Mini-Reviews in Medicinal Chemistry

Author(s): Weibin Li*

DOI: 10.2174/1389557520666200212105813

Prospective Application of Aptamer-based Assays and Therapeutics in Bloodstream Infections

Page: [831 - 840] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Sepsis is still a severe health problem worldwide with high morbidity and mortality. Blood bacterial culture remains the gold standard for the detection of pathogenic bacteria in bloodstream infections, but it is time-consuming, and both the sophisticated equipment and well-trained personnel are required. Immunoassays and genetic diagnosis are expensive and limited to specificity and sensitivity. Aptamers are single-stranded deoxyribonucleic acid (ssDNA) and ribonucleic acid (RNA) oligonucleotide or peptide sequence generated in vitro based on the binding affinity of aptamer-target by a process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX). By taking several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch-to-batch variation, flexible modification and production, thermal stability, low immunogenicity and lack of toxicity, aptamers are presently becoming promising novel diagnostic and therapeutic agents. This review describes the prospective application of aptamerbased laboratory diagnostic assays and therapeutics for pathogenic bacteria and toxins in bloodstream infections.

Keywords: Aptamer, Systematic Evolution of Ligands by Exponential Enrichment (SELEX), pathogenic bacteria, bloodstream infections, in vitro, immunoassays.

Graphical Abstract

[1]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[2]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[3]
Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng., 2007, 24(4), 381-403.
[http://dx.doi.org/10.1016/j.bioeng.2007.06.001] [PMID: 17627883]
[4]
Li, W.; Lan, X. Aptamer oligonucleotides: Novel potential therapeutic agents in autoimmune disease. Nucleic Acid Ther., 2015, 25(4), 173-179.
[http://dx.doi.org/10.1089/nat.2014.0529] [PMID: 25993618]
[5]
Que-Gewirth, N.S.; Sullenger, B.A. Gene therapy progress and prospects: RNA aptamers. Gene Ther., 2007, 14(4), 283-291.
[http://dx.doi.org/10.1038/sj.gt.3302900] [PMID: 17279100]
[6]
Han, K.; Liang, Z.; Zhou, N. Design strategies for aptamer-based biosensors. Sensors (Basel), 2010, 10(5), 4541-4557.
[http://dx.doi.org/10.3390/s100504541] [PMID: 22399891]
[7]
Li, W.; Wang, K.; Zhao, M.; Yang, X.; Chen, M.; Lan, X. Development of aptamer oligonucleotides as anticoagulants and antithrombotics for cardiovascular diseases: current status. Thromb. Res., 2014, 134(4), 769-773.
[http://dx.doi.org/10.1016/j.thromres.2014.05.021] [PMID: 25113995]
[8]
Mulcahy, L.R.; Isabella, V.M.; Lewis, K. Pseudomonas aeruginosa biofilms in disease. Microb. Ecol., 2014, 68(1), 1-12.
[http://dx.doi.org/10.1007/s00248-013-0297-x] [PMID: 24096885]
[9]
Gómez, M.I.; Prince, A. Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr. Opin. Pharmacol., 2007, 7(3), 244-251.
[http://dx.doi.org/10.1016/j.coph.2006.12.005] [PMID: 17418640]
[10]
Wang, K.Y.; Zeng, Y.L.; Yang, X.Y.; Li, W.B.; Lan, X.P. Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis., 2011, 30(2), 273-278.
[http://dx.doi.org/10.1007/s10096-010-1074-0] [PMID: 20936492]
[11]
Das, R.; Dhiman, A.; Kapil, A.; Bansal, V.; Sharma, T.K. Aptamer-mediated colorimetric and electrochemical detection of Pseudomonas aeruginosa utilizing peroxidase-mimic activity of gold NanoZyme. Anal. Bioanal. Chem., 2019, 411(6), 1229-1238.
[http://dx.doi.org/10.1007/s00216-018-1555-z] [PMID: 30637436]
[12]
Shi, X.; Zhang, J.; He, F. A new aptamer/polyadenylated DNA interdigitated gold electrode piezoelectric sensor for rapid detection of Pseudomonas aeruginosa. Biosens. Bioelectron., 2019, 132, 224-229.
[http://dx.doi.org/10.1016/j.bios.2019.02.053] [PMID: 30877887]
[13]
Hu, J.; Fu, K.; Bohn, P.W. Whole-Cell Pseudomonas aeruginosa localized surface plasmon resonance aptasensor. Anal. Chem., 2018, 90(3), 2326-2332.
[http://dx.doi.org/10.1021/acs.analchem.7b04800] [PMID: 29260861]
[14]
Soundy, J.; Day, D. Selection of DNA aptamers specific for live Pseudomonas aeruginosa. PLoS One, 2017, 12(9)e0185385
[http://dx.doi.org/10.1371/journal.pone.0185385] [PMID: 28937998]
[15]
Zhao, M.; Li, W.; Liu, K.; Li, H.; Lan, X. C4-HSL aptamers for blocking qurom sensing and inhibiting biofilm formation in Pseudomonas aeruginosa and its structure prediction and analysis. PLoS One, 2019, 14(2), e0212041
[http://dx.doi.org/10.1371/journal.pone.0212041] [PMID: 30779754]
[16]
Wang, S.; Mao, B.; Wu, M.; Liang, J.; Deng, L. Influence of aptamer-targeted antibiofilm agents for treatment of Pseudomonas aeruginosa biofilms. Antonie van Leeuwenhoek, 2018, 111(2), 199-208.
[http://dx.doi.org/10.1007/s10482-017-0941-4] [PMID: 29098517]
[17]
Hong, K.L.; Yancey, K.; Battistella, L.; Williams, R.M.; Hickey, K.M.; Bostick, C.D.; Gannett, P.M.; Sooter, L.J. Selection of single-Stranded DNA molecular recognition elements against exotoxin a using a novel Decoy-SELEX Method and sensitive detection of exotoxin a in human serum. BioMed Res. Int., 2015, 2015, 417641
[http://dx.doi.org/10.1155/2015/417641] [PMID: 26636098]
[18]
Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med., 1998, 339(8), 520-532.
[http://dx.doi.org/10.1056/NEJM199808203390806] [PMID: 9709046]
[19]
Borsa, B.A.; Tuna, B.G.; Hernandez, F.J.; Hernandez, L.I.; Bayramoglu, G.; Arica, M.Y.; Ozalp, V.C. Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosens. Bioelectron., 2016, 86, 27-32.
[http://dx.doi.org/10.1016/j.bios.2016.06.023] [PMID: 27318566]
[20]
O’Brien, F.G.; Lim, T.T.; Chong, F.N.; Coombs, G.W.; Enright, M.C.; Robinson, D.A.; Monk, A.; Saïd-Salim, B.; Kreiswirth, B.N.; Grubb, W.B. Diversity among community isolates of methicillin-resistant Staphylococcus aureus in Australia. J. Clin. Microbiol., 2004, 42(7), 3185-3190.
[http://dx.doi.org/10.1128/JCM.42.7.3185-3190.2004] [PMID: 15243080]
[21]
Turek, D.; Van Simaeys, D.; Johnson, J.; Ocsoy, I.; Tan, W. Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers. World J. Transl. Med., 2013, 2(3), 67-74.
[http://dx.doi.org/10.5528/wjtm.v2.i3.67] [PMID: 25436184]
[22]
Flanagan, K.; Cockell, S.; Harwood, C.; Hallinan, J.; Nakjang, S.; Lawry, B.; Wipat, A. A distributed computational search strategy for the identification of diagnostics targets: application to finding aptamer targets for methicillin-resistant staphylococci. J. Integr. Bioinform., 2014, 11(2), 242.
[http://dx.doi.org/10.1515/jib-2014-242] [PMID: 24980620]
[23]
Ocsoy, I.; Yusufbeyoglu, S.; Yılmaz, V.; McLamore, E.S.; Ildız, N.; Ülgen, A. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus. Colloids Surf. B Biointerfaces, 2017, 159, 16-22.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.056] [PMID: 28778062]
[24]
Qiao, J.; Meng, X.; Sun, Y.; Li, Q.; Zhao, R.; Zhang, Y.; Wang, J.; Yi, Z. Aptamer-based fluorometric assay for direct identification of methicillin-resistant Staphylococcus aureus from clinical samples. J. Microbiol. Methods, 2018, 153, 92-98.
[http://dx.doi.org/10.1016/j.mimet.2018.09.011] [PMID: 30243766]
[25]
Libbey, J.E.; Cusick, M.F.; Fujinami, R.S. Role of pathogens in multiple sclerosis. Int. Rev. Immunol., 2014, 33(4), 266-283.
[http://dx.doi.org/10.3109/08830185.2013.823422] [PMID: 24266364]
[26]
Chen, X.; Liu, Y.; Lu, Y.; Xiong, X.; Li, Y.; Liu, Y.; Xiong, X. Chronocoulometric aptamer based assay for staphylococcal enterotoxin B by target-triggered assembly of nanostructured dendritic nucleic acids on a gold electrode. Mikrochim. Acta, 2019, 186(2), 109.
[http://dx.doi.org/10.1007/s00604-019-3236-9] [PMID: 30637509]
[27]
Hedayati Ch, M.; Amani, J.; Sedighian, H.; Amin, M.; Salimian, J.; Halabian, R.; Imani Fooladi, A.A. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography. J. Mol. Recognit., 2016, 29(9), 436-445.
[http://dx.doi.org/10.1002/jmr.2542] [PMID: 27091327]
[28]
Wang, K.; Gan, L.; Jiang, L.; Zhang, X.; Yang, X.; Chen, M.; Lan, X. Neutralization of staphylococcal enterotoxin B by an aptamer antagonist. Antimicrob. Agents Chemother., 2015, 59(4), 2072-2077.
[http://dx.doi.org/10.1128/AAC.04414-14] [PMID: 25624325]
[29]
DeGrasse, J.A. A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One, 2012, 7(3), e33410
[http://dx.doi.org/10.1371/journal.pone.0033410] [PMID: 22438927]
[30]
Wang, K.; Wu, D.; Chen, Z.; Zhang, X.; Yang, X.; Yang, C.J.; Lan, X. Inhibition of the superantigenic activities of Staphylococcal enterotoxin A by an aptamer antagonist. Toxicon, 2016, 119, 21-27.
[http://dx.doi.org/10.1016/j.toxicon.2016.05.006] [PMID: 27179422]
[31]
Bhakdi, S.; Tranum-Jensen, J. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev., 1991, 55(4), 733-751.
[http://dx.doi.org/10.1128/MMBR.55.4.733-751.1991] [PMID: 1779933]
[32]
Vivekananda, J.; Salgado, C.; Millenbaugh, N.J. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. Biochem. Biophys. Res. Commun., 2014, 444(3), 433-438.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.076] [PMID: 24472539]
[33]
Hong, K.L.; Battistella, L.; Salva, A.D.; Williams, R.M.; Sooter, L.J. In vitro selection of single-stranded DNA molecular recognition elements against S. aureus alpha toxin and sensitive detection in human serum. Int. J. Mol. Sci., 2015, 16(2), 2794-2809.
[http://dx.doi.org/10.3390/ijms16022794] [PMID: 25633102]
[34]
Rietschel, E.T.; Brade, H. Bacterial endotoxins. Sci. Am., 1992, 267(2), 54-61.
[http://dx.doi.org/10.1038/scientificamerican0892-54] [PMID: 1641625]
[35]
Watson, R.W.; Redmond, H.P.; Bouchier-Hayes, D. Role of endotoxin in mononuclear phagocyte-mediated inflammatory responses. J. Leukoc. Biol., 1994, 56(1), 95-103.
[http://dx.doi.org/10.1002/jlb.56.1.95] [PMID: 8027674]
[36]
Ding, J.L.; Gan, S.T.; Ho, B. Single-stranded DNA oligoaptamers: molecular recognition and LPS antagonism are length- and secondary structure-dependent. J. Innate Immun., 2009, 1(1), 46-58.
[http://dx.doi.org/10.1159/000145542] [PMID: 20375565]
[37]
Kim, S.E.; Su, W.; Cho, M.; Lee, Y.; Choe, W.S. Harnessing aptamers for electrochemical detection of endotoxin. Anal. Biochem., 2012, 424(1), 12-20.
[http://dx.doi.org/10.1016/j.ab.2012.02.016] [PMID: 22370280]
[38]
Ying, G.; Wang, M.; Yi, Y.; Chen, J.; Mei, J.; Zhang, Y.; Chen, S. Construction and application of an electrochemical biosensor based on an endotoxin aptamer. Biotechnol. Appl. Biochem., 2018, 65(3), 323-327.
[http://dx.doi.org/10.1002/bab.1610] [PMID: 28887814]
[39]
Posha, B.; Nambiar, S.R.; Sandhyarani, N. Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide. Biosens. Bioelectron., 2018, 101, 199-205.
[http://dx.doi.org/10.1016/j.bios.2017.10.030] [PMID: 29078201]
[40]
Ye, H.; Duan, N.; Gu, H.; Wang, H.; Wang, Z. Fluorometric determination of lipopolysaccharides via changes of the graphene oxide-enhanced fluorescence polarization caused by truncated aptamers. Mikrochim. Acta, 2019, 186(3), 173.
[http://dx.doi.org/10.1007/s00604-019-3261-8] [PMID: 30771102]
[41]
Niu, J.; Hu, X.; Ouyang, W.; Chen, Y.; Liu, S.; Han, J.; Liu, L. Femtomolar detection of lipopolysaccharide in injectables and serum samples using aptamer-coupled reduced graphene oxide in a continuous injection-electrostacking biochip. Anal. Chem., 2019, 91(3), 2360-2367.
[http://dx.doi.org/10.1021/acs.analchem.8b05106] [PMID: 30576605]
[42]
Xie, P.; Zhu, L.; Shao, X.; Huang, K.; Tian, J.; Xu, W. Highly sensitive detection of lipopolysaccharides using an aptasensor based on hybridization chain reaction. Sci. Rep., 2016, 6, 29524.
[http://dx.doi.org/10.1038/srep29524] [PMID: 27404735]
[43]
Xu, W.; Tian, J.; Shao, X.; Zhu, L.; Huang, K.; Luo, Y. A rapid and visual aptasensor for Lipopolysaccharides detection based on the bulb-like triplex turn-on switch coupled with HCR-HRP nanostructures. Biosens. Bioelectron., 2017, 89(Pt 2), 795-801.
[http://dx.doi.org/10.1016/j.bios.2016.10.012] [PMID: 27816585]
[44]
Wen, A.Q.; Yang, Q.W.; Li, J.C.; Lv, F.L.; Zhong, Q.; Chen, C.Y. A novel lipopolysaccharide-antagonizing aptamer protects mice against endotoxemia. Biochem. Biophys. Res. Commun., 2009, 382(1), 140-144.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.152] [PMID: 19265672]
[45]
Alfavian, H.; Mousavi Gargari, S.L.; Rasoulinejad, S.; Medhat, A. Development of a DNA aptamer that binds specifically to group A Streptococcus serotype M3. Can. J. Microbiol., 2017, 63(2), 160-168.
[http://dx.doi.org/10.1139/cjm-2016-0495] [PMID: 28121169]
[46]
Marton, S.; Cleto, F.; Krieger, M.A.; Cardoso, J. Isolation of an aptamer that binds specifically to E. coli. PLoS One, 2016, 11(4), e0153637
[http://dx.doi.org/10.1371/journal.pone.0153637] [PMID: 27104834]
[47]
Savory, N.; Nzakizwanayo, J.; Abe, K.; Yoshida, W.; Ferri, S.; Dedi, C.; Jones, B.V.; Ikebukuro, K. Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. J. Microbiol. Methods, 2014, 104, 94-100.
[http://dx.doi.org/10.1016/j.mimet.2014.06.016] [PMID: 25008464]
[48]
Kim, Y.S.; Song, M.Y.; Jurng, J.; Kim, B.C. Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell-systematic evolution of ligands by exponential enrichment approach. Anal. Biochem., 2013, 436(1), 22-28.
[http://dx.doi.org/10.1016/j.ab.2013.01.014] [PMID: 23357235]
[49]
Zou, Y.; Duan, N.; Wu, S.; Shen, M.; Wang, Z. Selection, identification, and binding mechanism studies of an ssDNA aptamer targeted to different stages of E. coli O157:H7. J. Agric. Food Chem., 2018, 66(22), 5677-5682.
[http://dx.doi.org/10.1021/acs.jafc.8b01006] [PMID: 29756774]
[50]
Bruno, J.G.; Carrillo, M.P.; Phillips, T.; Andrews, C.J. A novel screening method for competitive FRET-aptamers applied to E. coli assay development. J. Fluoresc., 2010, 20(6), 1211-1223.
[http://dx.doi.org/10.1007/s10895-010-0670-9] [PMID: 20443050]
[51]
Li, H.; Ding, X.; Peng, Z.; Deng, L.; Wang, D.; Chen, H.; He, Q. Aptamer selection for the detection of Escherichia coli K88. Can. J. Microbiol., 2011, 57(6), 453-459.
[http://dx.doi.org/10.1139/w11-030] [PMID: 21627466]
[52]
Amraee, M.; Oloomi, M.; Yavari, A.; Bouzari, S. DNA aptamer identification and characterization for E. coli O157 detection using cell based SELEX method. Anal. Biochem., 2017, 536, 36-44.
[http://dx.doi.org/10.1016/j.ab.2017.08.005] [PMID: 28818557]
[53]
Endo, Y.; Tsurugi, K.; Yutsudo, T.; Takeda, Y.; Ogasawara, T.; Igarashi, K. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem., 1988, 171(1-2), 45-50.
[http://dx.doi.org/10.1111/j.1432-1033.1988.tb13756.x] [PMID: 3276522]
[54]
Challa, S.; Tzipori, S.; Sheoran, A. Selective evolution of ligands by exponential enrichment to identify RNA aptamers against shiga toxins. J. Nucleic Acids, 2014, 2014, 214929
[http://dx.doi.org/10.1155/2014/214929] [PMID: 24839553]
[55]
Graziani, A.C.; Stets, M.I.; Lopes, A.L.K.; Schluga, P.H.C.; Marton, S.; Mendes, I.F.; Andrade, A.S.R.; Krieger, M.A.; Cardoso, J. High efficiency binding aptamers for a wide range of bacterial sepsis agents. J. Microbiol. Biotechnol., 2017, 27(4), 838-843.
[http://dx.doi.org/10.4014/jmb.1611.11004] [PMID: 28119514]
[56]
Hoehlig, K.; Maasch, C.; Shushakova, N.; Buchner, K.; Huber-Lang, M.; Purschke, W.G.; Vater, A.; Klussmann, S. A novel C5a-neutralizing mirror-image (l-)aptamer prevents organ failure and improves survival in experimental sepsis. Mol. Ther., 2013, 21(12), 2236-2246.
[http://dx.doi.org/10.1038/mt.2013.178] [PMID: 23887360]
[57]
Aldag, J.; Persson, T.; Hartmann, R.K. 2′-Fluoro-Pyrimidine-Modified RNA Aptamers Specific for Lipopolysaccharide Binding Protein (LBP). Int. J. Mol. Sci., 2018, 19(12), E3883
[http://dx.doi.org/10.3390/ijms19123883] [PMID: 30563044]