[1]
Kimura H, Fukuoka Y, Cohen AH. Biologically inspired adaptive walking of a quadruped robot. Philos Trans A Math Phys Eng Sci 2007; 365(1850): 153-70.
[4]
Hain JHW, Carter GR, Kraus SD, Mayo CA, Winn HE. Feeding behaviour of the humpback whale, Megaptera novaeangliae, in the Western North Atlantic. Fish Bull 1982; 80: 259-68.
[7]
Weber PW, Howle LE, Murray MM. Lift, drag and cavitation onset on rudders with leading edge tubercles. Mar Tech 2010; 47: 27-36.
[8]
Muller T. Biomimetics: design by nature. Nat Geo 2008; 213: 68-91.
[9]
Murray M, Gruber T, Fredriksson D. Effect of leading edge tubercles on marine tidal turbine blades. In- APS Division of Fluid Dynamics Meeting Abstracts 2010. American Physical Society - 63rd Annual Meeting of the APS Division of Fluid Dynamics. Long Beach, California (2010).
[10]
Kellas A. The guided samara: design and development of a controllable single-bladed autorotating vehicle Massachusetts Institute of Technology Cambridge. : 2007.
[12]
Shafieenejad I, Cheraghi A, Tafreshi M. Intelligent unmanned new aerial vehicles for rescue mission based on a novel optimal control and imperialist competition algorithm (ICA). J Mach Learn Res 2017; 2(3): 99-104.
[20]
Thomsen OT, Bozhevolnaya E, Lyckegaard A. Sandwich structures 7: advancing with sandwich structures and materials Proceedings of the 7th International Conference on Sandwich Structures Springer Science & Business Media; Aalborg 2005.
[22]
Pflug J, Xinyu F, Vangrimde B, Verpoest I, Bratfisch P, Vandepitte D. Development of a sandwich material with polypropylene/natural fibre skins and paper honeycomb Core. Proceedings of 10th European Conference on Composite Materials 2002.
[30]
Campbell FC. Manufacturing technology for aerospace structural materials Elsevier Publishing Amsterdam. 2006.
[34]
Yanzeng Z, Hao S, Yan W. Wall-climbing robot with negative pressure sucker used for cleaning work. High Technol Lett 1999; 5: 85-8.
[35]
Shuliang L, Yanzheng Z, Xueshan G, Dianguo X, Yan W. A wall-climbing robot with magnetic crawlers for sand-blasting. Spray-Painting Meas High Technol Letters 2000; 10: 86-9.
[36]
Tokioka S, Sakai S. Painting robot for wall surface. Robot 1988; 65: 88-96.
[39]
Briones L, Bustamante P, Serna M. Wall-climbing robot for inspection in nuclear power plants ICRA 1994; 1409-14.
[40]
Pack R, Christopher J, Kawamura K. A rubbertuator-based structure-climbing inspection robot. IEEE ICRA 1997; 3: 1869-74.
[42]
Yano T, Suwa T, Murakami M, Yamamoto T. Development of a semi self-contained wall climbing robot with scanning type suction cups IEEE/RSJ IROS, 2 1997; 2: 900-5.
[43]
Yan W, Shuliang L, Dianguo X, Yanzheng Z, Hao S, Xueshan G. Development and application of wall-climbing robots. IEEE ICRA 1999; 2: 1207-12.
[45]
Kim S, Asbeck AT, Cutkosky MR, Provancher WR. Spinybot II: climbing hard walls with compliant microspines. Int Conf Adv Robot 2005; 2005: 601-6.
[48]
Menon C, Murphy M, Sitti M. Gecko inspired surface climbing robots. Proc of the IEEE Int Conf Robot Biomimetics 2004; 431-6.
[49]
Daltorio K, Gorb S, Peressadko A, Horchler A, Ritzmann R, Quinn R. A robot that climbs walls using micro-structured polymer feet. In: Tokhi MO, Virk GS, Hossain MA, EdsClimbing and Walking Robots. Berlin: Springer 2006; pp. 131-8.
[50]
Kim S, Spenko M, Trujillo S, Heyneman B, Mattoli V, Cutkosky M. Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot IEEE ICRA 2007; 1268-73.
[53]
Schulz M, Shanov V, Yun Y. Nanomedicine design of particles, sensors, motors, implants, robots, and devices Artech House Boston. 2009.
[55]
Railkin AI. Marine Biofouling Colonization Processes and Defences CRC Press Boca Raton. 2004.
[56]
Copisarow M. Marine fouling and its prevention. Sci 1945; 101(2625): 406-7.
[57]
Woods Hole Oceanographic Institution, United States. Navy Department. Bureau of Ships. Marine fouling and its prevention. United States Naval Institute; 1952.
[58]
Ray DL. Marine boring and fouling organisms Hall University Press Washington. 1959.
[62]
Walker J, Surman S, Jass J. Industrial Biofouling Detection, Prevention and Control Wiley New York. 2000.
[63]
Chan J, Wong S. Biofouling Types, Impact and Anti-Fouling Nova Science Publishers New York. 2010.
[65]
Somerscales EFC, Knudsen JG. Fouling of Heat Transfer Equipment Hemisphere Publishing Corporation Washington, DC. 1981.
[66]
Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos Trans R Soc 2010; 368(1929): 4775-806.
[67]
Reif W. Squamation and ecology of sharks Senckenbergische Naturforschende Gesellschaft Frankfurt, Germany. 1985.
[70]
Brennan AB, Baney RH, Turnage MC, et al. Surface topographies for non-toxic bio-adhesion control US 8997672 (2015)
[72]
Ali S, Matthew JE. Biomimicry in Solar Energy Conversion with Natural Dye-Sensitized Nanocrystalline Photovoltaic Cells Department of Chemistry and Biochemistry Obelin College Ohio 2007; 1-22.
[75]
Kim S. Bio-inspired engineered sonar systems based on the understanding of bat echolocation Biomimetic Tech 2015; 141-60.
[78]
Menon C, Vincent JFV, Lan N, Bilhaut L, Ellery A, Gao Y, et al. Bio-inspired micro-drills for future planetary exploration. Paper presented at CANEUS Micro-Nanotechnology for Aerospace Applications, Toulouse, France. 2006.
[80]
Pullan D, Sims M R, Wright I P, Pillinger C T, Trautner R. Beagle 2: the exobiological lander of mars express, Mars express. The Scientific Payload 2004; 1240: 165-204.
[81]
Land MF, Nilsson DE. Animal Eyes. Oxford Animal Biology Series 2002.
[82]
Grubsky V, Gertsenshteyn M, Shoemaker K, Jannson K. Adaptive Lobster-Eye hard X-ray telescope with high angular resolution and wide field of view. In: Stephen L. O'Dell, Giovanni P, Eds. Optics for EUV, X-Ray, and Gamma-Ray Astronomy III. California, International Society for Optics and Photonics 2007, pp. 66880P.