Current Pharmaceutical Design

Author(s): Surbhi Sharma and Shweta Dang*

DOI: 10.2174/1381612826666200224111241

Neuropsychological Disorders and their Nanocarriers

Page: [2247 - 2256] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Neuropsychological disorders are now growing rapidly worldwide among the people of diverse backgrounds irrespective of age, gender, and geographical region. Such disorders not only disturb the normal life and functionality of an individual but also impact the social relationships of the patient and the people associated with them, and if not treated in time, it may also result in mortality in severe conditions. Various antipsychotic drugs have been developed but their use is often limited by issues related to effective drug delivery at the site of action i.e. brain, mainly because of the blood-brain barrier. To resolve these issues, researchers and scientists have been working to develop a more effective drug delivery system where drugs can cross the blood-brain barrier and reach the brain in more effective concentrations. Drugs have been modified and formulated into nano-carriers and experimental studies for efficient and targeted delivery of drugs have been conducted. This review focuses on certain common neuropsychological diseases and their nanocarriers developed for drug delivery in the brain and are discussed with a brief description of various experimental in vitro and in vivo studies. This review also focuses on the intranasal route for the delivery of antipsychotic drugs and constraints faced due to the blood-brain barrier by the drugs.

Keywords: ADHD, bipolar disorder, blood brain barrier, depression, intranasal delivery, nanocarriers, neuropsychological disorders, schizophrenia.

[1]
Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem 2013; 2013238428
[http://dx.doi.org/10.1155/2013/238428] [PMID: 25937958]
[2]
Uchida S, Yamagata H, Seki T, Watanabe Y. Epigenetic mechanisms of major depression: Targeting neuronal plasticity. Psychiatry Clin Neurosci 2018; 72(4): 212-27.
[http://dx.doi.org/10.1111/pcn.12621] [PMID: 29154458]
[3]
Ivan Dimitrijevic and Igor Pantic. Application of nanoparticles in psychophysiology and psychiatry research. Mater Sci 2014; 38: 1-6.
[4]
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics 2018; 10(4): 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[5]
Katare YK, Piazza JE, Bhandari J, et al. Intranasal delivery of antipsychotic drugs. Schizophr Res 2017; 184: 2-13.
[http://dx.doi.org/10.1016/j.schres.2016.11.027] [PMID: 27913162]
[6]
Hetal P. Thakkar, Arpita. Intranasal mucoadhesive microemulsion of mirtazapine: Pharmacokinetic andpharmacodynamic studies. Asian Journal of Pharmaceutics 2013; 7: 36-42.
[http://dx.doi.org/10.4103/0973-8398.110934]
[7]
Miller JL, Ashford JW, Archer SM, Rudy AC, Wermeling DP. Comparison of intranasal administration of haloperidol with intravenous and intramuscular administration: a pilot pharmacokinetic study. Pharmacotherapy 2008; 28(7): 875-82.
[http://dx.doi.org/10.1592/phco.28.7.875] [PMID: 18576902]
[8]
Piazza J, Hoare T, Molinaro L, et al. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)-block-poly(D,L)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia. Eur J Pharm Biopharm 2014; 87(1): 30-9.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.007] [PMID: 24560967]
[9]
Yasir M, Sara UV. Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation. Acta Pharm Sin B 2014; 4(6): 454-63.
[http://dx.doi.org/10.1016/j.apsb.2014.10.005] [PMID: 26579417]
[10]
Seju U, Kumar A, Sawant KK. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater 2011; 7(12): 4169-76.
[http://dx.doi.org/10.1016/j.actbio.2011.07.025] [PMID: 21839863]
[11]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[12]
Tong G-F, Qin N, Sun LW. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi Pharm J 2017; 25(6): 844-51.
[http://dx.doi.org/10.1016/j.jsps.2016.12.003] [PMID: 28951668]
[13]
Singh AR, Singh SA. Towards a suicide free society: identify suicide prevention as public health policy. Mens Sana Monogr 2004; 2(1): 21-33.
[http://dx.doi.org/10.4103/0973-1229.27603] [PMID: 22815599]
[14]
Michel TM, Pülschen D, Thome J. The role of oxidative stress in depressive disorders. Curr Pharm Des 2012; 18(36): 5890-9.
[http://dx.doi.org/10.2174/138161212803523554] [PMID: 22681168]
[15]
Pandey YR, Kumar S, Gupta BK, Ali J, Baboota S. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: formulation, behavioural and biochemical estimation. Nanotechnology 2016; 27(2)025102
[http://dx.doi.org/10.1088/0957-4484/27/2/025102] [PMID: 26629830]
[16]
Kaludercic N, Mialet-Perez J, Paolocci N, Parini A, Di Lisa F. Monoamine oxidases as sources of oxidants in the heart. J Mol Cell Cardiol 2014; 73: 34-42.
[http://dx.doi.org/10.1016/j.yjmcc.2013.12.032] [PMID: 24412580]
[17]
Hiemke C, Härtter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2000; 85(1): 11-28.
[http://dx.doi.org/10.1016/S0163-7258(99)00048-0] [PMID: 10674711]
[18]
Kilts. Potential new drug delivery system for antidepressants: an overview. J Clin Psychiatry 2003; 64: 31-3.
[19]
Kumar M, Pathak K, Misra A. Formulation and characterization of nanoemulsion-based drug delivery system of risperidone. Drug Dev Ind Pharm 2009; 35(4): 387-95.
[http://dx.doi.org/10.1080/03639040802363704] [PMID: 19016058]
[20]
He X, Zhu Y, Wang M, Jing G, Zhu R, Wang S. Antidepressant effects of curcumin and HU-211 coencapsulated solid lipid nanoparticles against corticosterone-induced cellular and animal models of major depression. Int J Nanomedicine 2016; 11: 4975-90.
[http://dx.doi.org/10.2147/IJN.S109088] [PMID: 27757031]
[21]
Saavedra K, Molina-Márquez AM, Saavedra N, Zambrano T, Salazar LA. Epigenetic Modifications of Major Depressive Disorder. Int J Mol Sci 2016; 17(8): 1279.
[http://dx.doi.org/10.3390/ijms17081279] [PMID: 27527165]
[22]
Internet-Delivered Cognitive Behavioural Therapy for Major Depression and Anxiety Disorders. A Health Technology Assessmen. Ont Health Technol Assess Ser 2019; 19: 1-199.
[23]
Levin RL. Cognitive deficits in depression and functional specificity of regional brain activity. Cognit Ther Res 2007; 31: 211-33.
[http://dx.doi.org/10.1007/s10608-007-9128-z]
[24]
Rogers MA, Kasai K, Koji M, et al. Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neurosci Res 2004; 50(1): 1-11.
[http://dx.doi.org/10.1016/j.neures.2004.05.003] [PMID: 15288493]
[25]
Nitschke JB, Mackiewicz KL. Prefrontal and anterior cingulate contributions to volition in depression. Int Rev Neurobiol 2005; 67: 73-94.
[http://dx.doi.org/10.1016/S0074-7742(05)67003-1] [PMID: 16291020]
[26]
Faraone SV, Sergeant J, Gillberg C, Biederman J. The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2003; 2(2): 104-13.
[PMID: 16946911]
[27]
Fayyad J, De Graaf R, Kessler R, et al. Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br J Psychiatry 2007; 190: 402-9.
[http://dx.doi.org/10.1192/bjp.bp.106.034389] [PMID: 17470954]
[28]
Polanczyk G, Rohde LA. Epidemiology of attention-deficit/hyperactivity disorder across the lifespan. Curr Opin Psychiatry 2007; 20(4): 386-92.
[http://dx.doi.org/10.1097/YCO.0b013e3281568d7a] [PMID: 17551354]
[29]
Kieling C, Kieling RR, Rohde LA, et al. The age at onset of attention deficit hyperactivity disorder. Am J Psychiatry 2010; 167(1): 14-6.
[http://dx.doi.org/10.1176/appi.ajp.2009.09060796] [PMID: 20068122]
[30]
Turgay A, Ansari R. Major Depression with ADHD: In Children and Adolescents. Psychiatry (Edgmont Pa) 2006; 3(4): 20-32.
[PMID: 21103168]
[31]
Sagvolden T, Johansen EB, Aase H, Russell VA. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci 2005; 28(3): 397-419.
[http://dx.doi.org/10.1017/S0140525X05000075] [PMID: 16209748]
[32]
Sonuga-Barke EJ. Causal models of attention-deficit/hyperactivity disorder: from common simple deficits to multiple developmental pathways. Biol Psychiatry 2005; 57(11): 1231-8.
[http://dx.doi.org/10.1016/j.biopsych.2004.09.008] [PMID: 15949993]
[33]
Amruta V. Vaidya. Preliminary Studies On Brain Targeting Of Intranasal Atomoxetine Liposomes. Int J Pharm Pharm Sci 2016; 8: 286-92.
[34]
Katzman MA, Bleau P, Blier P, et al. Canadian clinical practice guidelines for the management of anxiety, posttraumatic stress and obsessive-compulsive disorders. BMC Psychiatry 2014; 14(Suppl. 1): S1.
[http://dx.doi.org/10.1186/1471-244X-14-S1-S1] [PMID: 25081580]
[35]
Diagnostic and Statistical Manual of Mental Disorders. 5th ed. 2013.
[36]
Wolitzky-Taylor KB, Castriotta N, Lenze EJ, Stanley MA, Craske MG. Anxiety disorders in older adults: a comprehensive review. Depress Anxiety 2010; 27(2): 190-211.
[http://dx.doi.org/10.1002/da.20653] [PMID: 20099273]
[37]
Locke AB, Kirst N, Shultz CG. Diagnosis and management of generalized anxiety disorder and panic disorder in adults. Am Fam Physician 2015; 91(9): 617-24.
[PMID: 25955736]
[38]
Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62(6): 593-602.
[http://dx.doi.org/10.1001/archpsyc.62.6.593] [PMID: 15939837]
[39]
Leigh E, Clark DM. Understanding Social Anxiety Disorder in Adolescents and Improving Treatment Outcomes: Applying the Cognitive Model of Clark and Wells (1995). Clin Child Fam Psychol Rev 2018; 21(3): 388-414.
[http://dx.doi.org/10.1007/s10567-018-0258-5] [PMID: 29654442]
[40]
Stein MB, Stein DJ. Social anxiety disorder. Lancet 2008; 371(9618): 1115-25.
[http://dx.doi.org/10.1016/S0140-6736(08)60488-2] [PMID: 18374843]
[41]
Ginsburg GS, Kendall PC, Sakolsky D, et al. Remission after acute treatment in children and adolescents with anxiety disorders: findings from the CAMS. J Consult Clin Psychol 2011; 79(6): 806-13.
[http://dx.doi.org/10.1037/a0025933] [PMID: 22122292]
[42]
Walkup JT, Albano AM, Piacentini J, et al. Cognitive behavioral therapy, sertraline, or a combination in childhood anxiety. N Engl J Med 2008; 359(26): 2753-66.
[http://dx.doi.org/10.1056/NEJMoa0804633] [PMID: 18974308]
[43]
Vieta E, Goikolea JM. Atypical antipsychotics: newer options for mania and maintenance therapy. Bipolar Disord 2005; 7(Suppl. 4): 21-33.
[http://dx.doi.org/10.1111/j.1399-5618.2005.00212.x] [PMID: 15948764]
[44]
Valente SM, Kennedy BL. End the bipolar tug-of-war. Nurse Pract 2010; 35(2): 36-45.
[http://dx.doi.org/10.1097/01.NPR.0000367933.64526.3e] [PMID: 20087150]
[45]
Hirschfeld RM, Williams JB, Spitzer RL, et al. Development and validation of a screening instrument for bipolar spectrum disorder: the Mood Disorder Questionnaire. Am J Psychiatry 2000; 157(11): 1873-5.
[http://dx.doi.org/10.1176/appi.ajp.157.11.1873] [PMID: 11058490]
[46]
Kessler. The World Mental Health (WMH) Survey Initiative Version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). Int J Methods Psychiatr Res 2004; 13: 93-121.
[http://dx.doi.org/10.1002/mpr.168] [PMID: 15297906]
[47]
McCormick U, Murray B, McNew B. Diagnosis and treatment of patients with bipolar disorder: A review for advanced practice nurses. J Am Assoc Nurse Pract 2015; 27(9): 530-42.
[http://dx.doi.org/10.1002/2327-6924.12275] [PMID: 26172568]
[48]
Derry S, Moore RA. Atypical antipsychotics in bipolar disorder: systematic review of randomised trials. BMC Psychiatry 2007; 7: 40.
[http://dx.doi.org/10.1186/1471-244X-7-40] [PMID: 17705840]
[49]
Yatham LN, Kennedy SH, Parikh SV, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord 2013; 15(1): 1-44.
[http://dx.doi.org/10.1111/bdi.12025] [PMID: 23237061]
[50]
Marco M. Picchioni. Schizophrenia. BMJ 2007; 335: 91-5.
[http://dx.doi.org/10.1136/bmj.39227.616447.BE]
[51]
Pedersen CB, Mortensen PB. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch Gen Psychiatry 2001; 58(11): 1039-46.
[http://dx.doi.org/10.1001/archpsyc.58.11.1039] [PMID: 11695950]
[52]
McGrath JJ. Variations in the incidence of schizophrenia: data versus dogma. Schizophr Bull 2006; 32(1): 195-7.
[http://dx.doi.org/10.1093/schbul/sbi052] [PMID: 16135560]
[53]
Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. P&T 2014; 39(9): 638-45.
[PMID: 25210417]
[54]
Spears NM, Leadbetter RA, Shutty MS Jr. Clozapine treatment in polydipsia and intermittent hyponatremia. J Clin Psychiatry 1996; 57(3): 123-8.
[PMID: 8617697]
[55]
Crismon L, Argo TR, Buckley PF. Schizophrenia. In: DiPiro JT,Talbert RL, Yee GC, et al, eds Pharmacotherapy A Pathophysiologic Approach. 2014; 9 1019 49.
[56]
Costa C, Moreira JN, Amaral MH, Sousa Lobo JM, Silva AC. Nose-to-brain delivery of lipid-based nanosystems for epileptic seizures and anxiety crisis. J Control Release 2019; 295: 187-200.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.049] [PMID: 30610952]
[57]
Beloqui. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine (Lond) 2016; 12: 143-61.
[58]
Mehnert. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 2012; 64: 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021]
[59]
Varshosaz J, Tabbakhian M, Mohammadi MY. Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J Liposome Res 2010; 20(4): 286-96.
[http://dx.doi.org/10.3109/08982100903443065] [PMID: 19958118]
[60]
Singh AP, Saraf SK, Saraf SA. SLN approach for nose-to-brain delivery of alprazolam. Drug Deliv Transl Res 2012; 2(6): 498-507.
[http://dx.doi.org/10.1007/s13346-012-0110-2] [PMID: 25787328]
[61]
Joseph E, Reddi S, Rinwa V, Balwani G, Saha R. Design and in vivo evaluation of solid lipid nanoparticulate systems of Olanzapine for acute phase schizophrenia treatment: Investigations on antipsychotic potential and adverse effects. Eur J Pharm Sci 2017; 104: 315-25.
[http://dx.doi.org/10.1016/j.ejps.2017.03.050] [PMID: 28408348]
[62]
van Rooy I, Wu SY, Storm G, et al. Preparation and characterization of liposomal formulations of neurotensin-degrading enzyme inhibitors. Int J Pharm 2011; 416(2): 448-52.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.017] [PMID: 21251959]
[63]
Carafa M, Marianecci C, Di Marzio L, et al. Potential dopamine prodrug-loaded liposomes: preparation, characterization, and in vitro stability studies. J Liposome Res 2010; 20(3): 250-7.
[http://dx.doi.org/10.3109/08982100903384129] [PMID: 19958070]
[64]
Fang C-L, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2013; 7(1): 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[65]
Tsai MJ, Wu PC, Huang YB, et al. Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. Int J Pharm 2012; 423(2): 461-70.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.009] [PMID: 22193056]
[66]
Eskandari S, Varshosaz J, Minaiyan M, Tabbakhian M. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomedicine 2011; 6: 363-71.
[PMID: 21499426]
[67]
Đorđević SM, Santrač A, Cekić ND, et al. Parenteral nanoemulsions of risperidone for enhanced brain delivery in acute psychosis: Physicochemical and in vivo performances. Int J Pharm 2017; 533(2): 421-30.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.051] [PMID: 28552767]
[68]
Łukasiewicz S. Encapsulation of clozapine into polycaprolactone nanoparticles as a promising strategy of the novel nanoformulation of the active compound. J Nanopart Res 2019; 21: 149.
[http://dx.doi.org/10.1007/s11051-019-4587-1]
[69]
Muthu MS, Sahu AK, Sonali , et al. Solubilized delivery of paliperidone palmitate by D-alpha-tocopheryl polyethylene glycol 1000 succinate micelles for improved short-term psychotic management. Drug Deliv 2016; 23(1): 230-7.
[http://dx.doi.org/10.3109/10717544.2014.909907] [PMID: 24853962]
[70]
Desai PP, Patravale VB. Curcumin Cocrystal Micelles-Multifunctional Nanocomposites for Management of Neurodegenerative Ailments. J Pharm Sci 2018; 107(4): 1143-56.
[http://dx.doi.org/10.1016/j.xphs.2017.11.014] [PMID: 29183742]
[71]
Mukherjee SP, Byrne HJ. Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation. Nanomedicine (Lond) 2013; 9(2): 202-11.
[http://dx.doi.org/10.1016/j.nano.2012.05.002] [PMID: 22633897]