Stem Cell Aging in Lifespan and Disease: A State-of-the-Art Review

Page: [362 - 378] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Aging is considered as inevitable changes at different levels of genome, cell, and organism. From the accumulation of DNA damages to imperfect protein homeostasis, altered cellular communication and exhaustion of stem cells, aging is a major risk factor for many prevalent diseases, such as cancer, cardiovascular disease, pulmonary disease, diabetes, and neurological disorders. The cells are dynamic systems, which, through a cycle of processes such as replication, growth, and death, could replenish the bodies’ organs and tissues, keeping an entire organism in optimal working order. In many different tissues, adult stem cells are behind these processes, replenishing dying cells to maintain normal tissue function and regenerating injured tissues. Therefore, adult stem cells play a vital role in preventing the aging of organs and tissues, and can delay aging. However, during aging, these cells also undergo some detrimental changes such as alterations in the microenvironment, a decline in the regenerative capacity, and loss of function. This review aimed to discuss age-related changes of stem cells in different tissues and cells, including skin, muscles, brain, heart, hair follicles, liver, and lung.

Keywords: Aging, stem cell, age-related diseases, senescence, neurodegeneration, tumor microenvironment.

[1]
Passarino G, De Rango F, Montesanto A. Human longevity: Genetics or Lifestyle? It takes two to tango. Immun Ageing 2016; 13(1): 12.
[http://dx.doi.org/10.1186/s12979-016-0066-z] [PMID: 27053941]
[2]
Borges RM. Plasticity comparisons between plants and animals: Concepts and mechanisms. Plant Signal Behav 2008; 3(6): 367-75.
[http://dx.doi.org/10.4161/psb.3.6.5823] [PMID: 19513224]
[3]
Moskalev AA, Shaposhnikov MV, Plyusnina EN, et al. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12(2): 661-84.
[http://dx.doi.org/10.1016/j.arr.2012.02.001] [PMID: 22353384]
[4]
Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 2011; 711(1-2): 193-201.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.12.016] [PMID: 21216256]
[5]
Aunan JR, Watson MM, Hagland HR, Søreide K. Molecular and biological hallmarks of ageing. Br J Surg 2016; 103(2): e29-46.
[http://dx.doi.org/10.1002/bjs.10053] [PMID: 26771470]
[6]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[7]
Xie Z, Jay KA, Smith DL, et al. Early telomerase inactivation accelerates aging independently of telomere length. Cell 2015; 160(5): 928-39.
[http://dx.doi.org/10.1016/j.cell.2015.02.002] [PMID: 25723167]
[8]
Marioni RE, Shah S, McRae AF, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 2015; 16(1): 25.
[http://dx.doi.org/10.1186/s13059-015-0584-6] [PMID: 25633388]
[9]
Koch CM, Wagner W. Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY) 2011; 3(10): 1018-27.
[http://dx.doi.org/10.18632/aging.100395] [PMID: 22067257]
[10]
Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem 2015; 84: 435-64.
[http://dx.doi.org/10.1146/annurev-biochem-060614-033955] [PMID: 25784053]
[11]
Munkácsy E, Rea SL. The paradox of mitochondrial dysfunction and extended longevity. Exp Gerontol 2014; 56: 221-33.
[http://dx.doi.org/10.1016/j.exger.2014.03.016] [PMID: 24699406]
[12]
Pourjafar M, Saidijam M, Mansouri K, et al. Cytoprotective effects of endothelin-1 on mesenchymal stem cells: an in vitro study. Clin Exp Pharmacol Physiol 2016; 43(8): 769-76.
[http://dx.doi.org/10.1111/1440-1681.12590] [PMID: 27161651]
[13]
Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics 2015; 7(1): 33.
[http://dx.doi.org/10.1186/s13148-015-0068-2] [PMID: 25861393]
[14]
Soares JP, Cortinhas A, Bento T, et al. Aging and DNA damage in humans: a meta‐analysis study. Aging (Albany NY) 2014; 6(6): 432-9.
[http://dx.doi.org/10.18632/aging.100667] [PMID: 25140379]
[15]
Freitas AA, de Magalhães JP. A review and appraisal of the DNA damage theory of ageing. Mutat Res 2011; 728(1-2): 12-22.
[http://dx.doi.org/10.1016/j.mrrev.2011.05.001] [PMID: 21600302]
[16]
Park JH, Yoo Y, Park YJ. Epigenetics: linking nutrition to molecular mechanisms in aging. Prev Nutr Food Sci 2017; 22(2): 81-9.
[PMID: 28702424]
[17]
Ben-Avraham D. Epigenetics of aging Longevity Genes. Springer 2015; pp. 179-91.
[18]
Gonzalo S. Epigenetic alterations in aging. J Appl Physiol 2010; 109(2): 586-97.
[http://dx.doi.org/10.1152/japplphysiol.00238.2010] [PMID: 20448029]
[19]
Dere E, Huse S, Hwang K, Sigman M, Boekelheide K. Intra- and inter-individual differences in human sperm DNA methylation. Andrology 2016; 4(5): 832-42.
[http://dx.doi.org/10.1111/andr.12170] [PMID: 27089098]
[20]
Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell 2015; 14(6): 924-32.
[http://dx.doi.org/10.1111/acel.12349] [PMID: 25913071]
[21]
Palmer JD, Soule BP, Simone BA, Zaorsky NG, Jin L, Simone NL. MicroRNA expression altered by diet: can food be medicinal? Ageing Res Rev 2014; 17: 16-24.
[http://dx.doi.org/10.1016/j.arr.2014.04.005] [PMID: 24833329]
[22]
Christensen BC, Houseman EA, Marsit CJ, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 2009; 5(8): e1000602
[http://dx.doi.org/10.1371/journal.pgen.1000602] [PMID: 19680444]
[23]
Ryu H-W, Lee DH, Won H-R, Kim KH, Seong YJ, Kwon SH. Influence of toxicologically relevant metals on human epigenetic regulation. Toxicol Res 2015; 31(1): 1-9.
[http://dx.doi.org/10.5487/TR.2015.31.1.001] [PMID: 25874027]
[24]
Steenaard RV, Ligthart S, Stolk L, et al. Tobacco smoking is associated with methylation of genes related to coronary artery disease. Clin Epigenetics 2015; 7(1): 54.
[http://dx.doi.org/10.1186/s13148-015-0088-y] [PMID: 26015811]
[25]
Jin C, Li J, Green CD, et al. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab 2011; 14(2): 161-72.
[http://dx.doi.org/10.1016/j.cmet.2011.07.001] [PMID: 21803287]
[26]
Wang Y, Chen T, Yan H, et al. Role of histone deacetylase inhibitors in the aging of human umbilical cord mesenchymal stem cells. J Cell Biochem 2013; 114(10): 2231-9.
[http://dx.doi.org/10.1002/jcb.24569] [PMID: 23564418]
[27]
Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 2012; 15(5): 483-94.
[http://dx.doi.org/10.1089/rej.2012.1324] [PMID: 23098078]
[28]
Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 2014; 15(11): 1139-53.
[http://dx.doi.org/10.15252/embr.201439245] [PMID: 25312810]
[29]
Koliada AK, Krasnenkov DS, Vaiserman AM. Telomeric aging: mitotic clock or stress indicator? Front Genet 2015; 6: 82.
[http://dx.doi.org/10.3389/fgene.2015.00082] [PMID: 25852738]
[30]
Hewitt G, Jurk D, Marques FD, et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 2012; 3: 708.
[http://dx.doi.org/10.1038/ncomms1708] [PMID: 22426229]
[31]
Maestroni L, Matmati S, Coulon S. Solving the telomere replication problem. Genes (Basel) 2017; 8(2): 55.
[http://dx.doi.org/10.3390/genes8020055] [PMID: 28146113]
[32]
Wang Y, Wang X, Flores ER, Yu J, Chang S. Dysfunctional telomeres induce p53-dependent and independent apoptosis to compromise cellular proliferation and inhibit tumor formation. Aging Cell 2016; 15(4): 646-60.
[http://dx.doi.org/10.1111/acel.12476] [PMID: 27113195]
[33]
Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med 2015; 21(12): 1406-15.
[http://dx.doi.org/10.1038/nm.4001] [PMID: 26646497]
[34]
Hartl FU. Cellular homeostasis and aging. Annu Rev Biochem 2016; 85: 1-4.
[http://dx.doi.org/10.1146/annurev-biochem-011116-110806] [PMID: 27050288]
[35]
Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 2014; 69(Suppl_1): S33-8.
[http://dx.doi.org/10.1093/gerona/glu049]
[36]
Martins R, Lithgow GJ, Link W. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 2016; 15(2): 196-207.
[http://dx.doi.org/10.1111/acel.12427] [PMID: 26643314]
[37]
Treaster SB, Ridgway ID, Richardson CA, Gaspar MB, Chaudhuri AR, Austad SN. Superior proteome stability in the longest lived animal. Age (Dordr) 2014; 36(3): 9597.
[http://dx.doi.org/10.1007/s11357-013-9597-9] [PMID: 24254744]
[38]
DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med 2003; 348(26): 2656-68.
[http://dx.doi.org/10.1056/NEJMra022567] [PMID: 12826641]
[39]
Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci 2008; 1(1): 10-21.
[http://dx.doi.org/10.2174/1874609810801010010] [PMID: 20021368]
[40]
Huang H, Manton KG. The role of oxidative damage in mitochondria during aging: a review. Front Biosci 2004; 9: 1100-17.
[http://dx.doi.org/10.2741/1298] [PMID: 14977532]
[41]
Loeb LA, Wallace DC, Martin GM. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc Natl Acad Sci USA 2005; 102(52): 18769-70.
[http://dx.doi.org/10.1073/pnas.0509776102] [PMID: 16365283]
[42]
Nakamura S, Takamura T, Matsuzawa-Nagata N, et al. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 2009; 284(22): 14809-18.
[http://dx.doi.org/10.1074/jbc.M901488200] [PMID: 19332540]
[43]
Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012; 2012
[http://dx.doi.org/10.1155/2012/646354]
[44]
Grünewald A, Voges L, Rakovic A, et al. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts. PLoS One 2010; 5(9): e12962
[http://dx.doi.org/10.1371/journal.pone.0012962] [PMID: 20885945]
[45]
Tanzadehpanah H, Asoodeh A, Chamani J. An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Res Int 2012; 49(1): 105-11.
[http://dx.doi.org/10.1016/j.foodres.2012.08.022]
[46]
Payne BA, Chinnery PF. Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochim Biophys Acta 2015; 1847(11): 1347-53.
[http://dx.doi.org/10.1016/j.bbabio.2015.05.022] [PMID: 26050973]
[47]
Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 2013; 153(4): 828-39.
[http://dx.doi.org/10.1016/j.cell.2013.04.015] [PMID: 23663781]
[48]
Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 2014; 344(6184): 649-52.
[http://dx.doi.org/10.1126/science.1251152] [PMID: 24797481]
[49]
Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 2014; 344(6184): 630-4.
[http://dx.doi.org/10.1126/science.1251141] [PMID: 24797482]
[50]
Jing H, Lee S. NF-κB in cellular senescence and cancer treatment. Mol Cells 2014; 37(3): 189-95.
[http://dx.doi.org/10.14348/molcells.2014.2353] [PMID: 24608805]
[51]
Landaw SA, Schrier SL, Mentzer WC. Approach to the adult patient with splenomegaly and other splenic disorders.UpToDate, Mentzer, WC (Ed), UpToDate, Waltham, MA.. 2011.
[52]
Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review. World J Stem Cells 2017; 9(8): 107-17.
[http://dx.doi.org/10.4252/wjsc.v9.i8.107] [PMID: 28928907]
[53]
Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol 2013; 13(5): 376-89.
[http://dx.doi.org/10.1038/nri3433] [PMID: 23584423]
[54]
Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 2014; 15(1): 37-50.
[http://dx.doi.org/10.1016/j.stem.2014.04.016] [PMID: 24813857]
[55]
Vas V, Senger K, Dörr K, Niebel A, Geiger H. Aging of the microenvironment influences clonality in hematopoiesis. PLoS One 2012; 7(8): e42080
[http://dx.doi.org/10.1371/journal.pone.0042080] [PMID: 22879906]
[56]
Bian A, Neyra JA, Zhan M, Hu MC. Klotho, stem cells, and aging. Clin Interv Aging 2015; 10: 1233-43.
[PMID: 26346243]
[57]
Jung Y, Brack AS. Cellular mechanisms of somatic stem cell aging Current topics in developmental biology 107. Elsevier 2014; pp. 405-38.
[58]
Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature 2010; 464(7288): 529-35.
[http://dx.doi.org/10.1038/nature08983] [PMID: 20336135]
[59]
Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005; 433(7027): 760-4.
[http://dx.doi.org/10.1038/nature03260] [PMID: 15716955]
[60]
Conboy IM, Rando TA. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches. Cell Cycle 2012; 11(12): 2260-7.
[http://dx.doi.org/10.4161/cc.20437] [PMID: 22617385]
[61]
Conboy MJ, Conboy IM, Rando TA. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell 2013; 12(3): 525-30.
[http://dx.doi.org/10.1111/acel.12065] [PMID: 23489470]
[62]
Blau HM, Cosgrove BD, Ho AT. The central role of muscle stem cells in regenerative failure with aging. Nat Med 2015; 21(8): 854-62.
[http://dx.doi.org/10.1038/nm.3918] [PMID: 26248268]
[63]
Stearns-Reider KM, D’Amore A, Beezhold K, et al. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 2017; 16(3): 518-28.
[http://dx.doi.org/10.1111/acel.12578] [PMID: 28371268]
[64]
Almeida CF, Fernandes SA, Ribeiro AF Junior, Keith Okamoto O, Vainzof . MJSci. Muscle satellite cells: exploring the basic biology to rule them. Stem Cells Int 2016; 2016: 1078686
[65]
García-Prat L, Muñoz-Cánoves P, Martinez-Vicente M. Dysfunctional autophagy is a driver of muscle stem cell functional decline with aging. Autophagy 2016; 12(3): 612-3.
[http://dx.doi.org/10.1080/15548627.2016.1143211] [PMID: 26890313]
[66]
Garg K, Boppart MD. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche. J Appl Physiol 2016; 121(5): 1053-8.
[http://dx.doi.org/10.1152/japplphysiol.00594.2016]
[67]
Carosio S, Berardinelli MG, Aucello M, Musarò A. Impact of ageing on muscle cell regeneration. Ageing Res Rev 2011; 10(1): 35-42.
[http://dx.doi.org/10.1016/j.arr.2009.08.001] [PMID: 19683075]
[68]
Fiacco E, Castagnetti F, Bianconi V, et al. Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 2016; 23(11): 1839-49.
[http://dx.doi.org/10.1038/cdd.2016.70]
[69]
Dinulovic I, Furrer R, Handschin C. Plasticity of the muscle stem cell microenvironment Stem Cell Microenvironments and Beyond. Springer 2017; pp. 141-69.
[http://dx.doi.org/10.1007/978-3-319-69194-7_8]
[70]
Stearns-Reider KM, D’Amore A, Beezhold K, et al. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 2017; 16(3): 518-28.
[http://dx.doi.org/10.1111/acel.12578]
[71]
Laumonier T, JJJoeo Menetrey. Muscle injuries and strategies for improving their repair. J Exp Orthop 2016; 3(1): 15.
[http://dx.doi.org/10.1186/s40634-016-0051-7] [PMID: 27447481]
[72]
Musarò AJAiB. The basis of muscle regeneration. Adv Biol 2014; 2014.
[73]
Pasut A, Chang NC, Gurriaran-Rodriguez U, et al. Notch signaling rescues loss of satellite cells lacking Pax7 and promotes brown adipogenic differentiation. Cell Rep 2016; 16(2): 333-43.
[http://dx.doi.org/10.1016/j.celrep.2016.06.001]
[74]
Brack AS, Muñoz-Cánoves PJSm. The ins and outs of muscle stem cell aging. Skelet Muscle 2015; 6(1): 1.
[http://dx.doi.org/10.1186/s13395-016-0072-z] [PMID: 26783424]
[75]
Fujimaki S, Hidaka R, Asashima M, Takemasa T, Kuwabara TJJoBC. Wnt protein-mediated satellite cell conversion in adult and aged mice following voluntary wheel running. J Biol Chem 2014; 289(11): 7399-412.
[http://dx.doi.org/10.1074/jbc.M113.539247] [PMID: 24482229]
[76]
Hwang AB, Brack AS. Muscle stem cells and aging Curr Top Dev Biol 126. Elsevier 2018; pp. 299-322.
[77]
Zhang Y, Jeffrey J, Dong F, et al. Repressed Wnt Signaling Accelerates the Aging Process in Mouse Eyes. J Ophthalmol 2019; 2019: 7604396
[http://dx.doi.org/10.1155/2019/7604396]
[78]
McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 2018; 19(6): 519-36.
[http://dx.doi.org/10.1007/s10522-018-9775-3] [PMID: 30259289]
[79]
Liu J, Saul D, Böker KO, Ernst J, Lehman W, Schilling AF. Current methods for skeletal muscle tissue repair and regeneration. BioMed Res Int 2018; 2018: 1984879
[http://dx.doi.org/10.1155/2018/1984879]
[80]
Castaldi A, Dodia RM, Orogo AM, et al. Decline in cellular function of aged mouse c-kit+ cardiac progenitor cells. J Physiol 2017; 595(19): 6249-62.
[http://dx.doi.org/10.1113/JP274775] [PMID: 28737214]
[81]
Goichberg P, Chang J, Liao R, Leri A. Cardiac stem cells: biology and clinical applications. Antioxidants redox signaling 2014; 21(14): 2002-17.
[http://dx.doi.org/10.1089/ars.2014.5875]
[82]
Cesselli D, Aleksova A, Mazzega E, Caragnano A, Beltrami AP. Cardiac stem cell aging and heart failure. Pharmacol Res 2018; 127: 26-32.
[http://dx.doi.org/10.1016/j.phrs.2017.01.013] [PMID: 28111264]
[83]
Nakamura T, Hosoyama T, Murakami J, et al. Age-related increase in Wnt inhibitor causes a senescence-like phenotype in human cardiac stem cells. Biochem Biophys Res Commun 2017; 487(3): 653-9.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.110] [PMID: 28435069]
[84]
Cianflone E, Torella M, Chimenti C, et al. Adult Cardiac Stem Cell Aging: A Reversible Stochastic Phenomenon? Oxid Med Cell Longev 2019; 2019
[http://dx.doi.org/10.1155/2019/5813147]
[85]
Jessen K. Mirsky RJTJop.. The repair Schwann cell and its function in regenerating nerves 2016; 594(13): 3521-1.
[86]
Bao L, Meng Q, Li Y, et al. C-kit positive cardiac stem cells and bone marrow–derived mesenchymal stem cells synergistically enhance angiogenesis and improve cardiac function after myocardial infarction in a paracrine manner. J Card Fail 2017; 23(5): 403-15.
[87]
Witman N, Sahara M. Cardiac progenitor cells in basic biology and regenerative medicine. Stem Cells Int 2018; 2018: 8283648
[http://dx.doi.org/10.1155/2018/8283648]
[88]
Aguilar-Sanchez C, Michael M, Pennings S. Cardiac Stem Cells in the Postnatal Heart: Lessons from Development. Stem Cells Int 2018; 2018: 1247857
[http://dx.doi.org/10.1155/2018/1247857] [PMID: 30034478]
[89]
Kretzschmar K, Post Y, Bannier-Hélaouët M, et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci USA 2018; 115(52): E12245-54.
[http://dx.doi.org/10.1073/pnas.1805829115] [PMID: 30530645]
[90]
Cesselli D, Beltrami AP, D’Aurizio F, et al. Effects of age and heart failure on human cardiac stem cell function. Am J Pathol 2011; 179(1): 349-66.
[http://dx.doi.org/10.1016/j.ajpath.2011.03.036] [PMID: 21703415]
[91]
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70(1): 68-141.
[http://dx.doi.org/10.1124/pr.117.013896] [PMID: 29247129]
[92]
Hariharan N, Quijada P, Mohsin S, et al. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. J Am Coll Cardiol 2015; 65(2): 133-47.
[http://dx.doi.org/10.1016/j.jacc.2014.09.086]
[93]
Caliò A, Zamò A, Ponzoni M, et al. Cellular senescence markers p16INK4a and p21CIP1/WAF are predictors of Hodgkin lymphoma outcome. Clin Cancer Res 2015; 21(22): 5164-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0508] [PMID: 26199387]
[94]
Pourjafar M, Saidijam M, Etemadi K, Najafi RJBl. All-trans retinoic acid enhances in vitro mesenchymal stem cells migration by targeting matrix metalloproteinases 2 and 9. Biotechnol Lett 2017; 39(8): 1263-8.
[http://dx.doi.org/10.1007/s10529-017-2350-1] [PMID: 28488074]
[95]
Ojeh N, Pastar I, Tomic-Canic M. Stojadinovic OJIjoms. Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci 2015; 16(10): 25476-501.
[http://dx.doi.org/10.3390/ijms161025476] [PMID: 26512657]
[96]
Samadi P, Sheykhhasan M. Khoshinani HMJAps. The use of platelet-rich plasma in aesthetic and regenerative medicine: a comprehensive review. Aesthetic Plast Surg 2019; 43(3): 803-14.
[http://dx.doi.org/10.1007/s00266-018-1293-9] [PMID: 30552470]
[97]
Rognoni E. Watt FMJTicb. Skin cell heterogeneity in development, wound healing, and cancer. Trends Cell Biol 2018; 28(9): 709-22.
[http://dx.doi.org/10.1016/j.tcb.2018.05.002] [PMID: 29807713]
[98]
Barnes L, Saurat J-H. Kaya GJPo. Senescent atrophic epidermis retains Lrig1+ stem cells and loses Wnt signaling, a phenotype shared with CD44KO mice. PLoS One 2017; 12(1): e0169452
[http://dx.doi.org/10.1371/journal.pone.0169452] [PMID: 28099467]
[99]
Kretzschmar K, Weber C, Driskell RR, Calonje E. Watt FMJCr. Compartmentalized epidermal activation of β-catenin differentially affects lineage reprogramming and underlies tumor heterogeneity. Cell Rep 2016; 14(2): 269-81.
[http://dx.doi.org/10.1016/j.celrep.2015.12.041] [PMID: 26771241]
[100]
Doles J, Storer M, Cozzuto L, Roma G, Keyes WMJG. Age-associated inflammation inhibits epidermal stem cell function. Genes Dev 2012; 26(19): 2144-53.
[http://dx.doi.org/10.1101/gad.192294.112] [PMID: 22972935]
[101]
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757.
[http://dx.doi.org/10.2147/CIA.S158513]
[102]
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter KJB. Oxidative stress in aging human skin. Biomolecules 2015; 5(2): 545-89.
[http://dx.doi.org/10.3390/biom5020545]
[103]
Thomas DR, Burkemper NM. Aging skin and wound healing. Clin Geriatr Med 2013; 29(2): xi.
[http://dx.doi.org/10.1016/j.cger.2013.02.001] [PMID: 23571044] [http://dx.doi.org/10.1371/journal.pone.0089834] [PMID: 24587067]
[104]
Beaver CM, Ahmed A, Masters JRJPo. Clonogenicity: holoclones and meroclones contain stem cells. PLoS One 2014; 9(2): 89834
[105]
LaPak KM, Burd CEJMCR. The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res 2014; 12(2): 167-83.
[106]
Jackson CJ, Tønseth KA, Utheim TP. Cultured epidermal stem cells in regenerative medicine. Stem Cell Res Ther 2017; 8(1): 155.
[http://dx.doi.org/10.1186/s13287-017-0587-1] [PMID: 28676094]
[107]
Lee JH, Fisher DE. Melanocyte stem cells as potential therapeutics in skin disorders. Expert Opin Biol Ther 2014; 14(11): 1569-79.
[http://dx.doi.org/10.1517/14712598.2014.935331] [PMID: 25104310]
[108]
Lin S, Nascimento EM, Gajera CR, et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 2018; 556(7700): 244.
[http://dx.doi.org/10.1038/s41586-018-0004-7]
[109]
Burton DG, Faragher RGJB. Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology 2018; 19(6): 447-59.
[http://dx.doi.org/10.1007/s10522-018-9763-7]
[110]
Iansante V, Mitry RR, Filippi C, Fitzpatrick E. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res 2018; 83(1-2): 232.
[111]
Tsolaki E. Stem cell-based regenerative opportunities for the liver: State of the art and beyond. World J Gastroenterol 2015; 21(43): 12334.
[http://dx.doi.org/10.3748/wjg.v21.i43.12334] [PMID: 26604641]
[112]
Dong Y, Lian X, Xu Y, et al. Hematopoietic stem/progenitor cell senescence is associated with altered expression profiles of cellular memory-involved gene. Biosci Rep 2018; 38(1): 20171589
[http://dx.doi.org/10.1042/BSR20171589] [PMID: 29363553]
[113]
Oh J, Lee YD. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med 2014; 20(8): 870.
[http://dx.doi.org/10.1038/nm.3651] [PMID: 25100532]
[114]
Zhong HH, Hu SJ, Yu B, et al. Apoptosis in the aging liver. Oncotarget 2017; 8(60): 102640-52.
[http://dx.doi.org/10.18632/oncotarget.21123] [PMID: 29254277]
[115]
Menthena A, Koehler CI, Sandhu JS. Yovchev MI, Hurston E, Shafritz DA, et al.. Activin A, p15INK4b signaling, and cell competition promote stem/progenitor cell repopulation of livers in aging rats. Gastroenterology 2011; 140(3): 1009-20.
[http://dx.doi.org/10.1053/j.gastro.2010.12.003] [PMID: 21147108]
[116]
Moreno-García A, Kun A, Calero O, Medina M. An overview of the role of lipofuscin in age-related neurodegeneration. Front Neurosci 2018; 12: 464.
[http://dx.doi.org/10.3389/fnins.2018.00464] [PMID: 30026686]
[117]
Murshid A, Eguchi T. Stress proteins in aging and life span. Int J Hyperthermia 2013; 29(5): 442-7.
[http://dx.doi.org/10.3109/02656736.2013.798873] [PMID: 23742046]
[118]
Han S-K, Sang Y, Rodrigues A, Wu M-F, Rodriguez PL, Wagner DJTPC. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 2012; 24(12): 4892-906.
[http://dx.doi.org/10.1105/tpc.112.105114] [PMID: 23209114]
[119]
Curcio CA, Johnson M, Huang J-D. Research e Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 2009; 28(6): 393-422.
[http://dx.doi.org/10.1016/j.preteyeres.2009.08.001] [PMID: 19698799]
[120]
Ji J, Ho BSY, Qian G, Xie XM, Bigliardi PL, Bigliardi-Qi M. Aging in hair follicle stem cells and niche microenvironment. J Dermatol 2017; 44(10): 1097-104.
[http://dx.doi.org/10.1111/1346-8138.13897] [PMID: 28593683]
[121]
Lay K, Kume T, Fuchs E. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc Natl Acad Sci USA 2016; 113(11): E1506-15.
[http://dx.doi.org/10.1073/pnas.1601569113] [PMID: 26912458]
[122]
Rompolas P, Greco V, Eds. Stem cell dynamics in the hair follicle niche Seminars in cell developmental biology. Elsevier 2014.
[123]
Gnedeva K, Vorotelyak E, Cimadamore F, et al. Derivation of hair-inducing cell from human pluripotent stem cells. PLoS One 2015; 10(1): e0116892
[http://dx.doi.org/10.1371/journal.pone.0116892] [PMID: 25607935]
[124]
Yang C-C, Cotsarelis G. Review of hair follicle dermal cells. J Dermatol Sci 2010; 57(1): 2-11.
[http://dx.doi.org/10.1016/j.jdermsci.2009.11.005] [PMID: 20022473]
[125]
Müller-Röver S, Handjiski B, van der Veen C, et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 2001; 117(1): 3-15.
[http://dx.doi.org/10.1046/j.0022-202x.2001.01377.x] [PMID: 11442744]
[126]
Keyes BE, Segal JP, Heller E, et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc Natl Acad Sci USA 2013; 110(51): E4950-9.
[http://dx.doi.org/10.1073/pnas.1320301110] [PMID: 24282298]
[127]
Chen C-C, Murray PJ, Jiang TX, et al. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4. J Invest Dermatol 2014; 134(8): 2086-96.
[http://dx.doi.org/10.1038/jid.2014.139] [PMID: 24618599]
[128]
Lim X, Nusse R. Wnt signaling in skin development, homeostasis, and disease. Cold Spring Harb Perspect Biol 2013; 5(2): a008029
[http://dx.doi.org/10.1101/cshperspect.a008029] [PMID: 23209129]
[129]
Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med 2014; 20(8): 847-56.
[http://dx.doi.org/10.1038/nm.3643] [PMID: 25100530]
[130]
Cao W, Li L, Kajiura S, et al. Aging hair follicles rejuvenated by transplantation to a young subcutaneous environment. Cell Cycle 2016; 15(8): 1093-8.
[http://dx.doi.org/10.1080/15384101.2016.1156269] [PMID: 26940664]
[131]
Garza LA, Yang C-C, Zhao T, et al. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J Clin Invest 2011; 121(2): 613-22.
[http://dx.doi.org/10.1172/JCI44478] [PMID: 21206086]
[132]
Ohyama M, Terunuma A, Tock CL, et al. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 2006; 116(1): 249-60.
[http://dx.doi.org/10.1172/JCI26043] [PMID: 16395407]
[133]
Mohammadi P, Youssef KK, Abbasalizadeh S, Baharvand H, Aghdami N. Human hair reconstruction: close, but yet so far. Stem Cells Dev 2016; 25(23): 1767-79.
[http://dx.doi.org/10.1089/scd.2016.0137] [PMID: 27649771]
[134]
Paus R. Therapeutic strategies for treating hair loss. Drug Discov Today Ther Strateg 2006; 3(1): 101-10.
[http://dx.doi.org/10.1016/j.ddstr.2006.03.004]
[135]
Ohyama M. Management of hair loss diseases. Zhonghua Pifuke Yixue Zazhi 2010; 28(4): 139-45.
[http://dx.doi.org/10.1016/S1027-8117(10)60032-8]
[136]
Alsantali A, Shapiro J. Androgens and hair loss. Curr Opin Endocrinol Diabetes Obes 2009; 16(3): 246-53.
[http://dx.doi.org/10.1097/MED.0b013e32832b100a] [PMID: 19396986]
[137]
Gentile P, Garcovich S, Bielli A, Scioli MG, Orlandi A, Cervelli V. The effect of platelet‐rich plasma in hair regrowth: A randomized placebo‐controlled trial. Stem Cells Transl Med 2015; 4(11): 1317-23.
[http://dx.doi.org/10.5966/sctm.2015-0107] [PMID: 26400925]
[138]
Gentile P, Cole JP, Cole MA, et al. Evaluation of not-activated and activated PRP in hair loss treatment: role of growth factor and cytokine concentrations obtained by different collection systems. Int J Mol Sci 2017; 18(2): 408.
[http://dx.doi.org/10.3390/ijms18020408] [PMID: 28216604]
[139]
Clavel C, Grisanti L, Zemla R, et al. Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors. Dev Cell 2012; 23(5): 981-94.
[http://dx.doi.org/10.1016/j.devcel.2012.10.013] [PMID: 23153495]
[140]
Yoo B-Y, Shin Y-H, Yoon H-H, Seo Y-K, Park J-K. Hair follicular cell/organ culture in tissue engineering and regenerative medicine. Biochem Eng J 2010; 48(3): 323-31.
[http://dx.doi.org/10.1016/j.bej.2009.09.008]
[141]
Sinclair R, Torkamani N, Jones L. Androgenetic alopecia: new insights into the pathogenesis and mechanism of hair loss. F1000Research 2015; 4(F1000 Faculty Rev)
[142]
Sinclair RD, Dawber RP. Androgenetic alopecia in men and women. Clin Dermatol 2001; 19(2): 167-78.
[http://dx.doi.org/10.1016/S0738-081X(00)00128-0] [PMID: 11397596]
[143]
Ohyama M, Veraitch O. Strategies to enhance epithelial-mesenchymal interactions for human hair follicle bioengineering. J Dermatol Sci 2013; 70(2): 78-87.
[http://dx.doi.org/10.1016/j.jdermsci.2013.02.004] [PMID: 23557720]
[144]
Passchier J. Quality of life issues in male pattern hair loss. Dermatology (Basel) 1998; 197(3): 217-8.
[http://dx.doi.org/10.1159/000017999] [PMID: 9812023]
[145]
Tobin DJ. Aging of the hair follicle pigmentation system. Int J Trichology 2009; 1(2): 83-93.
[http://dx.doi.org/10.4103/0974-7753.58550] [PMID: 20927229]
[146]
Pandhi D, Khanna D. Premature graying of hair. Indian J Dermatol Venereol Leprol 2013; 79(5): 641-53.
[http://dx.doi.org/10.4103/0378-6323.116733] [PMID: 23974581]
[147]
Cichorek M, Wachulska M, Stasiewicz A, Tymińska A. Skin melanocytes: biology and development. Advances in Dermatology and Allergology/Postepy Dermatologii I Alergologii 2013; 30(1): 30.
[http://dx.doi.org/10.5114/pdia.2013.33376]
[148]
Yoo MH, Rah YC, Park S, et al. Impact of Nicotine Exposure on Hair Cell Toxicity and Embryotoxicity During Zebrafish Development. Clin Exp Otorhinolaryngol 2018; 11(2): 109-17.
[http://dx.doi.org/10.21053/ceo.2017.00857] [PMID: 29307133]
[149]
Jo SK, Lee JY, Lee Y, Kim CD, Lee J-H, Lee YH. Three streams for the mechanism of hair graying. Ann Dermatol 2018; 30(4): 397-401.
[http://dx.doi.org/10.5021/ad.2018.30.4.397] [PMID: 30065578]
[150]
Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol 2014; 134(6): 1512-8.
[http://dx.doi.org/10.1038/jid.2014.65] [PMID: 24573173]
[151]
Kauser S, Westgate GE, Green MR, Tobin DJ. Human hair follicle and epidermal melanocytes exhibit striking differences in their aging profile which involves catalase. J Invest Dermatol 2011; 131(4): 979-82.
[http://dx.doi.org/10.1038/jid.2010.397]
[152]
Bak DH, Choi MJ, Kim SR, et al. Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth. Korean J Physiol Pharmacol 2018; 22(5): 555-66.
[http://dx.doi.org/10.4196/kjpp.2018.22.5.555] [PMID: 30181702]
[153]
Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kruszewska A, et al. Therapeutic Potential of Stem Cells in Follicle Regeneration. Stem Cells Int 2018; 2018: 1049641
[http://dx.doi.org/10.1155/2018/1049641] [PMID: 30154860]
[154]
Sharma G. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging 2006; 1(3): 253.
[155]
Navarro S, Driscoll BJG. Regeneration of the aging lung: a mini-review. Gerontology 2017; 63(3): 270-80.
[http://dx.doi.org/10.1159/000451081]
[156]
Lowery EM, Brubaker AL, Kuhlmann E. The aging lung. Clin Interv Aging 2013; 8: 1489.
[http://dx.doi.org/10.2147/CIA.S51152] [PMID: 24235821]
[157]
Scambler T, Holbrook J, Savic S, McDermott MF, Peckham DJI. Autoinflammatory disease in the lung. Immunology 2018; 154(4): 563-73.
[http://dx.doi.org/10.1111/imm.12937]
[158]
Rentzsch I, Santos CL, Huhle R, et al. Variable stretch reduces the pro-inflammatory response of alveolar epithelial cells. 2017; 12(8): e0182369
[http://dx.doi.org/10.1371/journal.pone.0182369]
[159]
Skloot GSJCigm. The effects of aging on lung structure and function. Clin Geriatr Med 2017; 33(4): 447-57.
[160]
Brandenberger C, Kling KM, Vital M, Christian MJA. The role of pulmonary and systemic immunosenescence in acute lung injury. Aging Dis 2018; 9(4): 553.
[http://dx.doi.org/10.14336/AD.2017.0902] [PMID: 30090646]
[161]
Roman MA, Rossiter HB, Casaburi R. Exercise, ageing and the lung. Eur Respir J 2016; 48(5): 1471-86.
[http://dx.doi.org/10.1183/13993003.00347-2016] [PMID: 27799391]
[162]
Bowdish DMJC. The Aging Lung: Is Lung Health Good Health for Older Adults? Chest 2019; 155(2): 391-400.
[http://dx.doi.org/10.1016/j.chest.2018.09.003] [PMID: 30253136]
[163]
Boehmer ED, Meehan MJ, Cutro BT, Kovacs EJ. Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech Ageing Dev 2005; 126(12): 1305-13.
[http://dx.doi.org/10.1016/j.mad.2005.07.009] [PMID: 16154177]
[164]
van Duin D, Mohanty S, Thomas V, et al. Age-associated defect in human TLR-1/2 function. Journal of immunology (Baltimore, Md : 1950) 2007; 178(2): 970-5.
[165]
Ito K, Barnes PJJC. COPD as a disease of accelerated lung aging. Chest 2009; 135(1): 173-80.
[http://dx.doi.org/10.1378/chest.08-1419]
[166]
Everaerts S, Lammertyn EJ, Martens DS, et al. The aging lung: tissue telomere shortening in health and disease. Respir Res 2018; 19(1): 95.
[http://dx.doi.org/10.1186/s12931-018-0794-z]
[167]
Brandenberger C, Mühlfeld CJC. Mechanisms of lung aging. Cell Tissue Res 2017; 367(3): 469-80.
[http://dx.doi.org/10.1007/s00441-016-2511-x] [PMID: 27743206]
[168]
Wang Y, Tang Z, Huang H, et al. Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. Proc Natl Acad Sci USA 2018; 115(10): 2407-12.
[http://dx.doi.org/10.1073/pnas.1719474115]
[169]
Olajuyin AM, Zhang X, Ji HLJCdd. Alveolar type 2 progenitor cells for lung injury repair. Cell Death Discov 2019; 5(1): 63.
[http://dx.doi.org/10.1038/s41420-019-0147-9] [PMID: 30774991]
[170]
Duncan GWJCigm. The aging brain and neurodegenerative diseases. Clin Geriatr Med 2011; 27(4): 629-44.
[http://dx.doi.org/10.1016/j.cger.2011.07.008] [PMID: 22062445]
[171]
Hung C-W, Chen Y-C, Hsieh W-L, Chiou S-H. C-LJArr Kao. Ageing and neurodegenerative diseases. Ageing Res Rev 2010; 9: 36-46.
[172]
Suzuki M, Svendsen CN. Combining growth factor and stem cell therapy for amyotrophic lateral sclerosis. Trends Neurosci 2008; 31(4): 192-8.
[http://dx.doi.org/10.1016/j.tins.2008.01.006] [PMID: 18329734]
[173]
Ingre C, Roos PM, Piehl F, Kamel F, Fang F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 2015; 7: 181-93.
[PMID: 25709501]
[174]
Chung CG, Lee H, Lee SBJC. Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 2018; 75(17): 3159-80.
[http://dx.doi.org/10.1007/s00018-018-2854-4] [PMID: 29947927]
[175]
Wyss-Coray TJN. Ageing, neurodegeneration and brain rejuvenation. Nature 2016; 539(7628): 180.
[http://dx.doi.org/10.1038/nature20411]
[176]
Von Linstow C, Severino M, Metaxas A, et al. Effect of aging and Alzheimer’s disease-like pathology on brain monoamines in mice. Neaurochem Int 2017; 108: 238-45.
[http://dx.doi.org/10.1016/j.neuint.2017.04.008]
[177]
Sitte HH, Pifl C, Rajput AH, et al. Dopamine and noradrenaline, but not serotonin, in the human claustrum are greatly reduced in patients with Parkinson’s disease: possible functional implications. Eur J Neurosci 2017; 45(1): 192-7.
[http://dx.doi.org/10.1111/ejn.13435] [PMID: 27741357]
[178]
Nandi A, Yan L-J, Jana CK, Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid Med Cell Longev 2019; 2019
[http://dx.doi.org/10.1155/2019/9613090]
[179]
Sweeney P, Park H, Baumann M, et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 2017; 6(1): 6.
[http://dx.doi.org/10.1186/s40035-017-0077-5]
[180]
Cuanalo-Contreras K, Mukherjee A, CJIjocb Soto. Role of protein misfolding and proteostasis deficiency in protein misfolding diseases and aging. Int J Cell Biol 2013; 2013: 638083
[http://dx.doi.org/10.1155/2013/638083] [PMID: 24348562]
[181]
Narciso L, Parlanti E, Racaniello M, et al. The response to oxidative DNA damage in neurons: mechanisms and disease. Neural Plast 2016; 2016: 3619274
[http://dx.doi.org/10.1155/2016/3619274]
[182]
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther 2018; 9(1): 63.
[http://dx.doi.org/10.1186/s13287-018-0791-7] [PMID: 29523213]
[183]
Turinetto V, Vitale E, Giachino C. Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. Int J Mol Sci 2016; 17(7): E1164
[http://dx.doi.org/10.3390/ijms17071164] [PMID: 27447618]
[184]
Mohammadian M, Abasi E, Akbarzadeh A. Mesenchymal stem cell-based gene therapy: A promising therapeutic strategy. Artif Cells Nanomed Biotechnol 2016; 44(5): 1206-11.
[PMID: 26148175]
[185]
Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci 2017; 18(9): E1852
[http://dx.doi.org/10.3390/ijms18091852] [PMID: 28841158]
[186]
Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 2016; 99: 62-8.
[http://dx.doi.org/10.1016/j.ymeth.2015.09.016] [PMID: 26384580]
[187]
Dermani FK, Amini R, Saidijam M, Pourjafar M, Saki S, Najafi R. Zerumbone inhibits epithelial-mesenchymal transition and cancer stem cells properties by inhibiting the β-catenin pathway through miR-200c. J Cell Physiol 2018; 233(12): 9538-47.
[http://dx.doi.org/10.1002/jcp.26874] [PMID: 29943808]
[188]
Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther 2016; 7(1): 125.
[http://dx.doi.org/10.1186/s13287-016-0363-7] [PMID: 27581859]
[189]
Eom YW, Shim KY, Baik SK. Mesenchymal stem cell therapy for liver fibrosis. Korean J Intern Med (Korean Assoc Intern Med) 2015; 30(5): 580-9.
[http://dx.doi.org/10.3904/kjim.2015.30.5.580] [PMID: 26354051]
[190]
Wong SP, Rowley JE, Redpath AN, Tilman JD, Fellous TG, Johnson JR. Pericytes, mesenchymal stem cells and their contributions to tissue repair. Pharmacol Ther 2015; 151: 107-20.
[http://dx.doi.org/10.1016/j.pharmthera.2015.03.006] [PMID: 25827580]
[191]
Lye KL, Nordin N, Vidyadaran S, Thilakavathy K. Mesenchymal stem cells: From stem cells to sarcomas. Cell Biol Int 2016; 40(6): 610-8.
[http://dx.doi.org/10.1002/cbin.10603] [PMID: 26992453]
[192]
Sart S, Agathos SN. Large-scale expansion and differentiation of mesenchymal stem cells in microcarrier-based stirred bioreactors Bioreactors in Stem Cell Biology. Springer 2015; pp. 87-102.
[193]
Wei X, Yang X, Han Z-p. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 2013; 34(6): 747-54.
[http://dx.doi.org/10.1038/aps.2013.50] [PMID: 23736003]
[194]
Miao X, Wu X, Shi W. Umbilical cord mesenchymal stem cells in neurological disorders: A clinical study. Indian J Biochem Biophys 2015; 52(2): 140-6.
[PMID: 26118125]
[195]
Momin EN, Mohyeldin A, Zaidi HA, Vela G, AJCscr quiñoneshinojosa. Mesenchymal stem cells: new approaches for the treatment of neurological diseases. Therapy 2010; 5(4): 326-44.
[http://dx.doi.org/10.2174/157488810793351631] [PMID: 20528757]
[196]
Song C-G, Zhang Y-Z, Wu H-N, et al. Stem cells: a promising candidate to treat neurological disorders. Neaural Regen Res 2018; 13(7): 1294.
[http://dx.doi.org/10.4103/1673-5374.235085] [PMID: 30028342]
[197]
Morigi M, Rota C, Remuzzi G. Mesenchymal stem cells in kidney repair Mesenchymal Stem Cells. Springer 2016; pp. 89-107.
[http://dx.doi.org/10.1007/978-1-4939-3584-0_5]
[198]
Lee S-J, Ryu M-O, Seo M-S, et al. Mesenchymal Stem Cells Contribute to Improvement of Renal Function in a Canine Kidney Injury Model. In Vivo 2017; 31(6): 1115-24.
[http://dx.doi.org/10.21873/invivo.11177] [PMID: 29102933]
[199]
Zhang Y, Li Y, Zhang L, Li J. Mesenchymal stem cells: potential application for the treatment of hepatic cirrhosis. Stem Cell Res Ther 2018; 9(1): 59.
[http://dx.doi.org/10.1186/s13287-018-0814-4] [PMID: 29523186]
[200]
Zhao L, Chen S, Shi X, Cao H. A pooled analysis of mesenchymal stem cell-based therapy for liver disease. Stem Cell Res Ther 2018; 9(1): 72.
[http://dx.doi.org/10.1186/s13287-018-0816-2] [PMID: 29562935]
[201]
Gazdic M, Arsenijevic A, Markovic BS, et al. Mesenchymal stem cell-dependent modulation of liver diseases. J Hepatol 2017; 13(9): 1109.
[http://dx.doi.org/10.7150/ijbs.20240]
[202]
Williams AR. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 2011; 109(8): 923-40.
[203]
Karantalis V. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res 2015; 116(8): 1413-30.
[PMID: 25858066]
[204]
Majka M, Sułkowski M, Badyra B. Concise review: mesenchymal stem cells in cardiovascular regeneration: emerging research directions and clinical applications. Stem Cells Transl Med 2017; 6(10): 1859-67.
[http://dx.doi.org/10.1002/sctm.16-0484] [PMID: 28836732]
[205]
Paschos NK, Sennett ML. Update on mesenchymal stem cell therapies for cartilage disorders. World J Orthop 2017; 8(12): 853.
[http://dx.doi.org/10.5312/wjo.v8.i12.853] [PMID: 29312843]
[206]
Oryan A, Kamali A, Moshiri A, Eslaminejad MBJCTO. Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs 2017; 204(2): 59-83.
[http://dx.doi.org/10.1159/000469704]
[207]
BJJoot Wang Lee WY-w. Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives. J Orthop Translat 2017; 9: 76-88.
[http://dx.doi.org/10.1016/j.jot.2017.03.005] [PMID: 29662802]
[208]
Akram KM, Samad S, Spiteri M, Forsyth NR. Mesenchymal stem cell therapy and lung diseases Mesenchymal Stem Cells-Basics and Clinical Application II. Springer 2012; pp. 105-29.
[http://dx.doi.org/10.1007/10_2012_140]
[209]
Inamdar AC, AAJElr Inamdar. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell. Exp Lung Res 2013; 39(8): 315-27.
[http://dx.doi.org/10.3109/01902148.2013.816803] [PMID: 23992090]
[210]
Antoniou KM, Karagiannis K, Tsitoura E, et al. Clinical applications of mesenchymal stem cells in chronic lung diseases. Biomed Rep 2018; 8(4): 314-8.
[http://dx.doi.org/10.3892/br.2018.1067]