α-Pyridinyl Alcohols, α,α’-Pyridine Diols, α-Bipyridinyl Alcohols, and α,α’-Bipyridine Diols as Structure Motifs Towards Important Organic Molecules and Transition Metal Complexes

Page: [344 - 366] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Background: The preparation and use of pyridinyl alcohols as ligands showed incredible increment in the past three decades. Important property of pyridinyl alcoholato ligands is their strong basicity, which is mainly due to the lack of resonance stabilization of the corresponding anion. This strongly basic anionic nature gives them high ability to make bridges between metal centers rather than to bind to only one metal center in a terminal fashion. They are needed as ligands due to their ability to interact with transition metals both covalently (with oxygen) and hemilabile coordination (through nitrogen).

Objective: The review focuses on the wide application of α-pyridinyl alcohols, α,α’-pyridine diols, α- bipyridinyl alcohols, and α,α’-bipyridine diols as structure motifs in the preparation of important organic molecules which is due to their strongly basic anionic nature.

Conclusion: It is clear from the review that in addition to their synthetic utility in the homogeneous and asymmetric catalytic reactions, the preparation of the crown ethers, cyclic and acyclic ethers, coordinated borates (boronic esters), pyridinyl-phosphine ligands, pyridinyl-phosphite ligands, and pyridinyl-phosphinite ligands is the other broad area of application of pyridinyl alcohols. In addition to the aforementioned applications they are used for modeling mode of action of enzymes and some therapeutic agents. Their strongly basic anionic nature gives them high ability to make bridges between metal centers rather than to bind to only one metal center in a terminal fashion in the synthesis of transition metal cluster complexes. Not least numbers of single molecule magnets that can be used as storage of high density information were the result of transition metal complexes of pyridinyl alcoholato ligands.

Keywords: Complex, crown ether, pyridinyl-phosphine ligand, pyridinyl-phosphite ligand, pyridinyl-phosphinite ligand, polyether, preparation.

Graphical Abstract

[1]
Hill, A.F. Organotransition Metal Chemistry; Royal Society of Chemistry: Cambridge, 2002.
[2]
Takemoto, M.; Achiwa, K. Synthesis of optically active α-phenylpyridylmethanols with baker’s yeast. Chem. Pharm. Bull. (Tokyo), 1994, 42(4), 802-805.
[http://dx.doi.org/10.1248/cpb.42.802] [PMID: 8020121]
[3]
Takemoto, M.; Tanaka, K. Synthesis of optically active α-phenylpyridylmethanols by Camellia sinensis cell culture. J. Mol. Catal., B Enzym., 2001, 15, 173-176.
[http://dx.doi.org/10.1016/S1381-1177(01)00021-2]
[4]
Frank, E.; Gearien, J.; Megahy, M.; Pokorny, C. Analgetic and anticonvulsant activity of some 2and 4-pyridyl ketones. J. Med. Chem., 1971, 14(6), 551-553.
[http://dx.doi.org/10.1021/jm00288a025] [PMID: 5091974]
[5]
Wishka, D.G.; Craber, D.R.; Seest, E.P.; Dolak, L.A.; Han, F.; Watt, W.; Morris, J. Stereoselective synthesis of furo [2, 3-c] pyridine pyrimidine thioethers, a new class of potent HIV-1 non-nucleoside reverse transcriptase inhibitors. J. Org. Chem., 1998, 63, 7851-7859.
[http://dx.doi.org/10.1021/jo9810359]
[6]
Kaneoya, M.; Yoshida, N.; Uchida, M Transesterification in the presence of hydrolases USPTO 4971909, 1990.
[7]
Wallace, J.S.; Baldwin, B.W.; Morrow, C.J. Separation of remote diol and triol stereoisomers by enzyme-catalyzed esterification in organic media or hydrolysis in aqueous media. J. Org. Chem., 1992, 57, 5231-5239.
[http://dx.doi.org/10.1021/jo00045a042]
[8]
Hegetschweiler, K.; Schmalle, H.; Streit, H.M.; Schneider, W. Synthesis and structure of a novel hexanuclear iron (III) complex containing six terminal and twelve bridging groups and one. mu. 6-oxo bridge. Inorg. Chem., 1990, 29, 3625-3627.
[http://dx.doi.org/10.1021/ic00343a066]
[9]
Rochon, F.D.; Melanso, R.; Kong, P-C. Synthesis and crystal structures of oxo pyridinemethanolate technetium (V) complexes. Inorg. Chim. Acta, 1997, 254, 303-307.
[http://dx.doi.org/10.1016/S0020-1693(96)05176-6]
[10]
Boskovic, C.; Wernsdorfer, W.; Folting, K.; Huffman, J.C.; Hendrickson, D.N.; Christou, G. Single-molecule magnets: novel Mn(8) and Mn(9) carboxylate clusters containing an unusual pentadentate ligand derived from pyridine-2,6-dimethanol. Inorg. Chem., 2002, 41(20), 5107-5118.
[http://dx.doi.org/10.1021/ic020217p] [PMID: 12354044]
[11]
Yoo, J.; Brechin, E.K.; Yamaguchi, A.; Nakano, M.; Huffman, J.C.; Maniero, A.L.; Brunel, L-C.; Awaga, K.; Ishimoto, H.; Christou, G.; Hendrickson, D.N. Single-molecule magnets: a new class of tetranuclear manganese magnets. Inorg. Chem., 2000, 39(16), 3615-3623.
[http://dx.doi.org/10.1021/ic000237w] [PMID: 11196824]
[12]
Yoo, J.; Yamaguchi, A.; Nakano, M.; Krzystek, J.; Streib, W.E.; Brunel, L.C.; Ishimoto, H.; Christou, G.; Hendrickson, D.N. Mixed-valence tetranuclear manganese single-molecule magnets. Inorg. Chem., 2001, 40(18), 4604-4616.
[http://dx.doi.org/10.1021/ic0012928] [PMID: 11511205]
[13]
Lehn, J.M. , 1995.
[14]
Chen, G-M.; Brown, H.C.; Ramachandran, P.V. Chiral Synthesis via Organoboranes. 46. An Efficient Preparation of Chiral Pyridino- and Thiopheno-18-crown-6 Ligands from Enantiomerically Pure C(2)-Symmetric Pyridine- and Thiophenediols(1). J. Org. Chem., 1999, 64(3), 721-725.
[http://dx.doi.org/10.1021/jo980899r] [PMID: 11674138]
[15]
Tsukube, H.; Shinoda, S.; Uenishi, J.; Hiraoka, T.; Imakoga, T.; Yonemitsu, O. Ag+-Specific Pyridine Podands: Effects of Ligand Geometry and Stereochemically Controlled Substitution on Cation Complexation and Transport Functions. J. Org. Chem., 1998, 63, 3884-3894.
[http://dx.doi.org/10.1021/jo9721148]
[16]
Tsukube, H. Crown Ethers and Analogous Compounds; Hiraoka, M., Ed.; Elsevier: New York, 1992, pp. 100-197.
[17]
Gokel, G.W.; Murillo, O. In Molecular Recognition: Receptors for Cationic Gursts, Comprehensive Supramolecular Chemistry; Pergamon Press: New York, 1996, Vol. 1, pp. 1-33.
[18]
Newcomb, M.; Gokel, G.W.; Cram, D.J. Pyridyl unit in host compounds. J. Am. Chem. Soc., 1974, 96, 6810-6811.
[http://dx.doi.org/10.1021/ja00828a071]
[19]
Newkome, G.R.; Kohli, D.K.; Fronczek, F. 2, 2′-Bipyridyl ‘crown ethers.’Synthesis and X-ray crystal structure of a cobalt (II) complex. J. Chem. Soc. Chem. Commun., 1980, 9-11
[http://dx.doi.org/10.1039/C39800000009]
[20]
Bradshaw, J.S.; Huszthy, P.; McDaniel, C.W.; Zhu, C.Y.; Dalley, N.K.; Izatt, R.M. Enantiomeric recognition of organic ammonium salts by chiral dialkyl-, dialkenyl-, and tetramethyl-substituted pyridino-18-crown-6 and tetramethyl substituted bispyridino-18-crown-6 ligands: comparison of temperaturedependent proton NMR and empirical force field techniques. J. Org. Chem., 1990, 55, 3129-3137.
[http://dx.doi.org/10.1021/jo00297a031]
[21]
Zarges, W.; Hall, J.; Lehn, J.M.; Bolm, C. Helicity Induction in Helicate Self‐Organisation from Chiral Tris (bipyridine) Ligand Strands. Helv. Chim. Acta, 1991, 74, 1843-1852.
[http://dx.doi.org/10.1002/hlca.19910740827]
[22]
Habata, Y.; Bradshaw, J.S.; Young, J.J.; Castle, S.L.; Huszthy, P.; Pyo, T.; Lee, M.L.; Izatt, R.M. New pyridino-18-crown-6 ligands containing two methyl, two tert-butyl, or two allyl substituents on chiral positions next to the pyridine ring. J. Org. Chem., 1996, 61, 8391-8396.
[http://dx.doi.org/10.1021/jo960474+]
[23]
Prakasha, T.K.; Chandrasekaran, A.; Day, R.O.; Holmes, R.R. Synthesis and Molecular Structures of Pyridine-Containing Large-Membered Cyclic Bis(alkoxy)silanes(1). Inorg. Chem., 1996, 35(15), 4342-4346.
[http://dx.doi.org/10.1021/ic960162p] [PMID: 11666649]
[24]
Gomez, E.; Santes, V.; de la Luz, V.; Farfan, N. Synthesis and structure of pentacoordinated monoorganosilane derivatives of pyridine ligands. J. Organomet. Chem., 2001, 622, 54-60.
[http://dx.doi.org/10.1016/S0022-328X(00)00824-X]
[25]
Rahm, F. Chiral Pyridine-Containing Ligands for Asymmetric Catalysis: Synthesis and Applications., 2003.
[26]
Perks, C.A.; Mill, A.J.; Constantine, G.; Harrison, K.G.; Gibson, J.A.B. A review of boron neutron capture therapy (BNCT) and the design and dosimetry of a high-intensity, 24 keV, neutron beam for BNCT research. Br. J. Radiol., 1988, 61(732), 1115-1126.
[http://dx.doi.org/10.1259/0007-1285-61-732-1115] [PMID: 3064858]
[27]
James, T.D.; Sandanayake, K.R.A.S.; Shinkai, S. Saccharide sensing with molecular receptors based on boronic acid. Angew. Chem. Int. Ed. Engl., 1996, 35, 1910-1922.
[http://dx.doi.org/10.1002/anie.199619101]
[28]
Farfan, N.; Contreras, R. Boron-11 nuclear magnetic resonance study of the reactions of 2-functionalized pyridines with borane–tetrahydrofuran and–dimethyl sulphide. Formation of borinic estes and N→ B bond energy differences in five-and six-membered ring borates. J. Chem. Soc., Perkin Trans., 1988, II, 1787-1791.
[http://dx.doi.org/10.1039/P29880001787]
[29]
Torres, L.A.; Perez, A.; Farfan, N.; Castillo, D.; Santillan, R.L. Rotating-bomb combustion calorimetry and the standard enthalpies of formation of two borinic esters. J. Chem. Thermodyn., 1994, 26, 337-343.
[http://dx.doi.org/10.1006/jcht.1994.1043]
[30]
Farfan, N.; Castillo, D.; Joseph-Nathan, P.; Contreras, R.; Szentpaly, L.V. Through-bond modulation of N→ B ring formation shown by NMR and X-ray diffraction studies of borate derivatives of pyridyl alcohols. J. Chem. Soc., Perkin Trans., 1992, II, 527-532.
[http://dx.doi.org/10.1039/P29920000527]
[31]
Hopfl, H.; Farfan, N. New macrocyclic oligoboronates. J. Organomet. Chem., 1997, 547, 71-77.
[http://dx.doi.org/10.1016/S0022-328X(97)00183-6]
[32]
Jiang, Q.; van Plew, D.; Murtuza, S.; Zhang, X. Synthesis of (1R, 1R′)-2, 6-bis [1-(diphenylphosphino) ethyl] pyridine and its application in asymmetric transfer hydrogenation. Tetrahedron Lett., 1996, 37, 797-800.
[http://dx.doi.org/10.1016/0040-4039(95)02298-8]
[33]
Drury, W.J., III; Zimmermann, N.; Keenan, M.; Hayashi, M.; Kaiser, S.; Goddard, R.; Pfaltz, A. Synthesis of versatile chiral N,P ligands derived from pyridine and quinoline. Angew. Chem. Int. Ed. Engl., 2004, 43(1), 70-74.
[http://dx.doi.org/10.1002/anie.200352755] [PMID: 14694474]
[34]
Spogliarich, R.; Kaspar, J.; Graziani, M.; Morandini, F.; Piccolo, O. Asymmetric transfer hydrogenation of acetophenone with rhodium (I) complexes containing chiral diphosphines. J. Catal.1985, 94, 292-296. Spogliarich, R.; Kaspar, J.; Graziani, M.; Morandini, F.; Piccolo, O. Asymmetric transfer hydrogenation of ketones catalyzed by phosphine-rhodium (I) and-iridium (I) complexes. J. Organomet. Chem., 1986, 306, 407-412.
[http://dx.doi.org/10.1016/S0022-328X(00)99002-8]
[35]
(a) Sablong, R.; Newton, C.; Dierkes, P.; Osborn, J.A. Chiral tridentate C 2 diphosphine ligands for enantioselective catalysis. Tetrahedron Lett., 1996, 37, 4933-4936.
[http://dx.doi.org/10.1016/0040-4039(96)00968-9]
(b) Wei, D.; Bruneau-Voisine, A.; Chauvin, T.; Dorcet, V.; Roisnel, T.; Dmitry, A.V.; Lugan, N.; Sortais, J-B. Hydrogenation of Carbonyl Derivatives Catalysed by Manganese Complexes Bearing Bidentate Pyridinyl Phosphine Ligands. Adv. Synth. Catal., 2018, 360, 676-68.
[http://dx.doi.org/10.1002/adsc.201701115]
(c) Liu, J.J.; Galettis, P.; Farr, A.; Maharaj, L.; Samarasinha, H.; McGechan, A.C.; Baguley, B.C.; Bowen, R.J.; Berners-Price, S.J.; McKeage, M.J. In vitro antitumour and hepatotoxicity profiles of Au(I) and Ag(I) bidentate pyridyl phosphine complexes and relationships to cellular uptake. J. Inorg. Biochem., 2008, 102(2), 303-310.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.09.003] [PMID: 18029019]
(d) Wajda-Hermanowicz, K.; Ciunik, Z.; Kochel, A. Syntheses and molecular structure of some Rh and Ru complexes with the chelating diphenyl (2-pyridyl)phosphine ligand. Inorg. Chem., 2006, 45(8), 3369-3377.
[http://dx.doi.org/10.1021/ic051442k] [PMID: 16602796]
(e) Trofimov, B.A.; Artem’ev, A.V.; Malysheva, S.F.; Gusarova, N.K.; Belogorlova, N.S.; Korocheva, A.O.; Gatilov, Y.V.; Mamatyuk, V.I. Expedient one-pot organometallics-free synthesis of tris(2-pyridyl)phosphine from 2-bromopyridine and elemental phosphorus. Tetrahedron Lett., 2012, 53, 2424-2427.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.004]
[36]
Hayashi, T.; Kawatsura, M.; Uozumi, Y. Retention of regiochemistry of allylic esters in palladium-catalyzed allylic alkylation in the presence of a MOP ligand. J. Am. Chem. Soc. 1998, 120, 1681-1687. Dierkes, P.; Ramdeehul, S.; Barloy, L.; Decian, A.; Fischer, J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Osborn, J. A. Versatile Ligands for Palladium‐Catalyzed Asymmetric Allylic Alkylation. Angew. Chem. Int. Ed. Engl., 1998, 37, 3116-3118.
[37]
Rahm, F.; Fischer, A.; Moberg, C. Pyridyl Phosphinites and Pyridyl Phosphites from Chiral Pyridyl Alcohols-A Modular Approach. Eur. J. Org. Chem., 2003, 4205-4215.
[http://dx.doi.org/10.1002/ejoc.200300368]
[38]
Arena, C.G.; Dromni, D.; Faraone, F. Structural control in palladium (II)-catalyzed enantioselective allylic alkylation by new chiral phosphine-phosphite and pyridine-phosphite ligands. Tetrahedron Asymmetry, 2000, 11, 2765-2779.
[http://dx.doi.org/10.1016/S0957-4166(00)00227-5]
[39]
Arena, C.G.; Dromni, D.; Faraone, F. Steric and chelate ring size effects on the enantioselectivity in palladium-catalyzed allylic alkylation with new chiral P, N-ligands. Tetrahedron Asymmetry, 2000, 11, 4753-4759.
[http://dx.doi.org/10.1016/S0957-4166(00)00448-1]
[40]
Chelucci, G.; Marchetti, M.; Sechi, B. Enantioselective hydroformylation of vinyl-aromatics using a rhodium complex with the (1R, 2R, 4R)-2-(2-diphenylphosphinyl-1, 7, 7-trimethylbicyclo [2.2. 1] hept-2-yl) pyridine. J. Mol. Catal. Chem., 1997, 122, 111-114.
[http://dx.doi.org/10.1016/S1381-1169(97)00024-1]
[41]
Arena, C.G.; Nicolo, F.; Dromni, D.; Bruno, G.; Faraone, F. Enantioselective hydroformylation with the chiral bidentate P, N-ligand 2-[1-(1 S, 2 S, 5 R)-(–) menthoxydiphenylphosphino] pyridine cationic rhodium (I) complexes. J. Chem. Soc. Chem. Commun., 1994, 2251-2252
[http://dx.doi.org/10.1039/C39940002251]
[42]
Kaiser, S.; Smidt, S.P.; Pfaltz, A. Iridium catalysts with bicyclic pyridine-phosphinite ligands: asymmetric hydrogenation of olefins and furan derivatives. Angew. Chem. Int. Ed. Engl., 2006, 45(31), 5194-5197.
[http://dx.doi.org/10.1002/anie.200601529] [PMID: 16823781]
[43]
Bell, S.; Wüstenberg, B.; Kaiser, S.; Menges, F.; Netscher, T.; Pfaltz, A. Asymmetric hydrogenation of unfunctionalized, purely alkyl-substituted olefins. Science, 2006, 311(5761), 642-644.
[http://dx.doi.org/10.1126/science.1121977] [PMID: 16339409]
[44]
Sperber, N.; Papa, D.; Schwenk, E.; Sherlock, M. Pyridyl-substituted alkamine ethers as antihistaminic agents. J. Am. Chem. Soc., 1949, 71(3), 887-890.
[http://dx.doi.org/10.1021/ja01171a034] [PMID: 18113525]
[45]
Sperber, N.; Papa, D.; Schwenk, E.; Sherlock, M. Chemistry of the Benzylpyridines. II. Nuclear Substituted 2-Benzylpyridines1. J. Am. Chem. Soc., 1951, 73, 3856-3858.
[http://dx.doi.org/10.1021/ja01152a088]
[46]
Frank, R.L.; Seven, R.P. Pyridines. IV. A Study of the Chichibabin Synthesis. J. Am. Chem. Soc., 1949, 71, 2629-2635.
[http://dx.doi.org/10.1021/ja01176a008]
[47]
Panizzon, L. La preparazione di piridil‐e piperidil‐arilacetonitrili e di alcuni prodotti di trasformazione (Parte Ia). Helv. Chim. Acta, 1944, 27, 1748-1756.
[http://dx.doi.org/10.1002/hlca.194402701222]
[48]
Tilford, C.H.; Shelton, R.S.; Van Campen, M.G., Jr Histamine antagonists; basically substituted pyridine derivatives. J. Am. Chem. Soc., 1948, 70(12), 4001-4009.
[http://dx.doi.org/10.1021/ja01192a010] [PMID: 18105922]
[49]
Csoeregh, I.; Elman, B.; Hogberg, K.; Moberg, C.; Nygren, M. Preparation and characterization of new transition-metal complexes of dipyridylmethane dicarboxylic acids. Crystal structure of the copper (II) complex of 1, 1-bis (6-carboxy-2-pyridyl)-1-methoxypropane. Inorg. Chem., 1988, 27, 235-240.
[http://dx.doi.org/10.1021/ic00275a005]
[50]
Adolfsson, H.; Warnmark, K.; Moberg, C. Synthesis and coordination properties of pendant arm dipyridylmethane derivatives. J. Org. Chem., 1994, 59, 2004-2009.
[http://dx.doi.org/10.1021/jo00087a012]
[51]
Cai, D.; Hughes, D.L.; Verhoeven, T.R. A Study of the Lithiation of 2, 6-Dibromopyridine with Butyllithium, and its Application to Synthesis of L-739,010. Tetrahedron Lett., 1996, 37, 2537-2540.
[http://dx.doi.org/10.1016/0040-4039(96)00336-X]
[52]
Mauleon, D.; Pujol, M.D.; Minguillon, C.; Miquel, J. Synthesis of 2-aryloxy-and 2-arylalkoxy-1-(2-piperidyl) ethanols. J. Heterocycl. Chem., 1989, 26, 693-699.
[http://dx.doi.org/10.1002/jhet.5570260331]
[53]
Henderson, D.P.; Shelton, M.C.; Cotterill, I.C.; Toone, E.J. Stereospecific preparation of the N-terminal amino acid moiety of nikkomycins Kx and Kz via a multiple enzyme synthesis. J. Org. Chem., 1997, 62(23), 7910-7911.
[http://dx.doi.org/10.1021/jo971549s] [PMID: 11671888]
[54]
Adolfsson, H.; Nordstrom, K.; Warnmark, K.; Moberg, C. Novel 2-(hydroxyalkyl) pyridines derived from the chiral pool. Tetrahedron Asymmetry, 1996, 7, 1967-1972.
[http://dx.doi.org/10.1016/0957-4166(96)00237-6]
[55]
Uenishi, J.; Hamada, M. Preparation of new chiral pyridine–phosphine ligands and their Pd-catalyzed asymmetric allylic alkylations. Tetrahedron Asymmetry, 2001, 12, 2999-3006.
[http://dx.doi.org/10.1016/S0957-4166(01)00535-3]
[56]
Lam, K.S.; Hesler, G.A.; Gustavson, D.R.; Crosswell, A.R.; Veitch, J.M.; Forenza, S.; Tomita, K. Kedarcidin, a new chromoprotein antitumor antibiotic. I, Taxonomy of producing organism, fermentation and biological activity. Antibiotics1991, 44, 472-478 and Hofstead, S. J.; Matson, J. A.; Malacko, A. R.; Marquardt, H. Kedarcidin, a new chromoprotein antitumor antibiotic. II. Isolation, purification and physico-chemical properties. Antibiotics (Basel), 1992, 45, 1250-1254.
[57]
Myers, A.G.; Hogan, P.C.; Hurd, A.R.; Goldberg, S.D. Enantioselective synthesis of kedarcidin chromophore aglycon in differentially protected form. Angew. Chem. Int. Ed. Engl., 2002, 41(6), 1062-1067.
[http://dx.doi.org/10.1002/1521-3773(20020315)41:6<1062:AID-ANIE1062>3.0.CO;2-8] [PMID: 12491313]
[58]
Friel, D.K.; Snapper, M.L.; Hoveyda, A.H. Aluminum-catalyzed asymmetric alkylations of pyridyl-substituted alkynyl ketones with dialkylzinc reagents. J. Am. Chem. Soc., 2008, 130(30), 9942-9951.
[http://dx.doi.org/10.1021/ja802935w] [PMID: 18588297]
[59]
Molina, D.R. -.; Christou, G.; Hendrickso, D. N. Single-molecule magnets. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2000, 343, 17-27.
[http://dx.doi.org/10.1080/10587250008023497]
[60]
aBoskovic, C.; Brechin, E.K.; Streib, W.E.; Folting, K.; Hendrickson, D.N.; Christou, G. A new class of single-molecule magnets: mixed-valent., 2001.
bMurugesu, M.; Habrych, M.; Wernsdorfer, W.; Abboud, K.A.; Christou, G. Single-molecule magnets: a Mn25 complex with a record S = 51/2 spin for a molecular species. J. Am. Chem. Soc., 2004, 126(15), 4766-4767.
[http://dx.doi.org/10.1021/ja0316824] [PMID: 15080666]
[61]
Brechin, E.K.; Yoo, J.; Nakano, M.; Huffman, J.C.; Hendrickson, D.N.; Christou, G. A new class of single-molecule magnets: mixed-valent [Mn4(O2CMe)2(Hpdm)6][ClO4]2 with an S= 8 ground state. Chem. Commun. (Camb.), 1999, 783-784
[http://dx.doi.org/10.1039/a901106d]
[62]
Gerber, T.I.A.; Bruwer, J.; Bandoli, G.; Perils, J.; du Preez, G.H. 1995.
[63]
Fanwick, P.E.; Kobriger, L.M.; McMullen, A.K.; Rothwell, I.P. Reaction of Group 4 metal. eta. 2-acyls with pyridine: formation of. alpha., alpha.-disubstituted-2, 6-pyridinedimethoxide ligands. J. Am. Chem. Soc., 1986, 108, 8095-8097.
[http://dx.doi.org/10.1021/ja00285a040]
[64]
Bottomley, F. Nitrosyl complexes of ruthenium. Coord. Chem. Rev., 1978, 26, 7-32.
[http://dx.doi.org/10.1016/S0010-8545(00)82063-9]
[65]
Bensimon, F.D.; Bensimon, C.; Beauchamp, A.L. Multinuclear NMR spectra of [Pt (L) Cl3]-(L= pyridine derivatives) complexes and crystal structure of trans-Pt (2, 6-di (hydroxymethyl) pyridine) 2Cl22H2O. Can. J. Chem., 1996, 74, 2121-2130.
[http://dx.doi.org/10.1139/v96-241]
[66]
Lane, T.J.; Kandathil, A.J.; Rosalie, S.M. Steric Effects in the Copper (II) Chelates of 2-Pyridyl Alcohols. Inorg. Chem., 1964, 3, 487-490.
[http://dx.doi.org/10.1021/ic50014a005]
[67]
Luz, W.D.; Fallab, S.; Erlenmeyer, H. Über das Komplexbildungsvermögen einiger Pyridylcarbinole. Metallionen und biologische Wirkung, 34. Mitteilung. Helv. Chim. Acta, 1955, 38, 1114-1117.
[http://dx.doi.org/10.1002/hlca.19550380504]
[68]
van der Shaaf, P.A.; Wissing, E.; Boersma, J.; Smeets, W.J.J.; Spek, A.L.; van Koten, G. Organozinc complexes with monoanionic chelating phenolates or 2-pyridylmethanolates. Molecular structure of [Zn (CH2SiMe3)OCH2 (2-Py)]4. Organometallics, 1993, 12, 3624-3629.
[http://dx.doi.org/10.1021/om00033a039]
[69]
van der Schaaf, P.A.; Boersma, J.; Smeets, W.J.J.; Spek, A.L.; van Koten, G. 1993.
[70]
Gerber, T.I.A.; Prils, T.; Du Preez, J.G.H.; Bandoli, G. 1997.
[71]
Koman, M.; Melnik, M. Crystal and molecular structure of bis (2, 6-dimethanolpyridine) copper (II) niflumate. Polyhedron1997, 16, 2721-2726. and Melnik, S. M.; Holloway, C. E. Spectral and magnetic properties of copper (ii) niflumate compounds with heterocyclic n-donor ligand. J. Coord. Chem., 1999, 49, 69-73.
[72]
Koman, M.; Nelnik, M.; Moncol, J. Crystal and molecular structure of copper (II)(pyridine-2, 6-dicarboxylato)(2, 6-dimethanolpyridine). Inorg. Chem. Commun., 2000, 3, 262-266.
[http://dx.doi.org/10.1016/S1387-7003(00)00060-5]
[73]
Tesmer, M.; Muller, B.; Vahrenkamp, H. Oligonuclear zinc complexes of 2-pyridylmethanol. Chem. Commun. (Camb.), 1997, 721-722
[http://dx.doi.org/10.1039/a607985g]
[74]
Hoang, N.N.; Valach, F.; Dunaj-Jurco, M.; Melnik, M. Structure of bis (salicylato) bis (2-pyridylmethanol) copper (II). Acta Crystallogr. Sec. C, 1992, 48, 443-445.
[75]
Farfan, N.; Hopf, H. Crystal and molecular structure of., 1998.
[76]
Suzuki, Y.; Tomizawa, H.; Miki, E. Reaction of hydrous nitrosylruthenium trichloride with 2-pyridinemethanol. Inorg. Chim. Acta, 1999, 290, 36-43.
[http://dx.doi.org/10.1016/S0020-1693(99)00109-7]
[77]
Svensson, M.; Bremberg, U.; Hallman, K.; Csoregh, I.; Moberg, C. (Hydroxyalkyl) pyridinooxazolines in Palladium-Catalyzed Allylic Substitutions. Conformational Preferences of the Ligand. Organometallics, 1999, 18, 4900-4907.
[http://dx.doi.org/10.1021/om990552u]
[78]
Andac, O.; Guney, S.; Topcu, Y.; Yilmaz, V.T.; Horrison, W.T.A. Bis (pyridine-2,6-dimethanol-N,O,O′-cobalt(II)and–copper(II)disaccahrinate dihydrate: three-dimensional structures with extensive hydrogen bonds and aromatic π-π stacking interactions. Acta Crystallogr., 2002, C58, m17-m20.
[79]
Yilmaz, V.T.; Buney, S.; Andac, O.; Harrison, W.T.A. 2002.
[80]
Yilmaz, V.T.; Guney, S.; Andac, O.; Harrison, W.T.A. Different coordination modes of saccharin in the metal complexes with 2-pyridylmethanol: synthesis, spectroscopic, thermal and structural characterization. Polyhedron, 2002, 21, 2393-2402.
[http://dx.doi.org/10.1016/S0277-5387(02)01211-1]
[81]
Gomez, E.; Flores, R.; Huerta, G.; Alvarez-Toledano, C.; Toscano, R.A.; Santes, V.; Nava, N.; Sharama, P. Dimethyltin (IV) 2, 6-disubstituted pyridine complexes. J. Organomet. Chem., 2003, 672, 115-122.
[http://dx.doi.org/10.1016/S0022-328X(03)00150-5]
[82]
Yilmaz, V.T.; Guney, S.; Andac, O.; Harrison, W.T.A. Synthesis, Spectral and Thermal Studies of BIS-2,6-Dimethanolpyridine Complexes of Co(II), Ni(II), Cu(II) and Zn(II) Saccharinates: Crystal Structures of [Ni(dmpy)2](sac)2·2H2O and [Zn(dmpy)2](sac)2·2H2O. J. Coord. Chem., 2003, 56, 21-32.
[http://dx.doi.org/10.1080/0095897021000039052]
[83]
Ito, M.; Okana, S. Versatility of pyridine-2-methanol as a chelating ligand toward a manganese ion: synthesis and X-ray structural analysis on some manganese-pyridine-2-methanol derivatives. Inorg. Chim. Acta, 2004, 357, 1039-1046.
[http://dx.doi.org/10.1016/j.ica.2003.09.028]
[84]
Yilmaz, V.T.; Hamamci, S.; Thone, C. Cobalt(II) complexes of 2-methanol-, 2,6-dimethanol- and 2-ethanolpyridines: syntheses, spectroscopic, thermal and structural characterizations of [Co2(µ-Cl)2(mpy)4]Cl2. 2H2O, [Co(dmpy)2]Cl2 and [Co(Cl)4](Hpyet)2 (mpy = 2-methanolpyridine; dmpy = 2,6-dimethanolpyridine and Hpyet = 2-ethanolpyridinium). Polyhedron, 2004, 23, 841-848.
[http://dx.doi.org/10.1016/j.poly.2003.12.007]
[85]
Winter, S.; Seichter, W.; Weber, E.Z. Complexes of 2, 6‐Bis (hydroxymethyl) pyridine with Different Copper (II) Salts Involving the Anions Chloride, Perchlorate, Nitrate and Acetate. Synthesis and Crystal Structures of the Complexes. Anorg. Allg. Chem, 2004, 630, 434-442.
[http://dx.doi.org/10.1002/zaac.200300346]
[86]
Onaka, S.; Hong, L.; Ito, M.; Sunahara, T.; Imai, H.; Inoue, K. Rational synthesis and X-ray structural study of manganese–pyridine–alcohol derivatives. J. Coord. Chem., 2005, 58, 1523-1530.
[http://dx.doi.org/10.1080/00958970500078619]
[87]
Zaitsev, K.V.; Bermeshev, M.V.; Karlov, S.S.; Oprunenko, Y.F.; Churakov, A.V.; Howard, J.A.K.; Zaitseva, G.S. Synthesis and structure of titanium alkoxides based on tetraphenyl substituted 2, 6-dimethanolpyridine moiety. Inorg. Chim. Acta, 2007, 360, 2507-2512.
[http://dx.doi.org/10.1016/j.ica.2006.10.027]
[88]
Klein, A.; Elmas, S.; Butsch, K. Oxido Pincer Ligands–Exploring the Coordination Chemistry of Bis (hydroxymethyl) pyridine Ligands for the Late Transition Metals. Eur. J. Inorg. Chem., 2009, 2271-2281.
[http://dx.doi.org/10.1002/ejic.200900023]
[89]
Haratake, M.; Fukunaga, M.; Ono, M.; Nakayama, M. Synthesis of vanadium (IV, V) hydroxamic acid complexes and in vivo assessment of their insulin-like activity. J. Biol.Inorg. Chem. 2005, 10, 250-258. Crans, D.C.; Smee, J.J.; Gaidamauskas, E.; Yang, L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev., 2004, 104, 849-902.
[90]
Berg, J.M.; Holm, R.H. Structure proofs of ligated and polymeric dioxomolybdenum (VI)-tridentate complexes: MoO2 (C5H3N-2, 6-(CH2S)2)(C4H8SO) and [MoO2 (C5H3N-2, 6-(CH2O)2)] n. Inorg. Chem., 1983, 22, 1768-1771.
[http://dx.doi.org/10.1021/ic00154a015]
[91]
Berg, J.M.; Holm, R.H. Model for the active site of oxo-transfer molybdoenzymes: synthesis, structure, and properties. J. Am. Chem. Soc., 1985, 107, 917-925.
[http://dx.doi.org/10.1021/ja00290a029]
[92]
Hawkins, J.M.; Dewan, J.C.; Sharpless, K.B. Dioxomolybdenum (VI)-substituted 2, 6-pyridinedimethanol complexes: new five-coordinate species. Inorg. Chem., 1986, 25, 1501-1503.
[http://dx.doi.org/10.1021/ic00229a041]
[93]
Berg, J.M.; Holm, R.H. Synthetic approach to the mononuclear active sites of molybdoenzymes: catalytic oxygen atom transfer reactions by oxomolybdenum (IV, VI) complexes with saturation kinetics and without molybdenum (V) dimer formation. J. Am. Chem. Soc., 1984, 106, 3035-3036.
[http://dx.doi.org/10.1021/ja00322a050]
[94]
Bouwman, E.; Bolcar, M.A.; Libby, E.; Huffman, J.C.; Folting, K.; Christou, G. Tetranuclear manganese (III)-oxo-carboxylate complexes possessing terminal phenoxide or alkoxide ligands. Inorg. Chem., 1992, 31, 5185-5192.
[http://dx.doi.org/10.1021/ic00051a008]
[95]
George, G.N.; Prince, R.C.; Cramer, S.P. The manganese site of the photosynthetic water-splitting enzyme. Science, 1989, 243(4892), 789-791.
[http://dx.doi.org/10.1126/science.2916124] [PMID: 2916124]
[96]
Schultz, B.E.; Gheller, S.F.; Muetterties, M.C.; Scott, M.J.; Holm, R.H. Molybdenum-mediated oxygen-atom transfer: an improved analog reaction system of the molybdenum oxotransferases. J. Am. Chem. Soc., 1993, 115, 2714-2722.
[http://dx.doi.org/10.1021/ja00060a021]
[97]
Gielen, M.; Boualam, M.; Biesemans, M.; Mahieu, B.; Willem, R. 1992.
[98]
Gielen, M.; Joosen, E.; Mancilla, T.; Jurkschat, K.; Willem, R.; Roobol, C.; Bernheim, J. Platinum and other Metal Coordination Compounds in Cancer Chemotherapy; Nicolini, M., Ed.; Martinus Nijhoff, 1988.
[99]
Boualam, M.; Willem, R.; Biesemans, M.; Nahieu, B.; Gielen, M. Synthesis, characterization, and in vitro antitumor activity of some tin (IV)–oxygen and tin (IV)–sulfur heterocycles. Heteroatom Chem., 1991, 2, 447-453.
[http://dx.doi.org/10.1002/hc.520020404]
[100]
Rosner, B.M.; Schink, B. Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein. J. Bacteriol., 1995, 177(20), 5767-5772.
[http://dx.doi.org/10.1128/JB.177.20.5767-5772.1995] [PMID: 7592321]
[101]
Thapper, A.; Balmes, O.; Lorber, C.; Scensson, P.H.; Holm, R.H.; Nordlander, E. Synthesis and structural characterization of two tungsten(VI) dioxo complexes with N,O- and N,S-coordinating ligands. Inorg. Chim. Acta, 2001, 321, 162-166.
[http://dx.doi.org/10.1016/S0020-1693(01)00509-6]
[102]
Herrmann, W.A.; Friggen, J.; Lobmaier, G.M.; Spiegler, M. First tungsten complexes with 2º-pyridyl alcoholate ligands: synthesis, structure, and application as novel epoxidation catalysts. New J. Chem., 1999, 23, 5-7.
[http://dx.doi.org/10.1039/a808343f]
[103]
Tucci, G.C.; Donahue, J.P.; Holm, R.H. Comparative kinetics of oxo transfer to substrate mediated by bis (dithiolene) dioxomolybdenum and-tungsten complexes. Inorg. Chem., 1998, 37, 1602-1608.
[http://dx.doi.org/10.1021/ic971426q]
[104]
Cheng, S-C.; Wei, H-H. Structure, magnetic properties and catecholase activity study of oxo-bridged dinuclear copper (II) complexes. Inorg. Chim. Acta, 2002, 340, 105-113.
[http://dx.doi.org/10.1016/S0020-1693(02)01059-9]
[105]
Gupta, A.K.; Kim, J. 2003.
[106]
Fites, R.J.; Yeager, A.T.; Sarvela, T.L.; Howard, W.A.; Zhu, G.; Pang, K. Aqueous acid–base chemistry involving dioxovanadium(V) complexes of 2,6-pyridinedimethanol, and the X-ray structures of Na[VO22,6-(OCH2)2NC5H3]. 4H2O and [1-H-2,6-(HOCH2)2NC5H3]+ Cl-. Inorg. Chim. Acta, 2006, 359, 248-256.
[http://dx.doi.org/10.1016/j.ica.2005.07.024]
[107]
Powell, A.K. Metal Sites in Proteins and Models; Iron centers. Structure and Bonding, 1997, 88, 1-38. and references sited therein.
[108]
Oshio, H.; Hoshino, N.; Ito, T. Superparamagnetic behavior in an alkoxo-bridged iron (II) cube. J. Am. Chem. Soc., 2000, 122, 12602-12603.
[http://dx.doi.org/10.1021/ja002889p]
[109]
Tole, T.; Jordaan, J.; Vosloo, H. Synthesis and Application of the Transition Metal Complexes of α-Pyridinyl Alcohols, α-Bipyridinyl Alcohols, α,α′-Pyridinyl Diols and α,α′-Bipyridinyl Diols in Homogeneous Catalysis. Molecules, 2018, 23(4), 896-956.
[http://dx.doi.org/10.3390/molecules23040896] [PMID: 29649178]
[110]
Tole, T.T.; Jordaan, J.H.L.; Vosloo, H.C.M. Synthetic Methods of α-pyridinyl and α-bipyridinyl Alcohols and α,α′-pyridine and α,α′-bipyridine Diols. Curr. Org. Synth., 2015, 12, 261-304.