Abstract
The catalytic activity of silver and its salts in various reactions leads to a vast
variety of organic compounds having significant applications in organic synthesis. This
review gives a comprehensive study on silver-catalyzed multi-component reactions that
attracted the interest of the scientific world through ecofriendly, atom-economic and mild
conditions. The silver-catalyzed multi-component synthesis of organic compounds
including aliphatic, aromatic and heterocycles are divided into subsections based on the
types of bond formed and covers literature up to 2019.
Keywords:
Silver, multi-component reaction (MCR), heterocycles, catalysis, C-C bond formation, C-N bond formation, C-O bond formation.
Graphical Abstract
[28]
Ruijter, E.; Orru, R.V.A. Multi-component reactions - opportunities for the
pharmaceutical industry. Spring, 2013, 10(1), e15-20.
[63]
Chen, W-W.; Bi, H-P.; Li, C-J. The first cobalt-catalyzed transformation of alkynyl C-H bond: aldehyde-alkyne-amine (A3) coupling. Synlett, 2010, 2010(3), 475-479.
[67]
(a)Abbiati, G.; Rossi, E. Silver and gold-catalyzed multicomponent reactions. Beilstein J. Org. Chem., 2014, 10, 481-513.
(b)Ugi, I. Recent progress in the chemistry of multi-component reactions. Pure Appl. Chem., 2001, 73, 187-191.
[78]
Pereshivko, O.P.; Peshkov, V.A.; Ermolatev, D.S.; Hove, S.V.; Hecke, K.V.; Meervelt, L.V.; Eycken, E.V.V. Diversity-oriented silver(I)-mediated synthesis of spiro-2-aminoimidazoles. Synthesis, 2011, 10, 1587-1594.
[100]
Wang, Q.; Xiong, W.; Deng, X.; Zhou, X.; Qi, C.; Hu, J. Silver-nanowire-catalyzed three-component coupling of carbon dioxide, amines and propargylic alcohols for the synthesis of β-oxopropyl carbamates. Asian J. Org. Chem., 2019, 8, 179-184.