dx.doi.org/10.1002/ajmg.b.30846] [PMID: 18780301]
[77]
Bizzarro A, Marra C, Acciarri A, et al. Apolipoprotein E epsilon4 allele differentiates the clinical response to donepezil in Alzheimer’s disease. Dement Geriatr Cogn Disord 2005; 20(4): 254-61.
[http://dx.doi.org/10.1159/000087371] [PMID: 16103669]
[78]
Choi SH, Kim SY, Na HR, et al. Effect of ApoE genotype on response to donepezil in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 2008; 25(5): 445-50.
[http://dx.doi.org/10.1159/000124752] [PMID: 18401173]
[79]
Waring JF, Tang Q, Robieson WZ, et al. APOE-ɛ4 carrier status and donepezil response in patients with Alzheimer’s disease. J Alzheimers Dis 2015; 47(1): 137-48.
[http://dx.doi.org/10.3233/JAD-142589] [PMID: 26402762]
[80]
Patterson CE, Todd SA, Passmore AP. Effect of apolipoprotein E and butyrylcholinesterase genotypes on cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer’s disease. Pharmacogenomics J 2011; 11(6): 444-50.
[http://dx.doi.org/10.1038/tpj.2010.61] [PMID: 20644562]
[81]
Rigaud A-S, Traykov L, Latour F, Couderc R, Moulin F, Forette F. Presence or absence of at least one epsilon 4 allele and gender are not predictive for the response to donepezil treatment in Alzheimer’s disease. Pharmacogenetics 2002; 12(5): 415-20.
[http://dx.doi.org/10.1097/00008571-200207000-00009] [PMID: 12142731]
[82]
Klimkowicz-Mrowiec A, Wolkow P, Sado M, et al. Influence of rs1080985 single nucleotide polymorphism of the CYP2D6 gene on response to treatment with donepezil in patients with alzheimer’s disease. Neuropsychiatr Dis Treat 2013; 9: 1029-33.
[http://dx.doi.org/10.2147/NDT.S46689] [PMID: 23950644]
[83]
Ferris S, Nordberg A, Soininen H, Darreh-Shori T, Lane R. Progression from mild cognitive impairment to Alzheimer’s disease: effects of sex, butyrylcholinesterase genotype, and rivastigmine treatment. Pharmacogenet Genomics 2009; 19(8): 635-46.
[http://dx.doi.org/10.1097/FPC.0b013e32832f8c17] [PMID: 19617863]
[84]
Miranda LFJR, Gomes KB, Tito PAL, et al. Clinical response to donepezil in mild and moderate dementia: Relationship to drug plasma concentration and CYP2D6 and APOE genetic polymorphisms. J Alzheimers Dis 2017; 55(2): 539-49.
[http://dx.doi.org/10.3233/JAD-160164] [PMID: 27716659]
[85]
Xiao T, Jiao B, Zhang W, Tang B, Shen L. Effect of the CYP2D6 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease: A systematic review and meta-analysis. CNS Drugs 2016; 30(10): 899-907.
[http://dx.doi.org/10.1007/s40263-016-0356-1] [PMID: 27282366]
[86]
Farlow M, Lane R, Kudaravalli S, He Y. Differential qualitative responses to rivastigmine in APOE epsilon 4 carriers and noncarriers. Pharmacogenomics J 2004; 4(5): 332-5.
[http://dx.doi.org/10.1038/sj.tpj.6500267] [PMID: 15289797]
[87]
Chen T-H, Chou M-C, Lai C-L, Wu S-J, Hsu C-L, Yang Y-H. Factors affecting therapeutic response to Rivastigmine in Alzheimer’s disease patients in Taiwan. Kaohsiung J Med Sci 2017; 33(6): 277-83.
[http://dx.doi.org/10.1016/j.kjms.2017.04.006] [PMID: 28601231]
[88]
Braga ILS, Silva PN, Furuya TK, et al. Effect of APOE and CHRNA7 genotypes on the cognitive response to cholinesterase inhibitor treatment at different stages of Alzheimer’s disease. Am J Alzheimers Dis Other Demen 2015; 30(2): 139-44.
[http://dx.doi.org/10.1177/1533317514539540] [PMID: 24951635]
[89]
Clarelli F, Mascia E, Santangelo R, et al. CHRNA7 Gene and response to cholinesterase inhibitors in an Italian cohort of Alzheimer’s disease patients. J Alzheimers Dis 2016; 52(4): 1203-8.
[http://dx.doi.org/10.3233/JAD-160074] [PMID: 27104904]
[90]
MacGowan SH, Wilcock GK, Scott M. Effect of gender and apolipoprotein E genotype on response to anticholinesterase therapy in Alzheimer’s disease. Int J Geriatr Psychiatry 1998; 13(9): 625-30.
[PMID: 9777427]
[91]
Aerssens J, Raeymaekers P, Lilienfeld S, Geerts H, Konings F, Parys W. APOE genotype: no influence on galantamine treatment efficacy nor on rate of decline in Alzheimer’s disease. Dement Geriatr Cogn Disord 2001; 12(2): 69-77.
[http://dx.doi.org/10.1159/000051238] [PMID: 11173877]
[92]
Vijayaraghavan S, Darreh-Shori T, Rongve A, et al. Association of butyrylcholinesterase-K allele and apolipoprotein E ɛ4 allele with cognitive decline in dementia with Lewy bodies and Alzheimer’s disease. J Alzheimers Dis 2016; 50(2): 567-76.
[http://dx.doi.org/10.3233/JAD-150750] [PMID: 26757188]
[93]
Bizzarro A, Guglielmi V, Lomastro R, et al. BuChE K variant is decreased in Alzheimer’s disease not in fronto-temporal dementia. J Neural Transm (Vienna) 2010; 117(3): 377-83.
[http://dx.doi.org/10.1007/s00702-009-0358-y] [PMID: 20058037]
[94]
Blesa R, Bullock R, He Y, et al. Effect of butyrylcholinesterase genotype on the response to rivastigmine or donepezil in younger patients with Alzheimer’s disease. Pharmacogenet Genomics 2006; 16(11): 771-4.
[http://dx.doi.org/10.1097/01.fpc.0000220573.05714.ac] [PMID: 17047484]
[95]
Han HJ, Kwon JC, Kim JE, et al. Effect of rivastigmine or memantine add-on therapy is affected by butyrylcholinesterase genotype in patients with probable Alzheimer’s disease. Eur Neurol 2015; 73(1-2): 23-8.
[http://dx.doi.org/10.1159/000366198] [PMID: 25376930]
[96]
Chianella C, Gragnaniello D, Maisano Delser P, et al. BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur J Clin Pharmacol 2011; 67(11): 1147-57.
[http://dx.doi.org/10.1007/s00228-011-1064-x] [PMID: 21630031]
[97]
De Beaumont L, Pelleieux S, Lamarre-Théroux L, Dea D, Poirier J. Alzheimer’s Disease Cooperative Study. Butyrylcholinesterase K and apolipoprotein E-ɛ4 reduce the age of onset of Alzheimer’s disease, accelerate cognitive decline, and modulate donepezil response in mild cognitively impaired subjects. J Alzheimers Dis 2016; 54(3): 913-22.
[http://dx.doi.org/10.3233/JAD-160373] [PMID: 27567841]
[98]
Sokolow S, Li X, Chen L, et al. Deleterious effect of butyrylcholinesterase K-variant in donepezil treatment of mild cognitive impairment. J Alzheimers Dis 2017; 56(1): 229-37.
[http://dx.doi.org/10.3233/JAD-160562] [PMID: 27911294]
[99]
Harold D, Macgregor S, Patterson CE, et al. A single nucleotide polymorphism in CHAT influences response to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacogenet Genomics 2006; 16(2): 75-7.
[http://dx.doi.org/10.1097/01.fpc.0000189799.88596.04] [PMID: 16424819]
[100]
Yoon H, Myung W, Lim S-W, et al. Association of the choline acetyltransferase gene with responsiveness to acetylcholinesterase inhibitors in Alzheimer’s disease. Pharmacopsychiatry 2015; 48(3): 111-7.
[http://dx.doi.org/10.1055/s-0035-1545300] [PMID: 25730470]
[101]
Weng P-H, Chen J-H, Chen T-F, et al. CHRNA7 polymorphisms and response to cholinesterase inhibitors in Alzheimer’s disease. PLoS One 2013; 8(12)e84059
[http://dx.doi.org/10.1371/journal.pone.0084059] [PMID: 24391883]
[102]
Magliulo L, Dahl M-L, Lombardi G, et al. Do CYP3A and ABCB1 genotypes influence the plasma concentration and clinical outcome of donepezil treatment? Eur J Clin Pharmacol 2011; 67(1): 47-54.
[http://dx.doi.org/10.1007/s00228-010-0883-5] [PMID: 20931330]
[103]
Noetzli M, Guidi M, Ebbing K, et al. Population pharmacokinetic study of memantine: effects of clinical and genetic factors. Clin Pharmacokinet 2013; 52(3): 211-23.
[http://dx.doi.org/10.1007/s40262-013-0032-2] [PMID: 23371894]
[104]
Varsaldi F, Miglio G, Scordo MG, et al. Impact of the CYP2D6 polymorphism on steady-state plasma concentrations and clinical outcome of donepezil in Alzheimer’s disease patients. Eur J Clin Pharmacol 2006; 62(9): 721-6.
[http://dx.doi.org/10.1007/s00228-006-0168-1] [PMID: 16845507]
[105]
Seripa D, Bizzarro A, Pilotto A, et al. Role of cytochrome P4502D6 functional polymorphisms in the efficacy of donepezil in patients with Alzheimer’s disease. Pharmacogenet Genomics 2011; 21(4): 225-30.
[PMID: 20859244]
[106]
Noetzli M, Guidi M, Ebbing K, et al. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance. Br J Clin Pharmacol 2014; 78(1): 135-44.
[http://dx.doi.org/10.1111/bcp.12325] [PMID: 24433464]
[107]
Pilotto A, Franceschi M, D’Onofrio G, et al. Effect of a CYP2D6 polymorphism on the efficacy of donepezil in patients with Alzheimer disease. Neurology 2009; 73(10): 761-7.
[http://dx.doi.org/10.1212/WNL.0b013e3181b6bbe3] [PMID: 19738170]
[108]
Atkinson A, Singleton AB, Steward A, et al. CYP2D6 is associated with Parkinson’s disease but not with dementia with Lewy Bodies or Alzheimer’s disease. Pharmacogenetics 1999; 9(1): 31-5.
[http://dx.doi.org/10.1097/00008571-199902000-00005] [PMID: 10208640]
[109]
Sonali N, Tripathi M, Sagar R, Velpandian T, Subbiah V. Clinical effectiveness of rivastigmine monotherapy and combination therapy in Alzheimer’s patients. CNS Neurosci Ther 2013; 19(2): 91-7.
[http://dx.doi.org/10.1111/cns.12036] [PMID: 23206182]
[110]
Matsushima H, Shimohama S, Chachin M, Taniguchi T, Kimura J. Ca2+-dependent and Ca2+-independent protein kinase C changes in the brain of patients with Alzheimer’s disease. J Neurochem 1996; 67(1): 317-23.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67010317.x] [PMID: 8667008]
[111]
Martinelli-Boneschi F, Giacalone G, Magnani G, et al. Pharmacogenomics in Alzheimer’s disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiol Aging 2013; 34(6): 1711.e7-1711.e13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.12.008] [PMID: 23374588]
[112]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[113]
Salloway S, Marshall GA, Lu M, Brashear HR. Long-term safety and efficacy of bapineuzumab in patients with mild-to-moderate Alzheimer’s disease: A phase 2, open label extension study. Curr Alzheimer Res 2018; 15(13): 1231-43. Epub ahead of print
[http://dx.doi.org/10.2174/1567205015666180821114813] [PMID: 30129411]
[114]
Ostrowitzki S, Lasser RA, Dorflinger E, et al. SCarlet RoAD Investigators.A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther 2017; 9(1): 95.
[http://dx.doi.org/10.1186/s13195-017-0318-y] [PMID: 29221491]
[115]
Landen JW, Andreasen N, Cronenberger CL, et al. Ponezumab in mild-to-moderate Alzheimer’s disease: Randomized phase II PET-PIB study. Alzheimers Dement (N Y) 2017; 3(3): 393-401.
[http://dx.doi.org/10.1016/j.trci.2017.05.003] [PMID: 29067345]
[116]
Honig LS, Vellas B, Woodward M, et al. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med 2018; 378(4): 321-30.
[http://dx.doi.org/10.1056/NEJMoa1705971] [PMID: 29365294]
[117]
Budd Haeberlein S, O’Gorman J, Chiao P, et al. Clinical development of aducanumab, an anti-Aβ human monoclonal antibody being investigated for the treatment of early Alzheimer’s disease. J Prev Alzheimers Dis 2017; 4(4): 255-63.
[PMID: 29181491]
[118]
Chiao P, Bedell BJ, Avants B, et al. Impact of reference/target region selection on amyloid PET standard uptake value ratios in the phase 1b PRIME study of aducanumab. J Nucl Med J Nucl Med 2019; 60(1) 100-106
[119]
Medina M. An overview on the clinical development of tau-based therapeutics. Int J Mol Sci 2018; 19(4)E1160
[http://dx.doi.org/10.3390/ijms19041160] [PMID: 29641484]
[120]
Serenó L, Coma M, Rodríguez M, et al. A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis 2009; 35(3): 359-67.
[http://dx.doi.org/10.1016/j.nbd.2009.05.025] [PMID: 19523516]
[121]
del Ser T, Steinwachs KC, Gertz HJ, et al. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimers Dis 2013; 33(1): 205-15.
[http://dx.doi.org/10.3233/JAD-2012-120805] [PMID: 22936007]
[122]
Lovestone S, Boada M, Dubois B, et al. ARGO investigators.A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimers Dis 2015; 45(1): 75-88.
[http://dx.doi.org/10.3233/JAD-141959] [PMID: 25537011]
[123]
Nygaard HB, van Dyck CH, Strittmatter SM. Fyn kinase inhibition as a novel therapy for Alzheimer’s disease. Alzheimers Res Ther 2014; 6(1): 8.
[http://dx.doi.org/10.1186/alzrt238] [PMID: 24495408]
[124]
Nygaard HB, Wagner AF, Bowen GS, et al. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res Ther 2015. 14;7(1): 35.
[125]
Abe S, Tokoro F, Matsuoka R, et al. Association of genetic variants with dyslipidemia. Mol Med Rep 2015; 12(4): 5429-36.
[http://dx.doi.org/10.3892/mmr.2015.4081] [PMID: 26238946]
[126]
Brunden KR, Zhang B, Carroll J, et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 2010; 30(41): 13861-6.
[http://dx.doi.org/10.1523/JNEUROSCI.3059-10.2010] [PMID: 20943926]
[127]
Wischik CM, Staff RT, Wischik DJ, et al. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J Alzheimers Dis 2015; 44(2): 705-20.
[http://dx.doi.org/10.3233/JAD-142874] [PMID: 25550228]
[128]
Gauthier S, Feldman HH, Schneider LS, et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 2016; 388(10062): 2873-84.
[http://dx.doi.org/10.1016/S0140-6736(16)31275-2]
[129]
Wilcock GK, Gauthier S, Frisoni GB, et al. Potential of low dose leuco-methylthioninium bis(hydromethanesulphonate) (lmtm) monotherapy for treatment of mild Alzheimer’s disease: Cohort analysis as modified primary outcome in a phase iii clinical trial. J Alzheimers Dis 2018; 61(1): 435-57.
[http://dx.doi.org/10.3233/JAD-170560] [PMID: 29154277]
[130]
Herline K, Drummond E, Wisniewski T. Recent advancements toward therapeutic vaccines against Alzheimer’s disease. Expert Rev Vaccines 2018; 17(8): 707-21.
[http://dx.doi.org/10.1080/14760584.2018.1500905] [PMID: 30005578]
[131]
Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 2017; 16(2): 123-34.
[http://dx.doi.org/10.1016/S1474-4422(16)30331-3] [PMID: 27955995]
[132]
Theunis C, Crespo-Biel N, Gafner V, et al. Efficacy and safety of a liposome-based vaccine against protein Tau, assessed in tau.P301L mice that model tauopathy. PLoS One 2013; 8(8)e72301
[http://dx.doi.org/10.1371/journal.pone.0072301] [PMID: 23977276]
[133]
Relkin NR, Thomas RG, Rissman RA, et al. Alzheimer’s Disease Cooperative Study.A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology 2017; 88(18): 1768-75.
[http://dx.doi.org/10.1212/WNL.0000000000003904] [PMID: 28381506]
[134]
Krestova M, Hromadkova L, Bilkova Z, Bartos A, Ricny J. Characterization of isolated tau-reactive antibodies from the IVIG product, plasma of patients with Alzheimer’s disease and cognitively normal individuals. J Neuroimmunol 2017; 313: 16-24.
[http://dx.doi.org/10.1016/j.jneuroim.2017.09.011] [PMID: 29153604]
[135]
Budur K, West T, Braunstein JB, Fogelman I, Bordelon YM, Litvan I, et al. Results of a phase 1, single ascending dose, placebo-controlled study of ABBV-8E12 in patients with progressive supranuclear palsy and phase 2 study design in early Alzheimer’s disease. Alzheimers Dement 2017; 13(7): 599-600.
[http://dx.doi.org/10.1016/j.jalz.2017.07.241]
[136]
Qureshi IA, Tirucherai G, Ahlijanian MK, Kolaitis G, Bechtold C, Grundman M. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement (N Y) 2018; 4: 746-55.
[http://dx.doi.org/10.1016/j.trci.2018.10.007] [PMID: 30581980]
[137]
Jia J, Gauthier S, Pallotta S, et al. Consensus-based recommendations for the management of rapid cognitive decline due to Alzheimer’s disease. Alzheimers Dement 2017; 13(5): 592-7.
[http://dx.doi.org/10.1016/j.jalz.2017.01.007] [PMID: 28238739]
[138]
Doody R. Developing disease-modifying treatments in Alzheimer’s disease - a perspective from roche and genentech. J Prev Alzheimers Dis 2017; 4(4): 264-72.
[PMID: 29181492]
[139]
Souza RMDCE, da Silva ICS, Delgado ABT, da Silva PHV, Costa VRX. Focused ultrasound and Alzheimer’s disease A systematic review. Dement Neuropsychol 2018; 12(4): 353-9.
[http://dx.doi.org/10.1590/1980-57642018dn12-040003] [PMID: 30546844]
[140]
Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med 2015; 7(278)278ra33
[http://dx.doi.org/10.1126/scitranslmed.aaa2512] [PMID: 25761889]
[141]
Teijido O, Cacabelos R. Pharmacoepigenomic Interventions as Novel Potential Treatments for Alzheimer’s and Parkinson’s Diseases. Int J Mol Sci 2018; 19(10)E3199
[http://dx.doi.org/10.3390/ijms19103199] [PMID: 30332838]
[142]
Remington R, Bechtel C, Larsen D, et al. A phase II randomized clinical trial of a nutritional formulation for cognition and mood in Alzheimer’s disease. J Alzheimer’s Dis 2015. 18; 45(2): 395 -405.
[143]
Remington R, Bechtel C, Larsen D, et al. Maintenance of cognitive performance and mood for individuals with Alzheimer’s disease following consumption of a nutraceutical formulation: A one-year, open-label study. J Alzheimers Dis 2016; 51(4): 991-5.
[http://dx.doi.org/10.3233/JAD-151098] [PMID: 26967219]
[144]
Zheng Y, Liu A, Wang Z-J, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer’s disease. Brain 2019; 142(3): 787-807. Epub ahead of print
[http://dx.doi.org/10.1093/brain/awy354] [PMID: 30668640]
[145]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(5819): 1709-12.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[146]
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2011; 45(1): 273-97.
[http://dx.doi.org/10.1146/annurev-genet-110410-132430] [PMID: 22060043]
[147]
Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011; 471(7340): 602-7.
[http://dx.doi.org/10.1038/nature09886] [PMID: 21455174]
[148]
Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011; 9(6): 467-77.
[http://dx.doi.org/10.1038/nrmicro2577] [PMID: 21552286]
[149]
Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009; 155(Pt 3): 733-40.
[http://dx.doi.org/10.1099/mic.0.023960-0] [PMID: 19246744]
[150]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[151]
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): E2579-86.
[http://dx.doi.org/10.1073/pnas.1208507109] [PMID: 22949671]
[152]
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8(11): 2281-308.
[http://dx.doi.org/10.1038/nprot.2013.143] [PMID: 24157548]
[153]
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 2011; 39(21): 9275-82.
[http://dx.doi.org/10.1093/nar/gkr606] [PMID: 21813460]
[154]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[155]
Giau VV, Lee H, Shim KH, Bagyinszky E, An SSA. Genome-editing applications of CRISPR-Cas9 to promote in vitro studies of Alzheimer’s disease. Clin Interv Aging 2018; 13: 221-33.
[http://dx.doi.org/10.2147/CIA.S155145] [PMID: 29445268]
[156]
Murlidharan G, Sakamoto K, Rao L, et al. CNS-restricted transduction and CRISPR/Cas9-mediated gene deletion with an engineered AAV vector. Mol Ther Nucleic Acids 2016; 5(7)e338
[http://dx.doi.org/10.1038/mtna.2016.49] [PMID: 27434683]
[157]
Yan S, Tu Z, Li S, Li X-J. Use of CRISPR/Cas9 to model brain diseases. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81: 488-92.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.003] [PMID: 28392484]
[158]
Wang AY, Peng PD, Ehrhardt A, Storm TA, Kay MA. Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo. Hum Gene Ther 2004; 15(4): 405-13.
[http://dx.doi.org/10.1089/104303404322959551] [PMID: 15053865]
[159]
Mehrabian M, Brethour D, MacIsaac S, et al. CRISPR-Cas9-based knockout of the prion protein and its effect on the proteome. PLoS One 2014; 9(12)e114594
[http://dx.doi.org/10.1371/journal.pone.0114594] [PMID: 25490046]
[160]
Kaczmarczyk L, Mende Y, Zevnik B, Jackson WS. Manipulating the prion protein gene sequence and expression levels with CRISPR/Cas9. PLoS One 2016; 11(4)e0154604
[http://dx.doi.org/10.1371/journal.pone.0154604] [PMID: 27128441]
[161]
Nagata K, Takahashi M, Matsuba Y, et al. Generation of App knock-in mice reveals deletion mutations protective against Alzheimer’s disease-like pathology. Nat Commun 2018; 9(1): 1800.
[http://dx.doi.org/10.1038/s41467-018-04238-0] [PMID: 29728560]
[162]
Callender JA, Yang Y, Lordén G, et al. Protein kinase Cα gain-of-function variant in Alzheimer’s disease displays enhanced catalysis by a mechanism that evades down-regulation. Proc Natl Acad Sci USA 2018; 115(24): E5497-505.
[http://dx.doi.org/10.1073/pnas.1805046115] [PMID: 29844158]
[163]
Cheng-Hathaway PJ, Reed-Geaghan EG, Jay TR, et al. The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer’s disease. Mol Neurodegener 2018; 13(1): 29.
[http://dx.doi.org/10.1186/s13024-018-0262-8] [PMID: 29859094]
[164]
Wang K, Tang X, Liu Y, et al. Efficient generation of orthologous point mutations in pigs via CRISPR-assisted ssODN-mediated homology-directed repair. Mol Ther Nucleic Acids 2016; 5(11)e396
[http://dx.doi.org/10.1038/mtna.2016.101] [PMID: 27898095]
[165]
Chung KM, Jeong E-J, Park H, An H-K, Yu S-W. Mediation of autophagic cell death by type 3 ryanodine receptor (RyR3) in adult hippocampal neural stem cells. Front Cell Neurosci 2016; 10: 116.
[http://dx.doi.org/10.3389/fncel.2016.00116] [PMID: 27199668]
[166]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[167]
Sun L, Zhou R, Yang G, Shi Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci USA 2017; 114(4): E476-85.
[http://dx.doi.org/10.1073/pnas.1618657114] [PMID: 27930341]
[168]
Raikwar SP, Thangavel R, Dubova I, et al. Targeted gene editing of glia maturation factor in microglia: A novel Alzheimer’s disease therapeutic target. Mol Neurobiol 2019; 56(1): 378-93.
[PMID: 29704201]
[169]
Xu T-H, Yan Y, Kang Y, Jiang Y, Melcher K, Xu HE. Alzheimer’s disease-associated mutations increase amyloid precursor protein resistance to γ-secretase cleavage and the Aβ42/Aβ40 ratio. Cell Discov 2016; 2(1): 16026.
[http://dx.doi.org/10.1038/celldisc.2016.26] [PMID: 27625790]
[170]
Tam KT, Chan PK, Zhang W, et al. Identification of a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach. Nucleic Acids Res 2017; 45(1): 115-26.
[http://dx.doi.org/10.1093/nar/gkw820] [PMID: 27651453]
[171]
Chen H, Li C, Zhou Z, Liang H. Fast-evolving human-specific neural enhancers are associated with aging-related diseases. Cell Syst 2018; 6(5): 604-611.e4.
[http://dx.doi.org/10.1016/j.cels.2018.04.002] [PMID: 29792826]
[172]
Inoue K, Oliveira LMA, Abeliovich A. CRISPR transcriptional activation analysis unmasks an occult γ-secretase processivity defect in familial Alzheimer’s disease skin fibroblasts. Cell Rep 2017; 21(7): 1727-36.
[http://dx.doi.org/10.1016/j.celrep.2017.10.075] [PMID: 29141208]
[173]
Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 2016; 533(7601): 125-9.
[http://dx.doi.org/10.1038/nature17664] [PMID: 27120160]
[174]
Mungenast AE, Siegert S, Tsai L-H. Modeling Alzheimer’s disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 2016; 73: 13-31.
[http://dx.doi.org/10.1016/j.mcn.2015.11.010] [PMID: 26657644]
[175]
Fong LK, Yang MM, Dos Santos Chaves R, et al. Full-length amyloid precursor protein regulates lipoprotein metabolism and amyloid-β clearance in human astrocytes. J Biol Chem 2018; 293(29): 11341-57.
[http://dx.doi.org/10.1074/jbc.RA117.000441] [PMID: 29858247]
[176]
Mullan M, Crawford F, Axelman K, et al. A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat Genet 1992; 1(5): 345-7.
[http://dx.doi.org/10.1038/ng0892-345] [PMID: 1302033]
[177]
György B, Lööv C, Zaborowski MP, et al. CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol Ther Nucleic Acids 2018; 11: 429-40.
[http://dx.doi.org/10.1016/j.omtn.2018.03.007] [PMID: 29858078]
[178]
Ortiz-Virumbrales M, Moreno CL, Kruglikov I, et al. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2 N141I neurons. Acta Neuropathol Commun 2017; 5(1): 77.
[http://dx.doi.org/10.1186/s40478-017-0475-z] [PMID: 29078805]
[179]
Poon A, Schmid B, Pires C, et al. Generation of a gene-corrected isogenic control hiPSC line derived from a familial Alzheimer’s disease patient carrying a L150P mutation in presenilin 1. Stem Cell Res (Amst) 2016; 17(3): 466-9.
[http://dx.doi.org/10.1016/j.scr.2016.09.018] [PMID: 27789395]
[180]
Pires C, Schmid B, Petræus C, et al. Generation of a gene-corrected isogenic control cell line from an Alzheimer’s disease patient iPSC line carrying a A79V mutation in PSEN1. Stem Cell Res (Amst) 2016; 17(2): 285-8.
[http://dx.doi.org/10.1016/j.scr.2016.08.002] [PMID: 27879212]
[181]
Banerjee Y, Santos RD, Al-Rasadi K, Rizzo M. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns? Atherosclerosis 2016; 248: 62-75.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.02.018] [PMID: 26987067]
[182]
Jonas MC, Costantini C, Puglielli L. PCSK9 is required for the disposal of non-acetylated intermediates of the nascent membrane protein BACE1. EMBO Rep 2008; 9(9): 916-22.
[http://dx.doi.org/10.1038/embor.2008.132] [PMID: 18660751]
[183]
Ding Q, Strong A, Patel KM, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 2014; 115(5): 488-92.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.304351] [PMID: 24916110]
[184]
Kim S, Yun SP, Lee S, et al. GBA1 deficiency negatively affects physiological α-synuclein tetramers and related multimers. Proc Natl Acad Sci USA 2018; 115(4): 798-803.
[http://dx.doi.org/10.1073/pnas.1700465115] [PMID: 29311330]
[185]
Tagliafierro L, Chiba-Falek O. Up-regulation of SNCA gene expression: implications to synucleinopathies. Neurogenetics 2016; 17(3): 145-57.
[http://dx.doi.org/10.1007/s10048-016-0478-0] [PMID: 26948950]
[186]
Pickles S, Petrucelli L. CRISPR expands insight into the mechanisms of ALS and FTD. Nat Rev Neurol 2018; 14(6): 321-3.
[http://dx.doi.org/10.1038/s41582-018-0005-z] [PMID: 29695800]
[187]
Silva MC, Cheng C, Mair W, et al. Human iPSC-derived neuronal model of tau-A152T frontotemporal dementia reveals tau-mediated mechanisms of neuronal vulnerability. Stem Cell Reports 2016; 7(3): 325-40.
[http://dx.doi.org/10.1016/j.stemcr.2016.08.001] [PMID: 27594585]
[188]
Hallmann A-L, Araúzo-Bravo MJ, Mavrommatis L, et al. Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein. Sci Rep 2017; 7(1): 42991.
[http://dx.doi.org/10.1038/srep42991] [PMID: 28256506]
[189]
Seo J, Kritskiy O, Watson LA, et al. Inhibition of p25/Cdk5 attenuates tauopathy in mouse and iPSC models of frontotemporal dementia. J Neurosci 2017; 37(41): 9917-24.
[http://dx.doi.org/10.1523/JNEUROSCI.0621-17.2017] [PMID: 28912154]
[190]
Zhang Y, Schmid B, Nielsen TT, et al. Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a site-specific heterozygous mutation in CHMP2B. Stem Cell Res (Amst) 2016; 17(1): 148-50.
[http://dx.doi.org/10.1016/j.scr.2016.06.004] [PMID: 27558613]
[191]
Kleinberger G, Brendel M, Mracsko E, et al. The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO J 2017; 36(13): 1837-53.
[http://dx.doi.org/10.15252/embj.201796516] [PMID: 28559417]
[192]
Kramer NJ, Haney MS, Morgens DW, et al. CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity. Nat Genet 2018; 50(4): 603-12.
[http://dx.doi.org/10.1038/s41588-018-0070-7] [PMID: 29507424]
[193]
Pinto BS, Saxena T, Oliveira R, et al. Impeding transcription of expanded microsatellite repeats by deactivated Cas9. Mol Cell 2017; 68(3): 479-490.e5.
[http://dx.doi.org/10.1016/j.molcel.2017.09.033] [PMID: 29056323]
[194]
Nimsanor N, Kitiyanant N, Poulsen U, et al. Generation of an isogenic, gene-corrected iPSC line from a symptomatic 57-year-old female patient with frontotemporal dementia caused by a P301L mutation in the microtubule associated protein tau (MAPT) gene. Stem Cell Res (Amst) 2016; 17(3): 556-9.
[http://dx.doi.org/10.1016/j.scr.2016.09.021] [PMID: 27789409]
[195]
Nimsanor N, Poulsen U, Rasmussen MA, et al. Generation of an isogenic, gene-corrected iPSC line from a symptomatic 59-year-old female patient with frontotemporal dementia caused by an R406W mutation in the microtubule associated protein tau (MAPT) gene. Stem Cell Res (Amst) 2016; 17(3): 576-9.
[http://dx.doi.org/10.1016/j.scr.2016.09.020] [PMID: 27934586]
[196]
Imamura K, Sahara N, Kanaan NM, et al. Calcium dysregulation contributes to neurodegeneration in FTLD patient iPSC-derived neurons. Sci Rep 2016; 6(1): 34904.
[http://dx.doi.org/10.1038/srep34904] [PMID: 27721502]