Therapeutic Potential of Umbilical Cord Stem Cells for Liver Regeneration

Page: [219 - 232] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The liver is a vital organ for life and the only internal organ that is capable of natural regeneration. Although the liver has high regeneration capacity, excessive hepatocyte death can lead to liver failure. Various factors can lead to liver damage including drug abuse, some natural products, alcohol, hepatitis, and autoimmunity. Some models for studying liver injury are APAP-based model, Fas ligand (FasL), D-galactosamine/endotoxin (Gal/ET), Concanavalin A, and carbon tetrachloride-based models. The regeneration of the liver can be carried out using umbilical cord blood stem cells which have various advantages over other stem cell types used in liver transplantation. UCB-derived stem cells lack tumorigenicity, have karyotype stability and high immunomodulatory, low risk of graft versus host disease (GVHD), low risk of transmitting somatic mutations or viral infections, and low immunogenicity. They are readily available and their collection is safe and painless. This review focuses on recent development and modern trends in the use of umbilical cord stem cells for the regeneration of liver fibrosis.

Keywords: Umblical cord, liver fibrosis, regenerative medicine, mesenchymal stem cells, fibrosis models, therapeutic potential.

[1]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145-7.
[http://dx.doi.org/10.1126/science.282.5391.1145] [PMID: 9804556]
[2]
Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893): 41-9.
[http://dx.doi.org/10.1038/nature00870] [PMID: 12077603]
[3]
Lotfy A, Salama M, Zahran F, Jones E, Badawy A, Sobh M. Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue: a comparative study. Int J Stem Cells 2014; 7(2): 135-42.
[http://dx.doi.org/10.15283/ijsc.2014.7.2.135] [PMID: 25473451]
[4]
Staff PO. PLOS ONE Staff. Correction: paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One 2015; 10(3) e0119262
[http://dx.doi.org/10.1371/journal.pone.0119262] [PMID: 25738303]
[5]
Schöler HR. The potential of stem cells: An inventory In: Schipanski D, Knoepffler N, Sorgner SL, Ed Humanbiotechnology as social Challenge, an interdisciplinary introduction to bioethics London: Taylor & Francis 2016.
[6]
Ulloa-Montoya F, Verfaillie CM, Hu W-S. Culture systems for pluripotent stem cells. J Biosci Bioeng 2005; 100(1): 12-27.
[http://dx.doi.org/10.1263/jbb.100.12] [PMID: 16233846]
[7]
Mitalipov S, Wolf D. Totipotency, pluripotency and nuclear reprogramming Engineering of stem cells. Springer 2009; pp. 185-99.
[8]
Martínez-Sarrà E, Montori S, Gil-Recio C, Núñez-Toldrà R, Bertran NC, Al Madhoun A, et al. Dental Pulp Stem Cells Promote Wound Healing and Muscle Regeneration.In: Stem Cell Genetics for Biomedical Research. Springer 2018; pp. 221-40.
[9]
Zomer HD, Vidane AS, Gonçalves NN, Ambrósio CE. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells Cloning 2015; 8: 125-34.
[PMID: 26451119]
[10]
Tahir Ul Qamar M, Bari A, Adeel MM, et al. Peptide vaccine against chikungunya virus: immuno-informatics combined with molecular docking approach. J Transl Med 2018; 16(1): 298.
[http://dx.doi.org/10.1186/s12967-018-1672-7] [PMID: 30368237]
[11]
Stewart CL, Aparicio LC, Kerridge IH. Ethical and legal issues raised by cord blood banking - the challenges of the new bioeconomy. Med J Aust 2013; 199(4): 290-2.
[http://dx.doi.org/10.5694/mja12.11668] [PMID: 23984790]
[12]
Aznar Lucea J. Umbilical cord blood banks. Ethical aspects. Public versus private banks. Cuad Bioet 2012; 23(78): 269-85.
[PMID: 23130743]
[13]
Grendell JH, Mcquaid KR, Friedman SL. Current diagnosis & treatment in gastroenterology. Appleton and Lange 1996.
[14]
Keeffe EB, Friedman LS. Handbook of Liver Disease. Elsevier 2004.
[15]
James LP, Mayeux PR, Hinson JA. Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 2003; 31(12): 1499-506.
[http://dx.doi.org/10.1124/dmd.31.12.1499] [PMID: 14625346]
[16]
Riordan SM, Williams R. Alcohol exposure and paracetamol-induced hepatotoxicity. Addict Biol 2002; 7(2): 191-206.
[http://dx.doi.org/10.1080/13556210220120424] [PMID: 12006215]
[17]
Prescott LF. Paracetamol, alcohol and the liver. Br J Clin Pharmacol 2000; 49(4): 291-301.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00167.x] [PMID: 10759684]
[18]
Manov I, Motanis H, Frumin I, Iancu TC. Hepatotoxicity of anti-inflammatory and analgesic drugs: ultrastructural aspects. Acta Pharmacol Sin 2006; 27(3): 259-72.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00278.x] [PMID: 16490160]
[19]
Iancu TC, Shiloh H, Dembo L. Hepatomegaly following short-term high-dose steroid therapy. J Pediatr Gastroenterol Nutr 1986; 5(1): 41-6.
[http://dx.doi.org/10.1097/00005176-198601000-00008] [PMID: 3944744]
[20]
Sarich TC, Adams SP, Petricca G, Wright JM. Inhibition of isoniazid-induced hepatotoxicity in rabbits by pretreatment with an amidase inhibitor. J Pharmacol Exp Ther 1999; 289(2): 695-702.
[PMID: 10215642]
[21]
Schläppi B. The lack of hepatotoxicity in the rat with the new and reversible MAO-A inhibitor moclobemide in contrast to iproniazid. Arzneimittelforschung 1985; 35(5): 800-3.
[PMID: 4026902]
[22]
Cook GC, Sherlock S. Jaundice and its relation to therapeutic agents. Lancet 1965; 1(7378): 175-9.
[http://dx.doi.org/10.1016/S0140-6736(65)90969-4] [PMID: 14238042]
[23]
Kothari UC. Toxic and other side effects of nardil phenelzine sulphate W-1544A. Am J Psychiatry 1960; 116(8): 746-7.
[http://dx.doi.org/10.1176/ajp.116.8.746] [PMID: 14411298]
[24]
Kumar E, Rajan VR, Kumar AD, Parasuraman S, Emerson S. Hepatoprotective activity of Clearliv a polyherbal formulation in Wistar rats. Arch Med Health Sci 2013; 1(2): 120.
[http://dx.doi.org/10.4103/2321-4848.123023]
[25]
Dienstag JL, Isselbacher KJ. Acute viral hepatitis Harrisons principles of internal medicine 2005; 16(2): 1822.
[26]
Wegner SA, Pollard KA, Kharazia V, et al. Limited Excessive Voluntary Alcohol Drinking Leads to Liver Dysfunction in Mice. Alcohol Clin Exp Res 2017; 41(2): 345-58.
[http://dx.doi.org/10.1111/acer.13303] [PMID: 28103636]
[27]
Narayanan V. Alcohol and the Liver. Pract Gastroenterol 2016; 263.
[28]
Czaja AJ. Diagnosis and management of autoimmune hepatitis: current status and future directions. Gut Liver 2016; 10(2): 177-203.
[http://dx.doi.org/10.5009/gnl15352] [PMID: 26934884]
[29]
Ichai P, Samuel D. Epidemiology of liver failure. Clin Res Hepatol Gastroenterol 2011; 35(10): 610-7.
[http://dx.doi.org/10.1016/j.clinre.2011.03.010] [PMID: 21550329]
[30]
Lee WM. Ed. editor Etiologies of acute liver failure Seminars in liver disease;. Thieme Medical Publishers. 2008.
[31]
Broxmeyer HE, Cooper S, Yoder M, Hangoc G. Human umbilical cord blood as a source of transplantable hematopoietic stem and progenitor cells. Curr Top Microbiol Immunol 1992; 177: 195-204.
[http://dx.doi.org/10.1007/978-3-642-76912-2_15] [PMID: 1353429]
[32]
Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood 1974; 43(3): 357-61.
[PMID: 4811820]
[33]
Forraz N, Pettengell R, Deglesne P-A, McGuckin CP. AC133+ umbilical cord blood progenitors demonstrate rapid self-renewal and low apoptosis. Br J Haematol 2002; 119(2): 516-24.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03828.x] [PMID: 12406095]
[34]
Forraz N, Pettengell R, McGuckin CP. Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC-IC. Stem Cells 2004; 22(1): 100-8.
[http://dx.doi.org/10.1634/stemcells.22-1-100] [PMID: 14688396]
[35]
McGuckin CP, Forraz N, Baradez MO, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 2005; 38(4): 245-55.
[http://dx.doi.org/10.1111/j.1365-2184.2005.00346.x] [PMID: 16098183]
[36]
McGuckin C, Forraz N, Baradez M-O, et al. Embryonic-like stem cells from umbilical cord blood and potential for neural modeling. Acta Neurobiol Exp (Warsz) 2006; 66(4): 321-9.
[PMID: 17269167]
[37]
McGuckin C, Jurga M, Ali H, Strbad M, Forraz N. Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nat Protoc 2008; 3(6): 1046-55.
[http://dx.doi.org/10.1038/nprot.2008.69] [PMID: 18536651]
[38]
McELREAVEY KD, IRVINE AI, ENNIS KT, McLEAN WI. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord. Portland Press Limited. 1991.
[39]
Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 2004; 22(7): 1330-7.
[http://dx.doi.org/10.1634/stemcells.2004-0013] [PMID: 15579650]
[40]
Alaminos M, Pérez-Köhler B, Garzón I, et al. Transdifferentiation potentiality of human Wharton’s jelly stem cells towards vascular endothelial cells. J Cell Physiol 2010; 223(3): 640-7.
[http://dx.doi.org/10.1002/jcp.22062] [PMID: 20143331]
[41]
Schneider RK, Püllen A, Kramann R, et al. Long-term survival and characterisation of human umbilical cord-derived mesenchymal stem cells on dermal equivalents. Differentiation 2010; 79(3): 182-93.
[http://dx.doi.org/10.1016/j.diff.2010.01.005] [PMID: 20153102]
[42]
Xu HH, Zhao L, Detamore MS, Takagi S, Chow LC. Umbilical cord stem cell seeding on fast-resorbable calcium phosphate bone cement. Tissue Eng Part A 2010; 16(9): 2743-53.
[http://dx.doi.org/10.1089/ten.tea.2009.0757] [PMID: 20388037]
[43]
Caballero M, Reed CR, Madan G, van Aalst JA. Osteoinduction in umbilical cord- and palate periosteum-derived mesenchymal stem cells. Ann Plast Surg 2010; 64(5): 605-9.
[http://dx.doi.org/10.1097/SAP.0b013e3181ce3929] [PMID: 20395805]
[44]
Zhang H-T, Fan J, Cai Y-Q, et al. Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 2010; 79(1): 15-20.
[http://dx.doi.org/10.1016/j.diff.2009.09.002] [PMID: 19800163]
[45]
Zhang Y-N, Lie P-C, Wei X. Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy 2009; 11(5): 548-58.
[http://dx.doi.org/10.1080/14653240903051533] [PMID: 19657806]
[46]
Anzalone R, Lo Iacono M, Corrao S, et al. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev 2010; 19(4): 423-38.
[http://dx.doi.org/10.1089/scd.2009.0299] [PMID: 19958166]
[47]
Kogler G, Wernet P. Pluripotent stem cells from umbilical cord blood Stem cell transplantation-biology, processes, therapy:. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2006; p. 73- 85.
[http://dx.doi.org/10.1002/3527608745.ch5 ]
[48]
Corselli M, Chen C-W, Crisan M, Lazzari L, Péault B. Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 2010; 30(6): 1104-9.
[http://dx.doi.org/10.1161/ATVBAHA.109.191643] [PMID: 20453168]
[49]
Johnstone RM, Adam M, Hammond J, Orr L. Turbide CJJoBC Vesicle formation during reticulocyte maturation Association of plasma membrane activities with released vesicles (exosomes). 1987; 262: p. (19)9412-20.
[50]
Olver C, Vidal M. Proteomic analysis of secreted exosomes Subcellular Proteomics. Springer 2007; pp. 99-131.
[http://dx.doi.org/10.1007/978-1-4020-5943-8_7]
[51]
Simons M. Raposo GJCoicb Exosomes–vesicular carriers for intercellular communication. 2009; 21: p. (4)575-81.
[52]
Pap E, Pallinger E, Pasztoi M, Falus AJIR. Highlights of a new type of intercellular communication: microvesicle-based information transfer 2009 58(1): 1-8.
[http://dx.doi.org/10.1007/s00011-008-8210-7]
[53]
Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN. Lim SKJNar Mesenchymal stem cell secretes microparticles enriched in premicroRNAs. 2009; 38: p. (1)215-24.
[54]
El Sayed Shafei A, Ali MA, Ghanem HG, Shehata AI, Abdelgawad AA, Handal HR, et al. Mesenchymal stem cells therapy: a promising cell based therapy for treatment of myocardial infraction. J Gene Med 2017; e2995
[http://dx.doi.org/10.1002/jgm.2995]
[55]
Masoud MS, Ahmed U, Qasim M, Ashfaq UA. Mahmood-ur- Rahman, Tariq M. Mesenchymal Stem Cells in the regeneration of damaged myocardium Modern Research trends and Clinical Prospect. Advances in Medicine and Biology 136. Nova Science Publishers, Inc. 2019; pp. 113-39..
[56]
De Jong OG, Van Balkom BWM, Schiffelers RM, Bouten CVC, Verhaar MC. Extracellular vesicles: potential roles in regenerative medicine. Front Immunol 2014; 5: 608.
[http://dx.doi.org/10.3389/fimmu.2014.00608] [PMID: 25520717]
[57]
EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347-57.
[http://dx.doi.org/10.1038/nrd3978] [PMID: 23584393]
[58]
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23.
[http://dx.doi.org/10.1038/mt.2015.44] [PMID: 25868399]
[59]
Scripps T, Jolla L. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 2017; 35(4): 851-8.
[60]
Tomasoni S, Longaretti L, Rota C, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev 2013; 22(5): 772-80.
[http://dx.doi.org/10.1089/scd.2012.0266] [PMID: 23082760]
[61]
Yu B, Gong M, Wang Y, et al. Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One 2013; 8(8)e73304
[http://dx.doi.org/10.1371/journal.pone.0073304] [PMID: 24015301]
[62]
Urbanelli L, Buratta S, Sagini K, Ferrara G, Lanni M. Emiliani CJRpoCdd Exosome-based strategies for diagnosis and therapy. 2015; 10: p. (1)10-27.
[63]
Kim D-k, Nishida H, An SY, Shetty AK, Bartosh TJ. Prockop DJJPotNAoS Chromatographically isolated CD63+ CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. 2016; 113: p. (1)170-5.
[64]
Lou G, Chen Z, Zheng M, Liu YJE. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases 2017 49: p. (6)e346.
[65]
Mardpour S, Hassani SN, Mardpour S, Sayahpour F, Vosough M, Ai J, et al. Extracellular vesicles derived from human embryonic stem cell‐MSCs ameliorate cirrhosis in thioacetamide‐induced chronic liver injury 2018 233: p. (12)9330-44.
[http://dx.doi.org/10.1002/jcp.26413]
[66]
Jung Y, Ju S, Yoo E, Cho S, Cho K, Woo S, et al. MSC–DC interactions: MSC inhibit maturation and migration of BM-derived DC. 2007; 9: p. (5)451-8.
[67]
Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood 2005; 106(2): 756-63.
[http://dx.doi.org/10.1182/blood-2005-02-0572]
[68]
Aurich I, Mueller LP, Aurich H, et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 2007; 56(3): 405-15.
[http://dx.doi.org/10.1136/gut.2005.090050]
[69]
Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RCJT. Systemic infusion of FLK1+ mesenchymal stem cells ameliorate carbon tetrachloride- induced liver fibrosis in mice. 2004; 78: p. (1)83-8.
[70]
Cho KA, Ju SY, Cho SJ, Jung YJ, Woo SY, Seoh JY, et al. Mesenchymal stem cells showed the highest potential for the regeneration of injured liver tissue compared with other subpopulations of the bone marrow 2009 33(7): 772-7.
[http://dx.doi.org/10.1016/j.cellbi.2009.04.023]
[71]
Ryu KHJIjosc. Liver stem cells derived from the bone marrow and umbilical cord blood 2009 2(2): 97.
[72]
Haseltine WA. The emergence of regenerative medicine: a new field and a new society e-biomed: the journal of regenerative medicine 2001 2: p. (4)17-23.
[73]
Mironov V, Visconti RP, Markwald RR. What is regenerative medicine? Emergence of applied stem cell and developmental biology. Expert Opin Biol Ther 2004; 4(6): 773-81.
[http://dx.doi.org/10.1517/14712598.4.6.773] [PMID: 15174961]
[74]
Kaiser LR. The future of multihospital systems. Top Health Care Financ 1992; 18(4): 32-45.
[PMID: 1631884]
[75]
Forraz N, McGuckin CP. The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Prolif 2011; 44(s1)(Suppl. 1): 60-9.
[http://dx.doi.org/10.1111/j.1365-2184.2010.00729.x] [PMID: 21481046]
[76]
Halbrecht J. Transfusion with placental blood. Lancet 1939; 233(6022): 202-3.
[http://dx.doi.org/10.1016/S0140-6736(00)60078-8]
[77]
Halbrecht J. Fresh and stored placental blood. Lancet 1939; 234(6068): 1263-5.
[http://dx.doi.org/10.1016/S0140-6736(00)74023-2]
[78]
Petersburg V. Hematopoietic Transplantation by Means of Fetal (Cord). Blood 1972.
[79]
Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 1989; 321(17): 1174-8.
[http://dx.doi.org/10.1056/NEJM198910263211707] [PMID: 2571931]
[80]
Rocha V, Gluckman E. Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. Br J Haematol 2009; 147(2): 262-74.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07883.x] [PMID: 19796275]
[81]
Hayani A, Lampeter E, Viswanatha D, Morgan D, Salvi SN. First report of autologous cord blood transplantation in the treatment of a child with leukemia. Pediatrics 2007; 119(1): e296-300.
[http://dx.doi.org/10.1542/peds.2006-1009] [PMID: 17200253]
[82]
Wagner JE, Kernan NA, Steinbuch M, Broxmeyer HE, Gluckman E. Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. Lancet 1995; 346(8969): 214-9.
[http://dx.doi.org/10.1016/S0140-6736(95)91268-1] [PMID: 7616801]
[83]
Iafolla MA, Tay J, Allan DS. Transplantation of umbilical cord blood-derived cells for novel indications in regenerative therapy or immune modulation: a scoping review of clinical studies. Biol Blood Marrow Transplant 2014; 20(1): 20-5.
[http://dx.doi.org/10.1016/j.bbmt.2013.09.010] [PMID: 24067504]
[84]
Ilic D, Miere C, Lazic E. Umbilical cord blood stem cells: clinical trials in non-hematological disorders. Br Med Bull 2012; 102(1): 43-57.
[http://dx.doi.org/10.1093/bmb/lds008] [PMID: 22544780]
[85]
Jiao Y, Li X-y, Liu J. A New Approach to Cerebral Palsy Treatment: Discussion of the Effective Components of Umbilical Cord Blood and its Mechanisms of Action. Cell Transplant 2018.0963689718809658.
[PMID: 30384766]
[86]
McDonald CA, Fahey MC, Jenkin G, Miller SL. Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options. Pediatr Res 2018; 83(1-2): 333-44.
[http://dx.doi.org/10.1038/pr.2017.236] [PMID: 28937975]
[87]
Ali H, Jurga M, Kurgonaite K, Forraz N, McGuckin C. Defined serum-free culturing conditions for neural tissue engineering of human cord blood stem cells. Acta Neurobiol Exp (Warsz) 2009; 69(1): 12-23.
[PMID: 19325637]
[88]
Min K, Song J, Kang JY, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells 2013; 31(3): 581-91.
[http://dx.doi.org/10.1002/stem.1304] [PMID: 23281216]
[89]
Sun L, Wang D, Liang J, et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 2010; 62(8): 2467-75.
[http://dx.doi.org/10.1002/art.27548] [PMID: 20506343]
[90]
Haller MJ, Viener H-L, Wasserfall C, Brusko T, Atkinson MA, Schatz DA. Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol 2008; 36(6): 710-5.
[http://dx.doi.org/10.1016/j.exphem.2008.01.009] [PMID: 18358588]
[91]
Haller MJ, Wasserfall CH, McGrail KM, et al. Autologous umbilical cord blood transfusion in very young children with type 1 diabetes. Diabetes Care 2009; 32(11): 2041-6.
[http://dx.doi.org/10.2337/dc09-0967] [PMID: 19875605]
[92]
Reddi AS, Kuppasani K, Ende N. Human umbilical cord blood as an emerging stem cell therapy for diabetes mellitus. Curr Stem Cell Res Ther 2010; 5(4): 356-61.
[http://dx.doi.org/10.2174/157488810793351668] [PMID: 20528762]
[93]
Prasad VK, Kurtzberg J. Cord blood and bone marrow transplantation in inherited metabolic diseases: scientific basis, current status and future directions. Br J Haematol 2010; 148(3): 356-72.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07974.x] [PMID: 19919654]
[94]
Tolar J, Ishida-Yamamoto A, Riddle M, et al. Amelioration of epidermolysis bullosa by transfer of wild-type bone marrow cells. Blood 2009; 113(5): 1167-74.
[http://dx.doi.org/10.1182/blood-2008-06-161299] [PMID: 18955559]
[95]
Basford C, Forraz N, Habibollah S, Hanger K, McGuckin C. The cord blood separation league table: a comparison of the major clinical grade harvesting techniques for cord blood stem cells. Int J Stem Cells 2010; 3(1): 32-45.
[http://dx.doi.org/10.15283/ijsc.2010.3.1.32] [PMID: 24855539]
[96]
McGuckin CP, Pearce D, Forraz N, Tooze JA, Watt SM, Pettengell R. Multiparametric analysis of immature cell populations in umbilical cord blood and bone marrow. Eur J Haematol 2003; 71(5): 341-50.
[http://dx.doi.org/10.1034/j.1600-0609.2003.00153.x] [PMID: 14667197]
[97]
Ende N, Chen R. Parkinson’s disease mice and human umbilical cord blood. J Med 2002; 33(1-4): 173-80.
[PMID: 12939116]
[98]
Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC. Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann N Y Acad Sci 2005; 1049(1): 84-96.
[http://dx.doi.org/10.1196/annals.1334.009] [PMID: 15965109]
[99]
Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke 2007; 38(2)(Suppl.): 817-26.
[http://dx.doi.org/10.1161/01.STR.0000247888.25985.62] [PMID: 17261746]
[100]
Borlongan CV, Hadman M, Sanberg CD, Sanberg PR. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 2004; 35(10): 2385-9.
[http://dx.doi.org/10.1161/01.STR.0000141680.49960.d7] [PMID: 15345799]
[101]
Saporta S, Kim J-J, Willing AE, Fu ES, Davis CD, Sanberg PR. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 2003; 12(3): 271-8.
[http://dx.doi.org/10.1089/152581603322023007] [PMID: 12857368]
[102]
Garbuzova-Davis S, Willing AE, Zigova T, et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res 2003; 12(3): 255-70.
[http://dx.doi.org/10.1089/152581603322022990] [PMID: 12857367]
[103]
Kuh S-U, Cho Y-E, Yoon D-H, Kim K-N, Ha Y. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir (Wien) 2005; 147(9): 985-92.
[http://dx.doi.org/10.1007/s00701-005-0538-y] [PMID: 16010451]
[104]
Rogers I, Yamanaka N, Bielecki R, et al. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Exp Cell Res 2007; 313(9): 1839-52.
[http://dx.doi.org/10.1016/j.yexcr.2007.02.029] [PMID: 17433293]
[105]
Jang YK, Park JJ, Lee MC, et al. Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 2004; 75(4): 573-84.
[http://dx.doi.org/10.1002/jnr.10789] [PMID: 14743441]
[106]
Buzańska L, Jurga M, Stachowiak EK, Stachowiak MK, Domańska-Janik K. Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev 2006; 15(3): 391-406.
[http://dx.doi.org/10.1089/scd.2006.15.391] [PMID: 16846376]
[107]
Wang F-S, Yang KD, Wang C-J, et al. Shockwave stimulates oxygen radical-mediated osteogenesis of the mesenchymal cells from human umbilical cord blood. J Bone Miner Res 2004; 19(6): 973-82.
[http://dx.doi.org/10.1359/JBMR.040121] [PMID: 15125794]
[108]
Harris DT, Rogers I. Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Curr Stem Cell Res Ther 2007; 2(4): 301-9.
[http://dx.doi.org/10.2174/157488807782793790] [PMID: 18220914]
[109]
Szivek J, Wiley D, Cox L, Harris D, Margolis D, Grana W. Eds. Stem cells grown in dynamic culture on micropatterned surfaces can be used to engineer cartilage like tissue. Orthopaedic Research Society Meeting. San Diego, CA. 2006.
[110]
Germain L, Auger FA, Grandbois E, et al. Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology 1999; 67(3): 140-7.
[http://dx.doi.org/10.1159/000028064] [PMID: 10394135]
[111]
Germain L, Carrier P, Auger FA, Salesse C, Guérin SL. Can we produce a human corneal equivalent by tissue engineering? Prog Retin Eye Res 2000; 19(5): 497-527.
[http://dx.doi.org/10.1016/S1350-9462(00)00005-7] [PMID: 10925241]
[112]
Nichols J, He X, Harris D. Differentiation of cord blood stem cells into corneal epithelium. Invest Ophthalmol Vis Sci 2005; 46(13): 4772.
[113]
Harris DT, He X, Badowski M, Nichols JC. Regenerative medicine of the eye: a short review Stem cell repair & regeneration 2008 3: p. 211-25.
[http://dx.doi.org/10.1142/9781860949814_0012]
[114]
Valbonesi M, Giannini G, Migliori F, Dalla Costa R, Dejana AM. Cord blood (CB) stem cells for wound repair. Preliminary report of 2 cases. Transfus Apheresis Sci 2004; 30(2): 153-6.
[http://dx.doi.org/10.1016/j.transci.2003.11.006] [PMID: 15062755]
[115]
Tomonari A, Tojo A, Takahashi T, et al. Resolution of Behçet’s disease after HLA-mismatched unrelated cord blood transplantation for myelodysplastic syndrome. Ann Hematol 2004; 83(7): 464-6.
[http://dx.doi.org/10.1007/s00277-003-0819-6] [PMID: 14652696]
[116]
Ichim TE, Solano F, Glenn E, et al. Stem cell therapy for autism. J Transl Med 2007; 5(1): 30.
[http://dx.doi.org/10.1186/1479-5876-5-30] [PMID: 17597540]
[117]
Zhao Y, Jiang Z, Zhao T, et al. Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial. BMC Med 2013; 11(1): 160.
[http://dx.doi.org/10.1186/1741-7015-11-160] [PMID: 23837842]
[118]
Cheng H, Liu X, Hua R, et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med 2014; 12(1): 253.
[http://dx.doi.org/10.1186/s12967-014-0253-7] [PMID: 25209445]
[119]
Yin Y, Hao H, Cheng Y, et al. The homing of human umbilical cord-derived mesenchymal stem cells and the subsequent modulation of macrophage polarization in type 2 diabetic mice. Int Immunopharmacol 2018; 60: 235-45.
[http://dx.doi.org/10.1016/j.intimp.2018.04.051] [PMID: 29778021]
[120]
Wang S, Cheng H, Dai G, et al. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res 2013; 1532: 76-84.
[http://dx.doi.org/10.1016/j.brainres.2013.08.001] [PMID: 23942181]
[121]
Mukai T, Tojo A, Nagamura-Inoue T. Mesenchymal stromal cells as a potential therapeutic for neurological disorders Regenerative therapy 2018 9: 32-7.
[http://dx.doi.org/10.1016/j.reth.2018.08.001]
[122]
Huang L, Zhang C, Gu J, et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transplant 2018; 27(2): 325-34.
[http://dx.doi.org/10.1177/0963689717729379] [PMID: 29637820]
[123]
Wang X, Hu H, Hua R, et al. Effect of umbilical cord mesenchymal stromal cells on motor functions of identical twins with cerebral palsy: pilot study on the correlation of efficacy and hereditary factors. Cytotherapy 2015; 17(2): 224-31.
[http://dx.doi.org/10.1016/j.jcyt.2014.09.010] [PMID: 25593078]
[124]
Ahn SY, Chang YS, Sung DK, Sung SI, Park WS. Hypothermia broadens the therapeutic time window of mesenchymal stem cell transplantation for severe neonatal hypoxic ischemic encephalopathy. Sci Rep 2018; 8(1): 7665.
[http://dx.doi.org/10.1038/s41598-018-25902-x] [PMID: 29769612]
[125]
Celikkan FT, Mungan C, Sucu M, et al. Optimizing the transport and storage conditions of current Good Manufacturing Practice -grade human umbilical cord mesenchymal stromal cells for transplantation (HUC-HEART Trial). Cytotherapy 2019; 21(1): 64-75.
[http://dx.doi.org/10.1016/j.jcyt.2018.10.010] [PMID: 30455106]
[126]
Jin J-L, Liu Z, Lu Z-J, et al. Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res 2013; 10(1): 11-20.
[http://dx.doi.org/10.2174/156720213804805936] [PMID: 23151076]
[127]
Kim N, Cho S-G. Clinical applications of mesenchymal stem cells. Korean J Intern Med (Korean Assoc Intern Med) 2013; 28(4): 387-402.
[http://dx.doi.org/10.3904/kjim.2013.28.4.387] [PMID: 23864795]
[128]
Mohamadnejad M, Alimoghaddam K, Mohyeddin-Bonab M, et al. Phase 1 trial of autologous bone marrow mesenchymal stem cell transplantation in patients with decompensated liver cirrhosis. Arch Iran Med 2007; 10(4): 459-66.
[PMID: 17903050]
[129]
Kharaziha P, Hellström PM, Noorinayer B, et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur J Gastroenterol Hepatol 2009; 21(10): 1199-205.
[http://dx.doi.org/10.1097/MEG.0b013e32832a1f6c] [PMID: 19455046]
[130]
Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr 2014; 164(5): 966-972.e6.
[http://dx.doi.org/10.1016/j.jpeds.2013.12.011]
[131]
Zhang Z, Fu J, Xu X, et al. Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients. AIDS 2013; 27(8): 1283-93.
[http://dx.doi.org/10.1097/QAD.0b013e32835fab77] [PMID: 23925377]
[132]
Wang L, Li J, Liu H, et al. Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J Gastroenterol Hepatol 2013; 28(S1)(Suppl. 1): 85-92.
[http://dx.doi.org/10.1111/jgh.12029] [PMID: 23855301]
[133]
Shi M, Zhang Z, Xu R, et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Transl Med 2012; 1(10): 725-31.
[http://dx.doi.org/10.5966/sctm.2012-0034] [PMID: 23197664]
[134]
Gao LR, Chen Y, Zhang NK, et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Med 2015; 13(1): 162.
[http://dx.doi.org/10.1186/s12916-015-0399-z] [PMID: 26162993]
[135]
Hong SH, Gang EJ, Jeong JA, et al. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 2005; 330(4): 1153-61.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.086] [PMID: 15823564]
[136]
Kim J-Y, Jeon HB, Yang YS, Oh W, Chang JW. Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells 2010; 2(2): 34-8.
[http://dx.doi.org/10.4252/wjsc.v2.i2.34] [PMID: 21607114]
[137]
Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 2009; 217(2): 282-98.
[http://dx.doi.org/10.1002/path.2453] [PMID: 18991329]
[138]
Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87(8): 1315-530.
[http://dx.doi.org/10.1007/s00204-013-1078-5] [PMID: 23974980]
[139]
Bhushan B, Walesky C, Manley M, et al. Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. Am J Pathol 2014; 184(11): 3013-25.
[http://dx.doi.org/10.1016/j.ajpath.2014.07.019] [PMID: 25193591]
[140]
McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 2013; 30(9): 2174-87.
[http://dx.doi.org/10.1007/s11095-013-1007-6] [PMID: 23462933]
[141]
Adamson GM, Harman AW. Oxidative stress in cultured hepatocytes exposed to acetaminophen. Biochem Pharmacol 1993; 45(11): 2289-94.
[http://dx.doi.org/10.1016/0006-2952(93)90201-7] [PMID: 8517869]
[142]
Saito C, Lemasters JJ, Jaeschke H. c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 2010; 246(1-2): 8-17.
[http://dx.doi.org/10.1016/j.taap.2010.04.015] [PMID: 20423716]
[143]
Saito C, Zwingmann C, Jaeschke H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 2010; 51(1): 246-54.
[http://dx.doi.org/10.1002/hep.23267] [PMID: 19821517]
[144]
Kon K, Ikejima K, Okumura K, et al. Role of apoptosis in acetaminophen hepatotoxicity. J Gastroenterol Hepatol 2007; 22(s1)(Suppl. 1): S49-52.
[http://dx.doi.org/10.1111/j.1440-1746.2007.04962.x] [PMID: 17567465]
[145]
Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA. Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther 2005; 312(2): 509-16.
[http://dx.doi.org/10.1124/jpet.104.075945] [PMID: 15466245]
[146]
Bajt ML, Farhood A, Lemasters JJ, Jaeschke H. Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther 2008; 324(1): 8-14.
[http://dx.doi.org/10.1124/jpet.107.129445] [PMID: 17906064]
[147]
Cover C, Mansouri A, Knight TR, et al. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther 2005; 315(2): 879-87.
[http://dx.doi.org/10.1124/jpet.105.088898] [PMID: 16081675]
[148]
Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012; 44(1): 88-106.
[http://dx.doi.org/10.3109/03602532.2011.602688] [PMID: 22229890]
[149]
Williams CD, Koerner MR, Lampe JN, Farhood A, Jaeschke H. Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation. Toxicol Appl Pharmacol 2011; 257(3): 449-58.
[http://dx.doi.org/10.1016/j.taap.2011.10.006] [PMID: 22023962]
[150]
Harrill AH, Ross PK, Gatti DM, Threadgill DW, Rusyn I. Population-based discovery of toxicogenomics biomarkers for hepatotoxicity using a laboratory strain diversity panel. Toxicol Sci 2009; 110(1): 235-43.
[http://dx.doi.org/10.1093/toxsci/kfp096] [PMID: 19420014]
[151]
Jaeschke H, Fisher MA, Lawson JA, Simmons CA, Farhood A, Jones DA. Activation of caspase 3 (CPP32)-like proteases is essential for TNF-α-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol 1998; 160(7): 3480-6.
[PMID: 9531309]
[152]
Leist M, Gantner F, Jilg S, Wendel A. Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J Immunol 1995; 154(3): 1307-16.
[PMID: 7822799]
[153]
Gujral JS, Hinson JA, Farhood A, Jaeschke H. NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia. Am J Physiol Gastrointest Liver Physiol 2004; 287(1): G243-52.
[http://dx.doi.org/10.1152/ajpgi.00287.2003] [PMID: 15044177]
[154]
Bajt ML, Lawson JA, Vonderfecht SL, Gujral JS, Jaeschke H. Protection against Fas receptor-mediated apoptosis in hepatocytes and nonparenchymal cells by a caspase-8 inhibitor in vivo: evidence for a postmitochondrial processing of caspase-8. Toxicol Sci 2000; 58(1): 109-17.
[http://dx.doi.org/10.1093/toxsci/58.1.109] [PMID: 11053547]
[155]
Ogasawara J, Watanabe-Fukunaga R, Adachi M, et al. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364(6440): 806-9.
[http://dx.doi.org/10.1038/364806a0] [PMID: 7689176]
[156]
Schüngel S, Buitrago-Molina L, Nalapareddy P, et al. The strength of the Fas ligand signal determines whether hepatocytes act as type-1 or type-2 cells in murine livers Zeitschrift für Gastroenterologie 2010 48(01): P4_44.
[http://dx.doi.org/10.1055/s-0029-1246536]
[157]
Wang H-X, Liu M, Weng S-Y, et al. Immune mechanisms of Concanavalin A model of autoimmune hepatitis. World J Gastroenterol 2012; 18(2): 119-25.
[http://dx.doi.org/10.3748/wjg.v18.i2.119] [PMID: 22253517]
[158]
Tsutsui H, Nishiguchi S. Importance of Kupffer cells in the development of acute liver injuries in mice. Int J Mol Sci 2014; 15(5): 7711-30.
[http://dx.doi.org/10.3390/ijms15057711] [PMID: 24802875]
[159]
Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 1992; 90(1): 196-203.
[http://dx.doi.org/10.1172/JCI115836] [PMID: 1634608]
[160]
Liu Y, Meyer C, Xu C, et al. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol 2013; 304(5): G449-68.
[http://dx.doi.org/10.1152/ajpgi.00199.2012] [PMID: 23275613]
[161]
Ke P-Y. Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. Int J Mol Sci 2019; 20(2): 300.
[http://dx.doi.org/10.3390/ijms20020300] [PMID: 30642133]
[162]
Bubnov RV, Drahulian MV, Buchek PV, Gulko TP. High regenerative capacity of the liver and irreversible injury of male reproductive system in carbon tetrachloride-induced liver fibrosis rat model. EPMA J 2017; 9(1): 59-75.
[http://dx.doi.org/10.1007/s13167-017-0115-5] [PMID: 29515688]
[163]
Callegari E, Domenicali M, Shankaraiah RC, D’Abundo L, Guerriero P, Giannone F, et al. microRNA-based prophylaxis in a mouse model of cirrhosis and liver cancer. Mol Ther Nucleic Acids 2018.
[PMID: 30641476]
[164]
Calès P, Boursier J, Chaigneau J, Oberti F, Rousselet M-C. Treatment of liver fibrosis: clinical aspects. Gastroenterol Clin Biol 2009; 33(10-11): 958-66.
[http://dx.doi.org/10.1016/j.gcb.2009.07.020] [PMID: 19717256]
[165]
Polson J, Lee WM. American Association for the Study of Liver Disease. AASLD position paper: the management of acute liver failure. Hepatology 2005; 41(5): 1179-97.
[http://dx.doi.org/10.1002/hep.20703] [PMID: 15841455]
[166]
Ostapowicz G, Fontana RJ, Schiødt FV, et al. U.S. Acute Liver Failure Study Group. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 2002; 137(12): 947-54.
[http://dx.doi.org/10.7326/0003-4819-137-12-200212170-00007] [PMID: 12484709]
[167]
Ostapowicz G, Lee WM. Acute hepatic failure: a Western perspective. J Gastroenterol Hepatol 2000; 15(5): 480-8.
[http://dx.doi.org/10.1046/j.1440-1746.2000.02074.x] [PMID: 10847432]
[168]
Riordan SM, Williams R. Eds Perspectives on liver failure: past and future Seminars in liver disease Thieme Medical Publishers 2008.
[169]
Oertel M, Menthena A, Chen YQ, Teisner B, Jensen CH, Shafritz DA. Purification of fetal liver stem/progenitor cells containing all the repopulation potential for normal adult rat liver. Gastroenterology 2008; 134(3): 823-32.
[http://dx.doi.org/10.1053/j.gastro.2008.01.007] [PMID: 18262526]
[170]
Elchaninov AV, Bolshakova GB. Dynamics of hepatocyte proliferation in regenerating fetal rat liver. Bull Exp Biol Med 2011; 151(3): 374-7.
[http://dx.doi.org/10.1007/s10517-011-1334-8] [PMID: 22451891]
[171]
Oyagi S, Hirose M, Kojima M, et al. Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol 2006; 44(4): 742-8.
[http://dx.doi.org/10.1016/j.jhep.2005.10.026] [PMID: 16469408]
[172]
Esrefoglu M. Role of stem cells in repair of liver injury: experimental and clinical benefit of transferred stem cells on liver failure. World J Gastroenterol 2013; 19(40): 6757-73.
[http://dx.doi.org/10.3748/wjg.v19.i40.6757] [PMID: 24187451]
[173]
Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem cells international 2016; 2016
[http://dx.doi.org/10.1155/2016/6901286]
[174]
Gluckman E. Milestones in umbilical cord blood transplantation. Blood Rev 2011; 25(6): 255-9.
[http://dx.doi.org/10.1016/j.blre.2011.06.003] [PMID: 21764191]
[175]
Rocha V, Locatelli F. Searching for alternative hematopoietic stem cell donors for pediatric patients. Bone Marrow Transplant 2008; 41(2): 207-14.
[http://dx.doi.org/10.1038/sj.bmt.1705963] [PMID: 18084331]
[176]
Liao Y, Geyer MB, Yang AJ, Cairo MS. Cord blood transplantation and stem cell regenerative potential. Exp Hematol 2011; 39(4): 393-412.
[http://dx.doi.org/10.1016/j.exphem.2011.01.002] [PMID: 21238533]
[177]
Lee M, Jeong SY, Ha J, et al. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem Biophys Res Commun 2014; 446(4): 983-9.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.051] [PMID: 24657442]
[178]
Götherström C, Ringdén O, Tammik C, Zetterberg E, Westgren M, Le Blanc K. Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol 2004; 190(1): 239-45.
[http://dx.doi.org/10.1016/j.ajog.2003.07.022] [PMID: 14749666]
[179]
Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25(11): 2739-49.
[http://dx.doi.org/10.1634/stemcells.2007-0197] [PMID: 17656645]
[180]
Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008; 132(3): 344-62.
[http://dx.doi.org/10.1016/j.cell.2008.01.020] [PMID: 18267068]
[181]
Burra P, Arcidiacono D, Bizzaro D, et al. Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury. BMC Gastroenterol 2012; 12(1): 88.
[http://dx.doi.org/10.1186/1471-230X-12-88] [PMID: 22788801]
[182]
Di Campli C, Piscaglia AC, Pierelli L, et al. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 2004; 36(9): 603-13.
[http://dx.doi.org/10.1016/j.dld.2004.03.017] [PMID: 15460845]
[183]
Nonome K, Li X-K, Takahara T, et al. Human umbilical cord blood-derived cells differentiate into hepatocyte-like cells in the Fas-mediated liver injury model. Am J Physiol Gastrointest Liver Physiol 2005; 289(6): G1091-9.
[http://dx.doi.org/10.1152/ajpgi.00049.2005] [PMID: 16051923]
[184]
Walczak P, Chen N, Eve D, et al. Long-term cultured human umbilical cord neural-like cells transplanted into the striatum of NOD SCID mice. Brain Res Bull 2007; 74(1-3): 155-63.
[http://dx.doi.org/10.1016/j.brainresbull.2007.06.015] [PMID: 17683802]
[185]
Garbuzova-Davis S, Willing AE, Desjarlais T, Davis Sanberg C, Sanberg PR. Transplantation of human umbilical cord blood cells benefits an animal model of Sanfilippo syndrome type B. Stem Cells Dev 2005; 14(4): 384-94.
[http://dx.doi.org/10.1089/scd.2005.14.384] [PMID: 16137227]
[186]
Kozłowska H, Jabłonka J, Janowski M, Jurga M, Kossut M, Domańska-Janik K. Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct. Stem Cells Dev 2007; 16(3): 481-8.
[http://dx.doi.org/10.1089/scd.2007.9993] [PMID: 17610378]
[187]
Orive G, Hernández RM, Gascón AR, et al. Cell encapsulation: promise and progress. Nat Med 2003; 9(1): 104-7.
[http://dx.doi.org/10.1038/nm0103-104] [PMID: 12514721]
[188]
Orive G, Ponce S, Hernández RM, Gascón AR, Igartua M, Pedraz JL. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 2002; 23(18): 3825-31.
[http://dx.doi.org/10.1016/S0142-9612(02)00118-7] [PMID: 12164186]
[189]
Ma X, Vacek I, Sun A. Generation of alginate-poly-l-lysine-alginate (APA) biomicrocapsules: the relationship between the membrane strength and the reaction conditions. Artif Cells Blood Substit Immobil Biotechnol 1994; 22(1): 43-69.
[http://dx.doi.org/10.3109/10731199409117399] [PMID: 8055097]
[190]
Li S, Sun Z, Lv G, et al. Microencapsulated UCB cells repair hepatic injure by intraperitoneal transplantation. Cytotherapy 2009; 11(8): 1032-40.
[http://dx.doi.org/10.3109/14653240903121278] [PMID: 19929467]
[191]
Liu Z, Meng F, Li C, et al. Human umbilical cord mesenchymal stromal cells rescue mice from acetaminophen-induced acute liver failure. Cytotherapy 2014; 16(9): 1207-19.
[http://dx.doi.org/10.1016/j.jcyt.2014.05.018] [PMID: 25108650]
[192]
Delalat B, Pourfathollah AA, Soleimani M, et al. Isolation and ex vivo expansion of human umbilical cord blood-derived CD34+ stem cells and their cotransplantation with or without mesenchymal stem cells. Hematology 2009; 14(3): 125-32.
[http://dx.doi.org/10.1179/102453309X402250] [PMID: 19490756]
[193]
Akita T, Murohara T, Ikeda H, et al. Hypoxic preconditioning augments efficacy of human endothelial progenitor cells for therapeutic neovascularization. Lab Invest 2003; 83(1): 65-73.
[http://dx.doi.org/10.1097/01.LAB.0000050761.67879.E4] [PMID: 12533687]
[194]
Estrada JC, Albo C, Benguría A, et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ 2012; 19(5): 743-55.
[http://dx.doi.org/10.1038/cdd.2011.172] [PMID: 22139129]
[195]
Hu X, Yu SP, Fraser JL, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 2008; 135(4): 799-808.
[http://dx.doi.org/10.1016/j.jtcvs.2007.07.071] [PMID: 18374759]
[196]
Saller MM, Prall WC, Docheva D, et al. Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression. Biochem Biophys Res Commun 2012; 423(2): 379-85.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.134] [PMID: 22664105]
[197]
Zhang L, Yang J, Tian Y-M, Guo H, Zhang Y. Beneficial effects of hypoxic preconditioning on human umbilical cord mesenchymal stem cells. Chin J Physiol 2015; 58(5): 343-53.
[PMID: 26536910]
[198]
Rocha V, Wagner JE Jr, Sobocinski KA, et al. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. N Engl J Med 2000; 342(25): 1846-54.
[http://dx.doi.org/10.1056/NEJM200006223422501] [PMID: 10861319]
[199]
Eapen M, Rubinstein P, Zhang M-J, et al. Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 2007; 369(9577): 1947-54.
[http://dx.doi.org/10.1016/S0140-6736(07)60915-5] [PMID: 17560447]
[200]
Niehues T, Rocha V, Filipovich AH, et al. Factors affecting lymphocyte subset reconstitution after either related or unrelated cord blood transplantation in children -- a Eurocord analysis. Br J Haematol 2001; 114(1): 42-8.
[http://dx.doi.org/10.1046/j.1365-2141.2001.02900.x] [PMID: 11472343]
[201]
Komanduri KV, St John LS, de Lima M, et al. Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood 2007; 110(13): 4543-51.
[http://dx.doi.org/10.1182/blood-2007-05-092130] [PMID: 17671230]
[202]
Rocha V, Gluckman E. Eurocord and European Blood and Marrow Transplant Group. Clinical use of umbilical cord blood hematopoietic stem cells. Biol Blood Marrow Transplant 2006; 12(1)(Suppl. 1): 34-41.
[http://dx.doi.org/10.1016/j.bbmt.2005.09.006] [PMID: 16399582]
[203]
Jaroscak J, Goltry K, Smith A, et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood 2003; 101(12): 5061-7.
[http://dx.doi.org/10.1182/blood-2001-12-0290] [PMID: 12595310]
[204]
Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant 2007; 39(1): 11-23.
[http://dx.doi.org/10.1038/sj.bmt.1705538] [PMID: 17164824]
[205]
Bari S, Seah KKH, Poon Z, et al. Expansion and homing of umbilical cord blood hematopoietic stem and progenitor cells for clinical transplantation. Biol Blood Marrow Transplant 2015; 21(6): 1008-19.
[http://dx.doi.org/10.1016/j.bbmt.2014.12.022] [PMID: 25555449]
[206]
Frassoni F, Gualandi F, Podestà M, et al. Direct intrabone transplant of unrelated cord-blood cells in acute leukaemia: a phase I/II study. Lancet Oncol 2008; 9(9): 831-9.
[http://dx.doi.org/10.1016/S1470-2045(08)70180-3] [PMID: 18693069]
[207]
Barker JN, Weisdorf DJ, DeFor TE, et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 2005; 105(3): 1343-7.
[http://dx.doi.org/10.1182/blood-2004-07-2717] [PMID: 15466923]
[208]
Brunstein CG, Barker JN, Weisdorf DJ, et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood 2007; 110(8): 3064-70.
[http://dx.doi.org/10.1182/blood-2007-04-067215] [PMID: 17569820]
[209]
de Lima M, McMannis J, Gee A, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant 2008; 41(9): 771-8.
[http://dx.doi.org/10.1038/sj.bmt.1705979] [PMID: 18209724]
[210]
Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, Miller JS, Wagner JE. Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood transplantation after reduced-intensity conditioning. Blood 2003; 102(5): 1915-9.
[http://dx.doi.org/10.1182/blood-2002-11-3337] [PMID: 12738676]
[211]
Rocha V, Mohty M, Gluckman E, Rio B. Eurocord; Reduced-Intensity Conditioning Subcommittee of the Acute Leukaemia Working Party; French Society of Bone Marrow Transplantation and Cellular Therapy. Reduced-intensity conditioning regimens before unrelated cord blood transplantation in adults with acute leukaemia and other haematological malignancies. Curr Opin Oncol 2009; 21(Suppl. 1): S31-4.
[http://dx.doi.org/10.1097/01.cco.0000357473.58411.1b] [PMID: 19561411]
[212]
Ballen KK, Spitzer TR, Yeap BY, et al. Double unrelated reduced-intensity umbilical cord blood transplantation in adults. Biol Blood Marrow Transplant 2007; 13(1): 82-9.
[http://dx.doi.org/10.1016/j.bbmt.2006.08.041] [PMID: 17222756]
[213]
Bautista G, Cabrera JR, Regidor C, et al. Cord blood transplants supported by co-infusion of mobilized hematopoietic stem cells from a third-party donor. Bone Marrow Transplant 2009; 43(5): 365-73.
[http://dx.doi.org/10.1038/bmt.2008.329] [PMID: 18850019]
[214]
Fernández MN, Regidor C, Cabrera R, et al. Unrelated umbilical cord blood transplants in adults: Early recovery of neutrophils by supportive co-transplantation of a low number of highly purified peripheral blood CD34+ cells from an HLA-haploidentical donor. Exp Hematol 2003; 31(6): 535-44.
[http://dx.doi.org/10.1016/S0301-472X(03)00067-5] [PMID: 12829030]
[215]
Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant 2009; 43(6): 447-54.
[http://dx.doi.org/10.1038/bmt.2008.348] [PMID: 18955980]
[216]
Ballen KK, Koreth J, Chen Y-B, Dey BR, Spitzer TR. Selection of optimal alternative graft source: mismatched unrelated donor, umbilical cord blood, or haploidentical transplant. Blood 2012; 119(9): 1972-80.
[http://dx.doi.org/10.1182/blood-2011-11-354563] [PMID: 22210876]
[217]
Rocha V, Spellman S, Zhang M-J, et al. Eurocord-European Blood and Marrow Transplant Group and the Center for International Blood and Marrow Transplant Research. Effect of HLA-matching recipients to donor noninherited maternal antigens on outcomes after mismatched umbilical cord blood transplantation for hematologic malignancy. Biol Blood Marrow Transplant 2012; 18(12): 1890-6.
[http://dx.doi.org/10.1016/j.bbmt.2012.07.010] [PMID: 22814031]
[218]
Roura S, Pujal J-M, Gálvez-Montón C, Bayes-Genis A. The role and potential of umbilical cord blood in an era of new therapies: a review. Stem Cell Res Ther 2015; 6(1): 123.
[http://dx.doi.org/10.1186/s13287-015-0113-2] [PMID: 26133757]
[219]
Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals 2003 102: p. (10)3837-44.
[http://dx.doi.org/10.1182/blood-2003-04-1193]
[220]
Yu JM, Jun ES, Bae YC. Jung JSJSc, development Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo 2008 17: p. (3)463-74.
[221]
Zhu W, Xu W, Jiang R, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. 2006; 80: p. (3)267-74.
[http://dx.doi.org/10.1016/j.yexmp.2005.07.004]
[222]
Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma 2006 203: p. (5)1235-47.
[223]
Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model 2008 18(4): 500.
[http://dx.doi.org/10.1038/cr.2008.40]
[224]
El Asmar MF, Atta HM, Mahfouz S, et al. Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling 2011 30(1): 49.
[225]
Gao P, Ding Q, Wu Z, Jiang H, Fang ZJCl. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma 2010 290: p. (2)157-66.
[http://dx.doi.org/10.1016/j.canlet.2009.08.031]