Hepatic Stellate Cell: A Potential Target for Hepatocellular Carcinoma

Page: [261 - 272] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Liver cancer is a leading cause of cancer-related death worldwide, in which hepatocellular carcinoma (HCC) accounts for the majority. Despite the progression in treatment, the prognosis remains extremely poor for HCC patients. The mechanisms of hepatocarcinogenesis are complex, of which fibrosis is acknowledged as the pre-cancerous stage of HCC. Approximately, 80-90% of HCC develops in the fibrotic or cirrhotic livers. Hepatic stellate cells (HSCs), the main effector cells of liver fibrosis, could secret various biological contents to maintain the liver inflammation. By decades, HSCs are increasingly correlated with HCC in the tumor microenvironment.

In this review, we summarized the underlying mechanisms that HSCs participated in the genesis and progression of HCC. HSCs secrete various bioactive contents and regulate tumor-related pathways, subsequently contribute to metastasis, angiogenesis, immunosuppression, chemoresistance and cancer stemness. The study indicates that HSC plays vital roles in HCC progression, suggesting it as a promising therapeutic target for HCC treatment.

Keywords: Hepatocellular carcinoma, fibrosis, hepatic stellate cell, molecular targets, therapeutics, biomarkers.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Wang, M.; Yu, F.; Li, P. Circular RNAs: Characteristics, Function and Clinical Significance in Hepatocellular Carcinoma. Cancers (Basel), 2018, 10(8), e258.
[http://dx.doi.org/10.3390/cancers10080258] [PMID: 30072625]
[3]
Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo, E.; Silva, G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075.
[http://dx.doi.org/10.1016/S0140-6736(17)33326-3] [PMID: 29395269]
[4]
Kuo, Y.H.; Wu, I.P.; Wang, J.H.; Hung, C.H.; Rau, K.M.; Chen, C.H.; Kee, K.M.; Hu, T.H.; Lu, S.N. The outcome of sorafenib monotherapy on hepatocellular carcinoma with portal vein tumor thrombosis. Invest. New Drugs, 2018, 36(2), 307-314.
[http://dx.doi.org/10.1007/s10637-017-0468-6] [PMID: 28466374]
[5]
Xiong, X.X.; Qiu, X.Y.; Hu, D.X.; Chen, X.Q. Advances in Hypoxia-Mediated Mechanisms in Hepatocellular Carcinoma. Mol. Pharmacol., 2017, 92(3), 246-255.
[http://dx.doi.org/10.1124/mol.116.107706] [PMID: 28242743]
[6]
Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2016, 2, 16018.
[http://dx.doi.org/10.1038/nrdp.2016.18] [PMID: 27158749]
[7]
Hu, J.; Li, P.; Song, Y.; Ge, Y.X.; Meng, X.M.; Huang, C.; Li, J.; Xu, T. Progress and prospects of circular RNAs in Hepatocellular carcinoma: Novel insights into their function. J. Cell. Physiol., 2018, 233(6), 4408-4422.
[http://dx.doi.org/10.1002/jcp.26154] [PMID: 28833094]
[8]
El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012, 142(6), 1264-1273.e1.
[http://dx.doi.org/10.1053/j.gastro.2011.12.061] [PMID: 22537432]
[9]
Testino, G.; Leone, S.; Borro, P. Alcohol and hepatocellular carcinoma: a review and a point of view. World J. Gastroenterol., 2014, 20(43), 15943-15954.
[http://dx.doi.org/10.3748/wjg.v20.i43.15943] [PMID: 25473148]
[10]
Dyson, J.; Jaques, B.; Chattopadyhay, D.; Lochan, R.; Graham, J.; Das, D.; Aslam, T.; Patanwala, I.; Gaggar, S.; Cole, M.; Sumpter, K.; Stewart, S.; Rose, J.; Hudson, M.; Manas, D.; Reeves, H.L. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J. Hepatol., 2014, 60(1), 110-117.
[http://dx.doi.org/10.1016/j.jhep.2013.08.011] [PMID: 23978719]
[11]
Younes, R.; Bugianesi, E. Should we undertake surveillance for HCC in patients with NAFLD? J. Hepatol., 2018, 68(2), 326-334.
[http://dx.doi.org/10.1016/j.jhep.2017.10.006] [PMID: 29122695]
[12]
Affo, S.; Yu, L.X.; Schwabe, R.F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol., 2017, 12, 153-186.
[http://dx.doi.org/10.1146/annurev-pathol-052016-100322] [PMID: 27959632]
[13]
Weiskirchen, R.; Tacke, F. Liver fibrosis: From pathogenesis to novel therapies. Dig. Dis., 2016, 34(4), 410-422.
[http://dx.doi.org/10.1159/000444556] [PMID: 27170396]
[14]
Pinzani, M. Pathophysiology of liver fibrosis. Dig. Dis., 2015, 33(4), 492-497.
[http://dx.doi.org/10.1159/000374096] [PMID: 26159264]
[15]
Huang, Y.; Deng, X.; Liang, J. Modulation of hepatic stellate cells and reversibility of hepatic fibrosis. Exp. Cell Res., 2017, 352(2), 420-426.
[http://dx.doi.org/10.1016/j.yexcr.2017.02.038] [PMID: 28238836]
[16]
Omar, R.; Yang, J.; Liu, H.; Davies, N.M.; Gong, Y. Hepatic stellate cells in liver fibrosis and siRNA-based therapy. Rev. Physiol. Biochem. Pharmacol., 2016, 172, 1-37.
[http://dx.doi.org/10.1007/112_2016_6] [PMID: 27534415]
[17]
Weiskirchen, R.; Tacke, F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg. Nutr., 2014, 3(6), 344-363.
[18]
Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(7), 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[19]
Shang, L.; Hosseini, M.; Liu, X.; Kisseleva, T.; Brenner, D.A. Human hepatic stellate cell isolation and characterization. J. Gastroenterol., 2018, 53(1), 6-17.
[http://dx.doi.org/10.1007/s00535-017-1404-4] [PMID: 29094206]
[20]
Lepreux, S.; Desmoulière, A. Human liver myofibroblasts during development and diseases with a focus on portal (myo)fibroblasts. Front. Physiol., 2015, 6, 173.
[http://dx.doi.org/10.3389/fphys.2015.00173] [PMID: 26157391]
[21]
Li, D.; He, L.; Guo, H.; Chen, H.; Shan, H. Targeting activated hepatic stellate cells (aHSCs) for liver fibrosis imaging. EJNMMI Res., 2015, 5(1), 71.
[http://dx.doi.org/10.1186/s13550-015-0151-x] [PMID: 26650603]
[22]
Damba, T.; Zhang, M.; Buist-Homan, M.; van Goor, H.; Faber, K.N.; Moshage, H. Hydrogen sulfide stimulates activation of hepatic stellate cells through increased cellular bio-energetics. Nitric Oxide, 2019, 92, 26-33.
[http://dx.doi.org/10.1016/j.niox.2019.08.004] [PMID: 31401106]
[23]
Bataller, R.; Brenner, D.A. Liver fibrosis. J. Clin. Invest., 2005, 115(2), 209-218.
[http://dx.doi.org/10.1172/JCI24282] [PMID: 15690074]
[24]
Kisseleva, T.; Brenner, D.A. Mechanisms of fibrogenesis. Exp. Biol. Med. (Maywood), 2008, 233(2), 109-122.
[http://dx.doi.org/10.3181/0707-MR-190] [PMID: 18222966]
[25]
Eyden, B. The myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J. Cell. Mol. Med., 2008, 12(1), 22-37.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00213.x] [PMID: 18182061]
[26]
Parola, M.; Marra, F.; Pinzani, M. Myofibroblast - like cells and liver fibrogenesis: Emerging concepts in a rapidly moving scenario. Mol. Aspects Med., 2008, 29(1-2), 58-66.
[http://dx.doi.org/10.1016/j.mam.2007.09.002] [PMID: 18022682]
[27]
Zhang, C.Y.; Yuan, W.G.; He, P.; Lei, J.H.; Wang, C.X. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J. Gastroenterol., 2016, 22(48), 10512-10522.
[http://dx.doi.org/10.3748/wjg.v22.i48.10512] [PMID: 28082803]
[28]
Coulouarn, C.; Clément, B. Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma. J. Hepatol., 2014, 60(6), 1306-1309.
[http://dx.doi.org/10.1016/j.jhep.2014.02.003] [PMID: 24530649]
[29]
Li, H.; Lan, J.; Han, C.; Guo, K.; Wang, G.; Hu, J.; Gong, J.; Luo, X.; Cao, Z. Brg1 promotes liver fibrosis via activation of hepatic stellate cells. Exp. Cell Res., 2018, 364(2), 191-197.
[http://dx.doi.org/10.1016/j.yexcr.2018.02.003] [PMID: 29427621]
[30]
Friedman, S.L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev., 2008, 88(1), 125-172.
[http://dx.doi.org/10.1152/physrev.00013.2007] [PMID: 18195085]
[31]
Luedde, T.; Schwabe, R.F. NF-κB in the liver--linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(2), 108-118.
[http://dx.doi.org/10.1038/nrgastro.2010.213] [PMID: 21293511]
[32]
Caviglia, J.M.; Yan, J.; Jang, M.K.; Gwak, G.Y.; Affo, S.; Yu, L.; Olinga, P.; Friedman, R.A.; Chen, X.; Schwabe, R.F. MicroRNA-21 and Dicer are dispensable for hepatic stellate cell activation and the development of liver fibrosis. Hepatology, 2018, 67(6), 2414-2429.
[http://dx.doi.org/10.1002/hep.29627] [PMID: 29091291]
[33]
Tahmasebi Birgani, M.; Carloni, V. Tumor Microenvironment, a Paradigm in Hepatocellular Carcinoma Progression and Therapy. Int. J. Mol. Sci., 2017, 18(2), E405.
[http://dx.doi.org/10.3390/ijms18020405] [PMID: 28216578]
[34]
Geng, Z.M.; Li, Q.H.; Li, W.Z.; Zheng, J.B.; Shah, V. Activated human hepatic stellate cells promote growth of human hepatocellular carcinoma in a subcutaneous xenograft nude mouse model. Cell Biochem. Biophys., 2014, 70(1), 337-347.
[http://dx.doi.org/10.1007/s12013-014-9918-3] [PMID: 24676678]
[35]
Hanahan, D.; Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[36]
Coulouarn, C.; Corlu, A.; Glaise, D.; Guénon, I.; Thorgeirsson, S.S.; Clément, B. Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res., 2012, 72(10), 2533-2542.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3317] [PMID: 22419664]
[37]
Mikula, M.; Proell, V.; Fischer, A.N.; Mikulits, W. Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J. Cell. Physiol., 2006, 209(2), 560-567.
[http://dx.doi.org/10.1002/jcp.20772] [PMID: 16883581]
[38]
Shankaraiah, R.C.; Callegari, E.; Guerriero, P.; Rimessi, A.; Pinton, P.; Gramantieri, L.; Silini, E.M.; Sabbioni, S.; Negrini, M. Metformin prevents liver tumourigenesis by attenuating fibrosis in a transgenic mouse model of hepatocellular carcinoma. Oncogene, 2019, 38(45), 7035-7045.
[http://dx.doi.org/10.1038/s41388-019-0942-z] [PMID: 31409896]
[39]
Sung, Y.C.; Liu, Y.C.; Chao, P.H.; Chang, C.C.; Jin, P.R.; Lin, T.T.; Lin, J.A.; Cheng, H.T.; Wang, J.; Lai, C.P.; Chen, L.H.; Wu, A.Y.; Ho, T.L.; Chiang, T.; Gao, D.Y.; Duda, D.G.; Chen, Y. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics, 2018, 8(4), 894-905.
[http://dx.doi.org/10.7150/thno.21168] [PMID: 29463989]
[40]
Li, W.; Miao, S.; Miao, M.; Li, R.; Cao, X.; Zhang, K.; Huang, G.; Fu, B. Hedgehog signaling activation in hepatic stellate cells promotes angiogenesis and vascular mimicry in hepatocellular carcinoma. Cancer Invest., 2016, 34(9), 424-430.
[http://dx.doi.org/10.1080/07357907.2016.1227442] [PMID: 27657189]
[41]
Imai, Y.; Yoshida, O.; Watanabe, T.; Yukimoto, A.; Koizumi, Y.; Ikeda, Y.; Tokumoto, Y.; Hirooka, M.; Abe, M.; Hiasa, Y. Stimulated hepatic stellate cell promotes progression of hepatocellular carcinoma due to protein kinase R activation. PLoS One, 2019, 14(2), e0212589.
[http://dx.doi.org/10.1371/journal.pone.0212589] [PMID: 30794626]
[42]
Makino, Y.; Hikita, H.; Kodama, T.; Shigekawa, M.; Yamada, R.; Sakamori, R.; Eguchi, H.; Morii, E.; Yokoi, H.; Mukoyama, M.; Hiroshi, S.; Tatsumi, T.; Takehara, T. CTGF Mediates tumor-stroma interactions between hepatoma cells and hepatic stellate cells to accelerate HCC progression. Cancer Res., 2018, 78(17), 4902-4914.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3844] [PMID: 29967264]
[43]
Khawar, I.A.; Park, J.K.; Jung, E.S.; Lee, M.A.; Chang, S.; Kuh, H.J. Three dimensional mixed-cell spheroids mimic stroma-mediated chemoresistance and invasive migration in hepatocellular carcinoma. Neoplasia, 2018, 20(8), 800-812.
[http://dx.doi.org/10.1016/j.neo.2018.05.008] [PMID: 29981501]
[44]
Amann, T.; Bataille, F.; Spruss, T.; Mühlbauer, M.; Gäbele, E.; Schölmerich, J.; Kiefer, P.; Bosserhoff, A.K.; Hellerbrand, C. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci., 2009, 100(4), 646-653.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01087.x] [PMID: 19175606]
[45]
Xie, Y.X.; Liao, R.; Pan, L.; Du, C.Y. ERK pathway activation contributes to the tumor-promoting effects of hepatic stellate cells in hepatocellular carcinoma. Immunol. Lett., 2017, 188, 116-123.
[http://dx.doi.org/10.1016/j.imlet.2017.06.009] [PMID: 28668554]
[46]
Kang, N.; Gores, G.J.; Shah, V.H. Hepatic stellate cells: partners in crime for liver metastases? Hepatology, 2011, 54(2), 707-713.
[http://dx.doi.org/10.1002/hep.24384] [PMID: 21520207]
[47]
Liu, W.T.; Jing, Y.Y.; Yu, G.F.; Chen, H.; Han, Z.P.; Yu, D.D.; Fan, Q.M.; Ye, F.; Li, R.; Gao, L.; Zhao, Q.D.; Wu, M.C.; Wei, L.X. Hepatic stellate cell promoted hepatoma cell invasion via the HGF/c-Met signaling pathway regulated by p53. Cell Cycle, 2016, 15(7), 886-894.
[http://dx.doi.org/10.1080/15384101.2016.1152428] [PMID: 27077227]
[48]
Sun, B.; Zhang, X.; Cheng, X.; Zhang, Y.; Chen, L.; Shi, L.; Liu, Z.; Qian, H.; Wu, M.; Yin, Z. Intratumoral hepatic stellate cells as a poor prognostic marker and a new treatment target for hepatocellular carcinoma. PLoS One, 2013, 8(11), e80212.
[http://dx.doi.org/10.1371/journal.pone.0080212] [PMID: 24278260]
[49]
Shao, S.; Duan, W.; Xu, Q.; Li, X.; Han, L.; Li, W.; Zhang, D.; Wang, Z.; Lei, J. curcumin suppresses hepatic stellate cell-induced hepatocarcinoma angiogenesis and invasion through downregulating CTGF. Oxid. Med. Cell. Longev. 2019, 2019, 8148510.
[http://dx.doi.org/10.1155/2019/8148510] [PMID: 30800209]
[50]
Han, S.; Han, L.; Yao, Y.; Sun, H.; Zan, X.; Liu, Q. Activated hepatic stellate cells promote hepatocellular carcinoma cell migration and invasion via the activation of FAK-MMP9 signaling. Oncol. Rep., 2014, 31(2), 641-648.
[http://dx.doi.org/10.3892/or.2013.2872] [PMID: 24284889]
[51]
Song, Y.; Kim, S.H.; Kim, K.M.; Choi, E.K.; Kim, J.; Seo, H.R. Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids. Sci. Rep., 2016, 6, 36750.
[http://dx.doi.org/10.1038/srep36750] [PMID: 27853186]
[52]
Santamato, A.; Fransvea, E.; Dituri, F.; Caligiuri, A.; Quaranta, M.; Niimi, T.; Pinzani, M.; Antonaci, S.; Giannelli, G. Hepatic stellate cells stimulate HCC cell migration via laminin-5 production. Clin. Sci. (Lond.), 2011, 121(4), 159-168.
[http://dx.doi.org/10.1042/CS20110002] [PMID: 21413933]
[53]
Song, J.; Ge, Z.; Yang, X.; Luo, Q.; Wang, C.; You, H.; Ge, T.; Deng, Y.; Lin, H.; Cui, Y.; Chu, W.; Yao, M.; Zhang, Z.; Gu, J.; Fan, J.; Qin, W. Hepatic stellate cells activated by acidic tumor microenvironment promote the metastasis of hepatocellular carcinoma via osteopontin. Cancer Lett., 2015, 356(2 Pt B), 713-720.
[http://dx.doi.org/10.1016/j.canlet.2014.10.021] [PMID: 25449435]
[54]
Li, Q.; Wang, C.; Wang, Y.; Sun, L.; Liu, Z.; Wang, L.; Song, T.; Yao, Y.; Liu, Q.; Tu, K. HSCs-derived COMP drives hepatocellular carcinoma progression by activating MEK/ERK and PI3K/AKT signaling pathways. J. Exp. Clin. Cancer Res., 2018, 37(1), 231.
[http://dx.doi.org/10.1186/s13046-018-0908-y] [PMID: 30231922]
[55]
Li, J.; You, S.; Zhang, S.; Hu, Q.; Wang, F.; Chi, X.; Zhao, W.; Xie, C.; Zhang, C.; Yu, Y.; Liu, J.; Zhao, Y.; Liu, P.; Zhang, Y.; Wei, X.; Li, Q.; Wang, X.; Yin, Z. Elevated N-methyltransferase expression induced by hepatic stellate cells contributes to the metastasis of hepatocellular carcinoma via regulation of the CD44v3 isoform. Mol. Oncol., 2019, 13(9), 1993-2009.
[http://dx.doi.org/10.1002/1878-0261.12544] [PMID: 31294922]
[56]
Han, K.Q.; He, X.Q.; Ma, M.Y.; Guo, X.D.; Zhang, X.M.; Chen, J.; Han, H.; Zhang, W.W.; Zhu, Q.G.; Nian, H.; Ma, L.J. Inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma. World J. Gastroenterol., 2015, 21(16), 4864-4874.
[http://dx.doi.org/10.3748/wjg.v21.i16.4864] [PMID: 25944999]
[57]
Thompson, A.I.; Conroy, K.P.; Henderson, N.C. Hepatic stellate cells: central modulators of hepatic carcinogenesis. BMC Gastroenterol., 2015, 15, 63.
[http://dx.doi.org/10.1186/s12876-015-0291-5] [PMID: 26013123]
[58]
Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol., 2018, 59(2), 455-467.
[59]
Isidori, A.M.; Venneri, M.A.; Fiore, D. Angiopoietin-1 and Angiopoietin-2 in metabolic disorders: therapeutic strategies to restore the highs and lows of angiogenesis in diabetes. J. Endocrinol. Invest., 2016, 39(11), 1235-1246.
[http://dx.doi.org/10.1007/s40618-016-0502-0] [PMID: 27344309]
[60]
Lin, N.; Chen, Z.; Lu, Y.; Li, Y.; Hu, K.; Xu, R. Role of activated hepatic stellate cells in proliferation and metastasis of hepatocellular carcinoma. Hepatol. Res., 2015, 45(3), 326-336.
[http://dx.doi.org/10.1111/hepr.12356] [PMID: 24827154]
[61]
Ankoma-Sey, V.; Wang, Y.; Dai, Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology, 2000, 31(1), 141-148.
[http://dx.doi.org/10.1002/hep.510310122] [PMID: 10613739]
[62]
Zhao, W.; Zhang, L.; Yin, Z.; Su, W.; Ren, G.; Zhou, C.; You, J.; Fan, J.; Wang, X. Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int. J. Cancer, 2011, 129(11), 2651-2661.
[http://dx.doi.org/10.1002/ijc.25920] [PMID: 21213212]
[63]
Taura, K.; De Minicis, S.; Seki, E.; Hatano, E.; Iwaisako, K.; Osterreicher, C.H.; Kodama, Y.; Miura, K.; Ikai, I.; Uemoto, S.; Brenner, D.A. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology, 2008, 135(5), 1729-1738.
[http://dx.doi.org/10.1053/j.gastro.2008.07.065] [PMID: 18823985]
[64]
Sanz-Cameno, P.; Martín-Vílchez, S.; Lara-Pezzi, E.; Borque, M.J.; Salmerón, J.; Muñoz de Rueda, P.; Solís, J.A.; López-Cabrera, M.; Moreno-Otero, R. Hepatitis B virus promotes angiopoietin-2 expression in liver tissue: role of HBV x protein. Am. J. Pathol., 2006, 169(4), 1215-1222.
[http://dx.doi.org/10.2353/ajpath.2006.051246] [PMID: 17003480]
[65]
Torimura, T.; Ueno, T.; Kin, M.; Harada, R.; Taniguchi, E.; Nakamura, T.; Sakata, R.; Hashimoto, O.; Sakamoto, M.; Kumashiro, R.; Sata, M.; Nakashima, O.; Yano, H.; Kojiro, M. Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma. J. Hepatol., 2004, 40(5), 799-807.
[http://dx.doi.org/10.1016/j.jhep.2004.01.027] [PMID: 15094228]
[66]
Lin, J.Z.; Meng, L.L.; Li, Y.Z.; Chen, S.X.; Xu, J.L.; Tang, Y.J.; Lin, N. Importance of activated hepatic stellate cells and angiopoietin-1 in the pathogenesis of hepatocellular carcinoma. Mol. Med. Rep., 2016, 14(2), 1721-1725.
[http://dx.doi.org/10.3892/mmr.2016.5418] [PMID: 27358066]
[67]
Yan, Y.; Zhou, C.; Li, J.; Chen, K.; Wang, G.; Wei, G.; Chen, M.; Li, X. Resveratrol inhibits hepatocellular carcinoma progression driven by hepatic stellate cells by targeting Gli-1. Mol. Cell. Biochem., 2017, 434(1-2), 17-24.
[http://dx.doi.org/10.1007/s11010-017-3031-z] [PMID: 28455791]
[68]
Zhu, B.; Lin, N.; Zhang, M.; Zhu, Y.; Cheng, H.; Chen, S.; Ling, Y.; Pan, W.; Xu, R. Activated hepatic stellate cells promote angiogenesis via interleukin-8 in hepatocellular carcinoma. J. Transl. Med., 2015, 13, 365.
[http://dx.doi.org/10.1186/s12967-015-0730-7] [PMID: 26593962]
[69]
Mußbach, F.; Ungefroren, H.; Günther, B.; Katenkamp, K.; Henklein, P.; Westermann, M.; Settmacher, U.; Lenk, L.; Sebens, S.; Müller, J.P.; Böhmer, F.D.; Kaufmann, R. Proteinase-activated receptor 2 (PAR2) in hepatic stellate cells - evidence for a role in hepatocellular carcinoma growth in vivo. Mol. Cancer, 2016, 15(1), 54.
[http://dx.doi.org/10.1186/s12943-016-0538-y] [PMID: 27473374]
[70]
Bianchi, G.; Borgonovo, G.; Pistoia, V.; Raffaghello, L. Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol. Histopathol., 2011, 26(7), 941-951.
[71]
Zhao, W.; Su, W.; Kuang, P.; Zhang, L.; Liu, J.; Yin, Z.; Wang, X. The role of hepatic stellate cells in the regulation of T-cell function and the promotion of hepatocellular carcinoma. Int. J. Oncol., 2012, 41(2), 457-464.
[http://dx.doi.org/10.3892/ijo.2012.1497] [PMID: 22641338]
[72]
Xia, Y.; Chen, R.; Ye, S.L.; Sun, R.; Chen, J.; Zhao, Y. Inhibition of T-cell responses by intratumoral hepatic stellate cells contribute to migration and invasion of hepatocellular carcinoma. Clin. Exp. Metastasis, 2011, 28(7), 661-674.
[http://dx.doi.org/10.1007/s10585-011-9399-3] [PMID: 21717117]
[73]
Xia, Y.H.; Wang, Z.M.; Chen, R.X.; Ye, S.L.; Sun, R.X.; Xue, Q.; Huang, Y. T-cell apoptosis induced by intratumoral activated hepatic stellate cells is associated with lung metastasis in hepatocellular carcinoma. Oncol. Rep., 2013, 30(3), 1175-1184.
[http://dx.doi.org/10.3892/or.2013.2571] [PMID: 23807027]
[74]
Zhao, W.; Zhang, L.; Xu, Y.; Zhang, Z.; Ren, G.; Tang, K.; Kuang, P.; Zhao, B.; Yin, Z.; Wang, X. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab. Invest., 2014, 94(2), 182-191.
[http://dx.doi.org/10.1038/labinvest.2013.139] [PMID: 24296878]
[75]
Xu, Y.; Zhao, W.; Xu, J.; Li, J.; Hong, Z.; Yin, Z.; Wang, X. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget, 2016, 7(8), 8866-8878.
[http://dx.doi.org/10.18632/oncotarget.6839] [PMID: 26758420]
[76]
Höchst, B.; Schildberg, F.A.; Sauerborn, P.; Gäbel, Y.A.; Gevensleben, H.; Goltz, D.; Heukamp, L.C.; Türler, A.; Ballmaier, M.; Gieseke, F.; Müller, I.; Kalff, J.; Kurts, C.; Knolle, P.A.; Diehl, L. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J. Hepatol., 2013, 59(3), 528-535.
[http://dx.doi.org/10.1016/j.jhep.2013.04.033] [PMID: 23665041]
[77]
Ji, J.; Eggert, T.; Budhu, A.; Forgues, M.; Takai, A.; Dang, H.; Ye, Q.; Lee, J.S.; Kim, J.H.; Greten, T.F.; Wang, X.W. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology, 2015, 62(2), 481-495.
[http://dx.doi.org/10.1002/hep.27822] [PMID: 25833323]
[78]
Scudellari, M. Drug development: try and try again. Nature, 2014, 516(7529), S4-S6.
[http://dx.doi.org/10.1038/516S4a] [PMID: 25470198]
[79]
Llovet, J.M.; Villanueva, A.; Lachenmayer, A.; Finn, R.S. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat. Rev. Clin. Oncol., 2015, 12(8), 436.
[http://dx.doi.org/10.1038/nrclinonc.2015.121] [PMID: 26099984]
[80]
Khawar, I.A.; Kim, J.H.; Kuh, H.J. Improving drug delivery to solid tumors: priming the tumor microenvironment. J. Controlled Release: Official Journal of the Controlled Release Society, 2015, 201, 78-89.
[81]
Mogler, C.; König, C.; Wieland, M.; Runge, A.; Besemfelder, E.; Komljenovic, D.; Longerich, T.; Schirmacher, P.; Augustin, H.G. Hepatic stellate cells limit hepatocellular carcinoma progression through the orphan receptor endosialin. EMBO Mol. Med., 2017, 9(6), 741-749.
[http://dx.doi.org/10.15252/emmm.201607222] [PMID: 28373218]
[82]
Carloni, V.; Luong, T.V.; Rombouts, K. Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: more complicated than ever. Liver Int., 2014, 34(6), 834-843.
[http://dx.doi.org/10.1111/liv.12465] [PMID: 24397349]
[83]
Azzariti, A.; Mancarella, S.; Porcelli, L.; Quatrale, A.E.; Caligiuri, A.; Lupo, L.; Dituri, F.; Giannelli, G. Hepatic stellate cells induce hepatocellular carcinoma cell resistance to sorafenib through the laminin-332/α3 integrin axis recovery of focal adhesion kinase ubiquitination. Hepatology, 2016, 64(6), 2103-2117.
[http://dx.doi.org/10.1002/hep.28835] [PMID: 27639064]
[84]
Chen, W.; Wu, J.; Shi, H.; Wang, Z.; Zhang, G.; Cao, Y.; Jiang, C.; Ding, Y. Hepatic stellate cell coculture enables sorafenib resistance in Huh7 cells through HGF/c-Met/Akt and Jak2/Stat3 pathways. BioMed Res. Int., 2014.
[http://dx.doi.org/10.1155/2014/764981] [PMID: 25057499]
[85]
Yu, G.; Jing, Y.; Kou, X.; Ye, F.; Gao, L.; Fan, Q.; Yang, Y.; Zhao, Q.; Li, R.; Wu, M.; Wei, L. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma. PLoS One, 2013, 8(9), e73312.
[http://dx.doi.org/10.1371/journal.pone.0073312] [PMID: 24023859]
[86]
Chen, Y.; Sun, W.; Kang, L.; Wang, Y.; Zhang, M.; Zhang, H.; Hu, P. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Analyst (Lond.), 2019, 144(14), 4233-4240.
[http://dx.doi.org/10.1039/C9AN00612E] [PMID: 31210202]
[87]
Wang, N.; Wang, S.; Li, M.Y.; Hu, B.G.; Liu, L.P.; Yang, S.L.; Yang, S.; Gong, Z.; Lai, P.B.S.; Chen, G.G. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther. Adv. Med. Oncol., 2018.
[http://dx.doi.org/10.1177/1758835918816287] [PMID: 30622654]
[88]
Zhang, R.; Yao, R.R.; Li, J.H.; Dong, G.; Ma, M.; Zheng, Q.D.; Gao, D.M.; Cui, J.F.; Ren, Z.G.; Chen, R.X. Activated hepatic stellate cells secrete periostin to induce stem cell-like phenotype of residual hepatocellular carcinoma cells after heat treatment. Sci. Rep., 2017, 7(1), 2164.
[http://dx.doi.org/10.1038/s41598-017-01177-6] [PMID: 28526827]
[89]
Zhang, R.; Lin, X.H.; Ma, M.; Chen, J.; Chen, J.; Gao, D.M.; Cui, J.F.; Chen, R.X. Periostin involved in the activated hepatic stellate cells-induced progression of residual hepatocellular carcinoma after sublethal heat treatment: its role and potential for therapeutic inhibition. J. Transl. Med., 2018, 16(1), 302.
[http://dx.doi.org/10.1186/s12967-018-1676-3] [PMID: 30400797]
[90]
Mogler, C.; Wieland, M.; König, C.; Hu, J.; Runge, A.; Korn, C.; Besemfelder, E.; Breitkopf-Heinlein, K.; Komljenovic, D.; Dooley, S.; Schirmacher, P.; Longerich, T.; Augustin, H.G. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage. EMBO Mol. Med., 2015, 7(3), 332-338.
[http://dx.doi.org/10.15252/emmm.201404246] [PMID: 25680861]
[91]
Wang, Y.; Gao, J.; Zhang, D.; Zhang, J.; Ma, J.; Jiang, H. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J. Hepatol., 2010, 53(1), 132-144.
[http://dx.doi.org/10.1016/j.jhep.2010.02.027] [PMID: 20447716]
[92]
Geng, Z.M.; Jha, R.K.; Li, B.; Chen, C.; Li, W.Z.; Zheng, J.B.; Wang, L.; Huanchen, S. Sorafenib inhibition of hepatic stellate cell proliferation in tumor microenvironment of hepatocellular carcinoma: a study of the sorafenib mechanisms. Cell Biochem. Biophys., 2014, 69(3), 717-724.
[http://dx.doi.org/10.1007/s12013-014-9858-y] [PMID: 24633454]
[93]
Mallat, A.; Lotersztajn, S. Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis. Am. J. Physiol. Cell Physiol., 2013, 305(8), C789-C799.
[http://dx.doi.org/10.1152/ajpcell.00230.2013] [PMID: 23903700]
[94]
Duran, A.; Hernandez, E.D.; Reina-Campos, M.; Castilla, E.A.; Subramaniam, S.; Raghunandan, S.; Roberts, L.R.; Kisseleva, T.; Karin, M.; Diaz-Meco, M.T.; Moscat, J. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell, 2016, 30(4), 595-609.
[http://dx.doi.org/10.1016/j.ccell.2016.09.004] [PMID: 27728806]
[95]
Shimizu, H.; Tsubota, T.; Kanki, K.; Shiota, G. All-trans retinoic acid ameliorates hepatic stellate cell activation via suppression of thioredoxin interacting protein expression. J. Cell. Physiol., 2018, 233(1), 607-616.
[http://dx.doi.org/10.1002/jcp.25921] [PMID: 28322443]
[96]
Tang, Y. Curcumin targets multiple pathways to halt hepatic stellate cell activation: updated mechanisms in vitro and in vivo . Dig. Dis. Sci., 2015, 60(6), 1554-1564.
[http://dx.doi.org/10.1007/s10620-014-3487-6] [PMID: 25532502]
[97]
Zhang, J.; Wang, M.; Zhang, Z.; Luo, Z.; Liu, F.; Liu, J. Celecoxib derivative OSU-03012 inhibits the proliferation and activation of hepatic stellate cells by inducing cell senescence. Mol. Med. Rep., 2015, 11(4), 3021-3026.
[http://dx.doi.org/10.3892/mmr.2014.3048] [PMID: 25482718]
[98]
Li, J.; Li, H.; Yu, Y.; Liu, Y.; Liu, Y.; Ma, Q.; Zhang, L.; Lu, X.; Wang, X.Y.; Chen, Z.; Zuo, D.; Zhou, J. Mannan-binding lectin suppresses growth of hepatocellular carcinoma by regulating hepatic stellate cell activation via the ERK/COX-2/PGE2 pathway. OncoImmunology, 2018, 8(2), e1527650.
[http://dx.doi.org/10.1080/2162402X.2018.1527650] [PMID: 30713782]
[99]
Gong, Y.; Zou, B.; Peng, S.; Li, P.; Zhu, G.; Chen, J.; Chen, J.; Liu, X.; Zhou, W.; Ding, L.; Chen, Y.; Zeng, L.; Zhang, B.; Cai, C.; Li, J. Nuclear GAPDH is vital for hypoxia-induced hepatic stellate cell apoptosis and is indicative of aggressive hepatocellular carcinoma behavior. Cancer Manag. Res., 2019, 11, 4947-4956.
[http://dx.doi.org/10.2147/CMAR.S202268] [PMID: 31239764]
[100]
Fuchs, B.C.; Hoshida, Y.; Fujii, T.; Wei, L.; Yamada, S.; Lauwers, G.Y.; McGinn, C.M.; DePeralta, D.K.; Chen, X.; Kuroda, T.; Lanuti, M.; Schmitt, A.D.; Gupta, S.; Crenshaw, A.; Onofrio, R.; Taylor, B.; Winckler, W.; Bardeesy, N.; Caravan, P.; Golub, T.R.; Tanabe, K.K. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology, 2014, 59(4), 1577-1590.
[http://dx.doi.org/10.1002/hep.26898] [PMID: 24677197]
[101]
Piguet, A.C.; Majumder, S.; Maheshwari, U.; Manjunathan, R.; Saran, U.; Chatterjee, S.; Dufour, J.F. Everolimus is a potent inhibitor of activated hepatic stellate cell functions in vitro and in vivo, while demonstrating anti-angiogenic activities. Clin. Sci. (Lond.), 2014, 126(11), 775-784.
[http://dx.doi.org/10.1042/CS20130081] [PMID: 24283268]
[102]
Lo Re, O.; Panebianco, C.; Porto, S.; Cervi, C.; Rappa, F.; Di Biase, S.; Caraglia, M.; Pazienza, V.; Vinciguerra, M. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of sorafenib in hepatocellular cancer cells. J. Cell. Physiol., 2018, 233(2), 1202-1212.
[http://dx.doi.org/10.1002/jcp.25987] [PMID: 28471474]
[103]
Qu, H.; Yang, X. Metformin inhibits angiogenesis induced by interaction of hepatocellular carcinoma with hepatic stellate cells. Cell Biochem. Biophys., 2015, 71(2), 931-936.
[http://dx.doi.org/10.1007/s12013-014-0287-8] [PMID: 25326336]
[104]
Zhang, D.Y.; Goossens, N.; Guo, J.; Tsai, M.C.; Chou, H.I.; Altunkaynak, C.; Sangiovanni, A.; Iavarone, M.; Colombo, M.; Kobayashi, M.; Kumada, H.; Villanueva, A.; Llovet, J.M.; Hoshida, Y.; Friedman, S.L. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut, 2016, 65(10), 1754-1764.
[http://dx.doi.org/10.1136/gutjnl-2015-309655] [PMID: 26045137]
[105]
Bertino, G.; Ardiri, A.; Malaguarnera, M.; Malaguarnera, G.; Bertino, N.; Calvagno, G.S. Hepatocellualar carcinoma serum markers. Semin. Oncol., 2012, 39(4), 410-433.
[http://dx.doi.org/10.1053/j.seminoncol.2012.05.001] [PMID: 22846859]