Solid Lipid Nanoparticles for Oral Drug Delivery: A Review

Page: [208 - 224] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: The high molecular weight and increasing lipophilicity of drug face many problems starting from the drug development to formulation and conduction of pharmacological, toxicological and pharmacokinetic studies to its biological application. To overcome this problem, nano-sized formulations are in trend recently. The use of Solid lipid nanoparticles (SLNs) offers new insight into the formulation of the poor soluble and low bioavailable drug.

Objective: The study aimed to investigate the literature concerning the development of SLNs for oral drug delivery of poorly soluble drugs, with a view survey the various methods of manufacturing and evaluation of formulation of SLNs and future prospects of SLNs and application of SLNs in oral delivery systems.

Conclusion: Oral drug delivery is looking ahead progressively into newer directions due to the realization of various poor performance limiting factors such as reduced drug solubility or absorption, rapid metabolism, high actuation in plasma level of drug and variability caused due to food effect. These play a vital role in disappointing in vivo results, which leads in the failure of the conventional delivery system. Since the last decade, oral drug delivery has taken a new dimension with the increasing application of SLNs as a carrier for the delivery of poorly water-soluble or lipophilic drugs. The site-specific and sustained release effect of the drug is better achieved by using SLNs. This review highlights the various pros and cons, manufacturing techniques, characterization, and future prospects of SLNs in oral drug delivery systems.

Keywords: Oral drug delivery, novel drug delivery system (NDDS), solid lipid nanoparticles (SLNs), bioavailability, nano-sized formulations, drug solubility.

Graphical Abstract

[1]
Gupta H, Bhandari D, Sharma A. Recent trends in oral drug delivery: a review. Recent Pat Drug Deliv Formul 2009; 3(2): 162-73.
[http://dx.doi.org/10.2174/187221109788452267] [PMID: 19519576]
[2]
Kushal M, Monali M, Mishra D, et al. Oral controlled release drug delivery system: An overview. Int Res J Pharm 2013; 4(3): 70-6.
[http://dx.doi.org/10.7897/2230-8407.04312]
[3]
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6: 319-27.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[4]
Yasir M, Sara UVS, Som I, et al. Nose to brain drug delivery: a novel approach through solid lipid nanoparticles. Curr Med 2016; 6(2): 105-32.
[http://dx.doi.org/10.2174/2468187306666160603120318]
[5]
Barratt GM. Therapeutic applications of colloidal drug carriers. Pharm Sci Technol Today 2000; 3(5): 163-71.
[http://dx.doi.org/10.1016/S1461-5347(00)00255-8] [PMID: 10785658]
[6]
Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 1995; 41: 2-13.
[7]
Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv 2005; 2(4): 297-310.
[http://dx.doi.org/10.2174/156720105774370267] [PMID: 16305433]
[8]
Benita S, Friedmann D, Weinstock M. Physiostigmine emulsions: a new injectable controlled release delivery system. Int J Pharm 1986; 30: 47-55.
[http://dx.doi.org/10.1016/0378-5173(86)90134-1]
[9]
Magenheim B, Levy MY, Benita S. A new in vitro technique for evaluation of drug release profile from colloidal carriers — ultrafiltration technique at low pressure. Int J Pharm 1993; 94: 115-23.
[http://dx.doi.org/10.1016/0378-5173(93)90015-8]
[10]
Wang H, Wang H, Yang W, Yu M, Sun S, Xie B. Improved oral bioavailability and liver targeting of sorafenib solid lipid nanoparticles in rats. AAPS PharmSciTech 2018; 19(2): 761-8.
[http://dx.doi.org/10.1208/s12249-017-0901-3] [PMID: 28983849]
[11]
Kesharwani R, Sachan A, Singh S, et al. Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib. J Appl Pharm Sci 2016; 6(10): 124-31.
[http://dx.doi.org/10.7324/JAPS.2016.601017]
[12]
Garud A, Singh D, Garud N. Solid lipid nanoparticles (SLN): Method characterization and applications. Int Curr Pharm J 2012; 1(11): 384-93.
[http://dx.doi.org/10.3329/icpj.v1i11.12065]
[13]
Doktorovova S, Souto EB. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. Expert Opin Drug Deliv 2009; 6(2): 165-76.
[http://dx.doi.org/10.1517/17425240802712590] [PMID: 19239388]
[14]
Padhye SG, Nagarsenker MS. Simvastatin solid lipid nanoparticles for oral delivery: formulation development and in vivo evaluation. Indian J Pharm Sci 2013; 75(5): 591-8.
[PMID: 24403661]
[15]
Talegaonkar S, Bhattachatyya A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech 2019; 20(3): 121.
[http://dx.doi.org/10.1208/s12249-019-1337-8.]]
[16]
Fouad EA, Yassin AEB, Alajami HN. Characterization of celecoxib-loaded solid lipid nanoparticles formulated with tristearin and softisan 100. Trop J Pharm Res 2015; 14(2): 205-10.
[http://dx.doi.org/10.4314/tjpr.v14i2.3]
[17]
Nanoscience and nanotechnology in drug delivery: nanocarriers for drug delivery. Available at: https://www.sciencedirect.com/topics/materials-science/polymer-nanoparticles (Accessed on: Dec 1, 2019.]
[18]
Ramteke KH, Joshi SA, Dhole SN. Solid lipid nanoparticle: A Review. IOSR J Pharm 2012; 2(6): 34-44.
[http://dx.doi.org/10.9790/3013-26103444]
[19]
Verma S, Makkar D. Solid lipid nanoparticles: a comprehensive review. J Chem Pharm Res 2016; 8(8): 102-14.
[20]
Bagul US, Pisal VV, Solanki NV, et al. A current status of solid lipid nanoparticles: A Review. Mod Appl Bioequiv 2018; 3(4): 1-10.
[21]
Pandey P, Gupta PC, Yadav S. Solid lipid nanoparticle: a potential approach in drug delivery system. Ejpmr 2018; 5(9): 225-36.
[22]
Nikam S, Mayura C, Sharma PH. Solid lipid nanoparticles: a lipid-based drug delivery. IPP 2014; 2(3): 365-76.
[23]
Shazly GA. Ciprofloxacin controlled-solid lipid nanoparticles: characterization in vitro release and antibacterial activity assessment. BioMed Res Int 2017; 4: 1-9.
[24]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[25]
Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995; 12(3): 413-20.
[http://dx.doi.org/10.1023/A:1016212804288] [PMID: 7617530]
[26]
Ekambaram P, Sathali A, Priyanka K. Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2012; 2(1): 80-102.
[27]
O’Driscoll CM, Griffin BT. Biopharmaceutical challenges associated with drugs with low aqueous solubility--the potential impact of lipid-based formulations. Adv Drug Deliv Rev 2008; 60(6): 617-24.
[http://dx.doi.org/10.1016/j.addr.2007.10.012] [PMID: 18155800]
[28]
Yadav V, Mahor A, Prajapati S, et al. Solid lipid nanoparticles (SLN): formulation by high-pressure homogenization. World J Pharm Pharm Sci 2014; 3(11): 1200-13.
[29]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[30]
Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: Recent breakthroughs. Adv Pharm Bull 2015; 5(2): 151-9.
[http://dx.doi.org/10.15171/apb.2015.022] [PMID: 26236652]
[31]
Hoa LTM, Chi NT, Triet NM, et al. Preparation of drug nanoparticles by emulsion evaporation method. J Phys Conf Ser 2009; 187: 1-4.
[http://dx.doi.org/10.1088/1742-6596/187/1/012047]
[32]
Rupenagunta A, Somasundaram I, Ravichandiran V, et al. Solid lipid Nano particles-A versatile carrier system. J Pharm Res 2011; 4(7): 2069-75.
[33]
Rabinarayan P, Padilama S. Production of solid lipid nanoparticles-drug loading and release mechanism. J Chem Pharm Res 2010; 2(1): 211-27.
[34]
Nair R, Kumar KSA, Priya KV, et al. Recent Advances in solid lipid nanoparticle-based drug delivery systems. J Biomed Sci Res 2011; 3(2): 368-84.
[35]
Chattopadhyaya P, Shekunova BY, Yim D, et al. Production of SLN suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev 2007; 59(6): 444-53.
[http://dx.doi.org/10.1016/j.addr.2007.04.010] [PMID: 17582648]
[36]
Montes A, Gordillo MD, Pereyra C, et al. Particles formation using supercritical fluids. Mass transfer - advanced aspects 2011; 461-80.
[37]
Ribeiro Dos Santos I, Richard J, Pech B, Thies C, Benoit JP. Microencapsulation of protein particles within lipids using a novel supercritical fluid process. Int J Pharm 2002; 242(1-2): 69-78.
[http://dx.doi.org/10.1016/S0378-5173(02)00149-7] [PMID: 12176227]
[38]
Ganesana P, Narayanasamy D. Lipid nanoparticles: Different preparation techniques characterization hurdles and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm 2017; 6: 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[39]
Teja VRC, Chowdary VH, Raju VP, et al. A glimpse on solid lipid nanoparticles as drug delivery systems. J Glob Trends Pharm Sci 2014; 5(2): 1649-57.
[40]
Yadav N, Khatak S, Sara UVS. Solid lipid nanoparticles- a review. Int J App Pharm 2013; 5(2): 8-18.
[41]
Becker Peres L, Becker Peres L, de Araújo PHH, Sayer C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf B Biointerfaces 2016; 140: 317-23.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.033] [PMID: 26764112]
[42]
Lva Q, Yua A, Xi Y, et al. Development and evaluation of penciclovir-loaded SLN for topical delivery. Int J Pharm 2009; 372(1-2): 191-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.014] [PMID: 19429280]
[43]
Schubert MA, Müller-Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles--evaluation of the method and process parameters. Eur J Pharm Biopharm 2003; 55(1): 125-31.
[http://dx.doi.org/10.1016/S0939-6411(02)00130-3] [PMID: 12551713]
[44]
Nair R, Kumar AC, Priya VK, Yadav CM, Raju PY. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine. Lipids Health Dis 2012; 11: 72.
[http://dx.doi.org/10.1186/1476-511X-11-72] [PMID: 22695222]
[45]
Charcosset C, El-Harati A, Fessi H. Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release 2005; 108(1): 112-20.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.023] [PMID: 16169111]
[46]
Pandey R, Sharma S, Khuller GK. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis (Edinb) 2005; 85(5-6): 415-20.
[http://dx.doi.org/10.1016/j.tube.2005.08.009] [PMID: 16256437]
[47]
Luo Y, Chen D, Ren L, Zhao X, Qin J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release 2006; 114(1): 53-9.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.010] [PMID: 16828192]
[48]
Schubert MA, Müller-Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm 2005; 61(1-2): 77-86.
[http://dx.doi.org/10.1016/j.ejpb.2005.03.006] [PMID: 16011893]
[49]
Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: solid lipid nanoparticles. Mater Sci Eng C 2013; 33(4): 1842-52.
[http://dx.doi.org/10.1016/j.msec.2013.01.037] [PMID: 23498204]
[50]
Muchow M, Maincent P, Muller RH. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm 2008; 34(12): 1394-405.
[http://dx.doi.org/10.1080/03639040802130061] [PMID: 18665980]
[51]
Dahan A, Hoffman A. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Release 2008; 129(1): 1-10.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.021] [PMID: 18499294]
[52]
Doktorovov_a S, Santos DL, Costa I, et al. Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. Int J Pharm 2014; 47: 118-27.
[53]
Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 2009; 133(3): 238-44.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.002] [PMID: 18951932]
[54]
Zimmermann E, Müller RH. Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN) dispersions in artificial gastrointestinal media. Eur J Pharm Biopharm 2001; 52(2): 203-10.
[http://dx.doi.org/10.1016/S0939-6411(01)00167-9] [PMID: 11522487]
[55]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[56]
Radtke M, Souto EB, Muller RH. NLC-the novel generation of solid lipid carriers Pharm Tech Europe 2000; 517: 45-50.
[57]
Yang S, Zhu J, Lu Y, Liang B, Yang C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 1999; 16(5): 751-7.
[http://dx.doi.org/10.1023/A:1018888927852] [PMID: 10350020]
[58]
Muller RH, Ruhl D, Runge S. Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. Int J Pharm 1996; 144: 115-21.
[http://dx.doi.org/10.1016/S0378-5173(96)04731-X]
[59]
Jani P, Halbert GW, Langridge J, Florence AT. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 1990; 42(12): 821-6.
[http://dx.doi.org/10.1111/j.2042-7158.1990.tb07033.x] [PMID: 1983142]
[60]
Purvin S, Vuddanda PR, Singh SK, et al. Pharmacokinetic and tissue distribution study of solid lipid nanoparticles of zidovudine in rats. J Nanotechnol 2014; 10: 1-7.
[http://dx.doi.org/10.1155/2014/854018]
[61]
Olbrich C, Kayser O, Müller RH. Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)--effect of surfactants, storage time and crystallinity. Int J Pharm 2002; 237(1-2): 119-28.
[http://dx.doi.org/10.1016/S0378-5173(02)00035-2] [PMID: 11955810]
[62]
Tobío M, Sánchez A, Vila A, et al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B Biointerfaces 2000; 18(3-4): 315-23.
[http://dx.doi.org/10.1016/S0927-7765(99)00157-5] [PMID: 10915953]
[63]
Muller RH, Runge SA. Solid lipid nanoparticles for controlled drug delivery Submicron emulsion in drug targeting and delivery. The Netherlands: Harwood Academic Publishers 1998; pp. 219-34.
[64]
Kaur S, Nautyal U, Singh R, et al. A Nanostructure Lipid Carrier (NLC): the new generation of lipid nanoparticles. Asian Pac J Health Sci 2015; 2(2): 76-93.
[http://dx.doi.org/10.21276/apjhs.2015.2.2.14]
[65]
Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007; 2(3): 289-300.
[PMID: 18019829]
[66]
Rawat MK, Jain A, Mishra A, Muthu MS, Singh S. Effect of lipid matrix on repaglinide-loaded solid lipid nanoparticles for oral delivery. Ther Deliv 2010; 1(1): 63-73.
[http://dx.doi.org/10.4155/tde.10.7] [PMID: 22816120]
[67]
Ekambaram P, Abdul HS. Formulation and evaluation of solid lipid nanoparticles of ramipril. J Young Pharm 2011; 3(3): 216-20.
[http://dx.doi.org/10.4103/0975-1483.83765] [PMID: 21897661]
[68]
Kushwaha AK, Vuddanda PR, Karunanidhi P, et al. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability 2013.
[http://dx.doi.org/10.1155/2013/584549]
[69]
Dudhipala N, Veerabrahma K. Pharmacokinetic and pharmacodynamic studies of nisoldipine-loaded solid lipid nanoparticles developed by central composite design. Drug Dev Ind Pharm 2015; 41(12): 1968-77.
[http://dx.doi.org/10.3109/03639045.2015.1024685] [PMID: 25830370]
[70]
Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv 2016; 23(2): 395-404.
[http://dx.doi.org/10.3109/10717544.2014.914986] [PMID: 24865287]
[71]
Nooli M, Chella N, Kulhari H, Shastri NR, Sistla R. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation. Drug Dev Ind Pharm 2017; 43(4): 611-7.
[http://dx.doi.org/10.1080/03639045.2016.1275666] [PMID: 28005442]
[72]
Zhao B, Gu S, Du Y, Shen M, Liu X, Shen Y. Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A. Int J Pharm 2018; 535(1-2): 164-71.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.040] [PMID: 29107614]
[73]
Gambhire VM, Gambhire MS, Ranpise NS. Solid lipid nanoparticles of dronedarone hydrochloride for oral delivery: optimization, in vivo pharmacokinetics and uptake studies. Pharm Nanotechnol 2019; 7(5): 375-88.
[http://dx.doi.org/10.2174/2211738507666190802140607] [PMID: 31376827]
[74]
Patel MH, Mundada VP, Sawant KK. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, in vitro characterization, cell line studies and in vivo efficacy in schizophrenia. Drug Dev Ind Pharm 2019; 45(8): 1242-57.
[http://dx.doi.org/10.1080/03639045.2019.1593434] [PMID: 30880488]
[75]
Garcia-Fuentes M, Torres D, Alonso MJ. New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. Int J Pharm 2005; 296(1-2): 122-32.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.030] [PMID: 15885464]
[76]
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 2017; 25(2): 219-34.
[http://dx.doi.org/10.1016/j.jfda.2017.02.001] [PMID: 28911663]