Mitochondria-Associated Membranes (MAMs): A Novel Therapeutic Target for Treating Metabolic Syndrome

Page: [1347 - 1362] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Mitochondria-associated Endoplasmic Reticulum (ER) Membranes (MAMs) are the cellular structures that connect the ER and mitochondria and mediate communication between these two organelles. MAMs have been demonstrated to be involved in calcium signaling, lipid transfer, mitochondrial dynamic change, mitophagy, and the ER stress response. In addition, MAMs are critical for metabolic regulation, and their dysfunction has been reported to be associated with metabolic syndrome, including the downregulation of insulin signaling and the accelerated progression of hyperlipidemia, obesity, and hypertension. This review covers the roles of MAMs in regulating insulin sensitivity and the molecular mechanism underlying MAM-regulated cellular metabolism and reveals the potential of MAMs as a therapeutic target in treating metabolic syndrome.

Keywords: Mitochondria, endoplasmic reticulum (ER), mitochondria-associated membrane (MAM), metabolic syndrome, diabetes, insulin resistance.

[1]
Johnson, P.; Turner, L.; Carter, M.; Kelly, R.; Ewell, P.J. Metabolic syndrome prevalence and correlates in a worksite wellness program. Workplace Health Saf., 2015, 63(6), 245-252.
[http://dx.doi.org/10.1177/2165079915576920] [PMID: 26002853]
[2]
Wong, S.K.; Chin, K-Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. Vitamin E as a potential interventional treatment for metabolic syndrome: evidence from animal and human studies. Front. Pharmacol., 2017, 8, 444.
[http://dx.doi.org/10.3389/fphar.2017.00444] [PMID: 28725195]
[3]
Han, T.S.; Lean, M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis., 2016, 52048004016633371
[http://dx.doi.org/10.1177/2048004016633371] [PMID: 26998259]
[4]
Gallagher, E.J.; Leroith, D.; Karnieli, E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt. Sinai J. Med., 2010, 77(5), 511-523.
[http://dx.doi.org/10.1002/msj.20212] [PMID: 20960553]
[5]
Chen, C.C.; Lee, T.Y.; Leu, Y.L.; Wang, S.H. Pigment epithelium-derived factor inhibits adipogenesis in 3T3-L1 adipocytes and protects against high-fat diet-induced obesity and metabolic disorders in mice. Transl. Res., 2019, 210, 26-42.
[http://dx.doi.org/10.1016/j.trsl.2019.04.006] [PMID: 31121128]
[6]
Torres, S.; Fabersani, E.; Marquez, A.; Gauffin-Cano, P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur. J. Nutr., 2019, 58(1), 27-43.
[http://dx.doi.org/10.1007/s00394-018-1790-2] [PMID: 30043184]
[7]
Chang, Y.C.; Hua, S.C.; Chang, C.H.; Kao, W.Y.; Lee, H.L.; Chuang, L.M.; Huang, Y.T.; Lai, M.S. High TSH level within normal range is associated with obesity, dyslipidemia, hypertension, inflammation, hypercoagulability, and the metabolic syndrome: a novel cardiometabolic marker. J. Clin. Med., 2019, 8(6)E817
[http://dx.doi.org/10.3390/jcm8060817] [PMID: 31181658]
[8]
Gao, A.W.; Cantó, C.; Houtkooper, R.H. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol. Med., 2014, 6(5), 580-589.
[http://dx.doi.org/10.1002/emmm.201303782] [PMID: 24623376]
[9]
Hetz, C.; Axten, J.M.; Patterson, J.B. Pharmacological targeting of the unfolded protein response for disease intervention. Nat. Chem. Biol., 2019, 15(8), 764-775.
[http://dx.doi.org/10.1038/s41589-019-0326-2] [PMID: 31320759]
[10]
Szymański, J.; Janikiewicz, J.; Michalska, B.; Patalas-Krawczyk, P.; Perrone, M.; Ziółkowski, W.; Duszyński, J.; Pinton, P.; Dobrzyń, A.; Więckowski, M.R. Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int. J. Mol. Sci., 2017, 18(7)E1576
[http://dx.doi.org/10.3390/ijms18071576] [PMID: 28726733]
[11]
Rowland, A.A.; Voeltz, G.K. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol., 2012, 13(10), 607-625.
[http://dx.doi.org/10.1038/nrm3440] [PMID: 22992592]
[12]
Park, S.J.; Lee, S.B.; Suh, Y.; Kim, S.J.; Lee, N.; Hong, J.H.; Park, C.; Woo, Y.; Ishizuka, K.; Kim, J.H.; Berggren, P.O.; Sawa, A.; Park, S.K. DISC1 modulates neuronal stress responses by gate-keeping er-mitochondria Ca2+ transfer through the MAM. Cell Rep., 2017, 21(10), 2748-2759.
[http://dx.doi.org/10.1016/j.celrep.2017.11.043] [PMID: 29212023]
[13]
Theurey, P.; Rieusset, J. Mitochondria-associated membranes response to nutrient availability and role in metabolic diseases. Trends Endocrinol. Metab., 2017, 28(1), 32-45.
[http://dx.doi.org/10.1016/j.tem.2016.09.002] [PMID: 27670636]
[14]
Kerkhofs, M.; Giorgi, C.; Marchi, S.; Seitaj, B.; Parys, J.B.; Pinton, P.; Bultynck, G.; Bittremieux, M. Alterations in Ca2+ signalling via ER-mitochondria contact site remodelling in cancer. Adv. Exp. Med. Biol., 2017, 997, 225-254.
[http://dx.doi.org/10.1007/978-981-10-4567-7_17] [PMID: 28815534]
[15]
Elbaz-Alon, Y.; Rosenfeld-Gur, E.; Shinder, V.; Futerman, A.H.; Geiger, T.; Schuldiner, M. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell, 2014, 30(1), 95-102.
[http://dx.doi.org/10.1016/j.devcel.2014.06.007] [PMID: 25026036]
[16]
Gordaliza-Alaguero, I.; Cantó, C.; Zorzano, A. Metabolic implications of organelle-mitochondria communication. EMBO Rep., 2019, 20(9)e47928
[http://dx.doi.org/10.15252/embr.201947928] [PMID: 31418169]
[17]
Copeland, D.E.; Dalton, A.J. An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J. Biophys. Biochem. Cytol., 1959, 5(3), 393-396.
[http://dx.doi.org/10.1083/jcb.5.3.393] [PMID: 13664679]
[18]
Morré, D.J.; Merritt, W.D.; Lembi, C.A. Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma, 1971, 73(1), 43-49.
[http://dx.doi.org/10.1007/BF01286410] [PMID: 5112775]
[19]
Vance, J.E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem., 1990, 265(13), 7248-7256.
[http://dx.doi.org/10.1016/S0021-9258(19)39106-9] [PMID: 2332429]
[20]
Achleitner, G.; Gaigg, B.; Krasser, A.; Kainersdorfer, E.; Kohlwein, S.D.; Perktold, A.; Zellnig, G.; Daum, G. Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur. J. Biochem., 1999, 264(2), 545-553.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00658.x] [PMID: 10491102]
[21]
Rizzuto, R.; Pinton, P.; Carrington, W.; Fay, F.S.; Fogarty, K.E.; Lifshitz, L.M.; Tuft, R.A.; Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 1998, 280(5370), 1763-1766.
[http://dx.doi.org/10.1126/science.280.5370.1763] [PMID: 9624056]
[22]
D’Eletto, M.; Rossin, F.; Occhigrossi, L.; Farrace, M.G.; Faccenda, D.; Desai, R.; Marchi, S.; Refolo, G.; Falasca, L.; Antonioli, M.; Ciccosanti, F.; Fimia, G.M.; Pinton, P.; Campanella, M.; Piacentini, M. Transglutaminase type 2 regulates ER-mitochondria contact sites by interacting with GRP75. Cell Rep., 2018, 25(13), 3573.e4-3581.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.11.094]] [PMID: 30590033]
[23]
Rusiñol, A.E.; Cui, Z.; Chen, M.H.; Vance, J.E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-golgi secretory proteins including nascent lipoproteins. J. Biol. Chem., 1994, 269(44), 27494-27502.
[http://dx.doi.org/10.1016/S0021-9258(18)47012-3] [PMID: 7961664]
[24]
Gutiérrez, T.; Simmen, T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium, 2018, 70, 64-75.
[http://dx.doi.org/10.1016/j.ceca.2017.05.015] [PMID: 28619231]
[25]
Bernard-Marissal, N.; van Hameren, G.; Juneja, M.; Pellegrino, C.; Louhivuori, L.; Bartesaghi, L.; Rochat, C.; El Mansour, O.; Médard, J.J.; Croisier, M.; Maclachlan, C.; Poirot, O.; Uhlén, P.; Timmerman, V.; Tricaud, N.; Schneider, B.L.; Chrast, R. Altered interplay between endoplasmic reticulum and mitochondria in Charcot-Marie-Tooth type 2A neuropathy. Proc. Natl. Acad. Sci. USA, 2019, 116(6), 2328-2337.
[http://dx.doi.org/10.1073/pnas.1810932116] [PMID: 30659145]
[26]
Hailey, D.W.; Rambold, A.S.; Satpute-Krishnan, P.; Mitra, K.; Sougrat, R.; Kim, P.K.; Lippincott-Schwartz, J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010, 141(4), 656-667.
[http://dx.doi.org/10.1016/j.cell.2010.04.009] [PMID: 20478256]
[27]
de Brito, O.M.; Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 2008, 456(7222), 605-610.
[http://dx.doi.org/10.1038/nature07534] [PMID: 19052620]
[28]
Filadi, R.; Theurey, P.; Pizzo, P. The endoplasmic reticulum-mitochondria coupling in health and disease: molecules, functions and significance. Cell Calcium, 2017, 62, 1-15.
[http://dx.doi.org/10.1016/j.ceca.2017.01.003] [PMID: 28108029]
[29]
Danese, A.; Patergnani, S.; Bonora, M.; Wieckowski, M.R.; Previati, M.; Giorgi, C.; Pinton, P. Calcium regulates cell death in cancer: roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim. Biophys. Acta Bioenerg., 2017, 1858(8), 615-627.
[http://dx.doi.org/10.1016/j.bbabio.2017.01.003] [PMID: 28087257]
[30]
Malli, R.; Graier, W.F. The role of mitochondria in the activation/maintenance of SOCE: the contribution of mitochondrial Ca2+ uptake, mitochondrial motility, and location to store-operated Ca2+ entry. Adv. Exp. Med. Biol., 2017, 993, 297-319.
[http://dx.doi.org/10.1007/978-3-319-57732-6_16] [PMID: 28900921]
[31]
Clapham, D.E. Calcium signaling. Cell, 2007, 131(6), 1047-1058.
[http://dx.doi.org/10.1016/j.cell.2007.11.028] [PMID: 18083096]
[32]
Piegari, E.; Villarruel, C.; Dawson, S.P. Changes in Ca2+ removal can mask the effects of geometry during IP3R mediated Ca2+ signals. Front. Physiol., 2019, 10, 964.
[http://dx.doi.org/10.3389/fphys.2019.00964] [PMID: 31417423]
[33]
Parys, J.B.; De Smedt, H. Inositol 1,4,5-trisphosphate and its receptors. Adv. Exp. Med. Biol., 2012, 740, 255-279.
[http://dx.doi.org/10.1007/978-94-007-2888-2_11] [PMID: 22453946]
[34]
Lanner, J.T.; Georgiou, D.K.; Joshi, A.D.; Hamilton, S.L. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect. Biol., 2010, 2(11)a003996
[http://dx.doi.org/10.1101/cshperspect.a003996] [PMID: 20961976]
[35]
Krabbendam, I.E.; Honrath, B.; Culmsee, C.; Dolga, A.M. Mitochondrial Ca2+-activated K+ channels and their role in cell life and death pathways. Cell Calcium, 2018, 69, 101-111.
[http://dx.doi.org/10.1016/j.ceca.2017.07.005] [PMID: 28818302]
[36]
Denton, R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta, 2009, 1787(11), 1309-1316.
[http://dx.doi.org/10.1016/j.bbabio.2009.01.005] [PMID: 19413950]
[37]
Petrungaro, C.; Zimmermann, K.M.; Küttner, V.; Fischer, M.; Dengjel, J.; Bogeski, I.; Riemer, J. The Ca(2+)-dependent release of the Mia40-induced MICU1-MICU2 dimer from MCU regulates mitochondrial Ca(2+) uptake. Cell Metab., 2015, 22(4), 721-733.
[http://dx.doi.org/10.1016/j.cmet.2015.08.019] [PMID: 26387864]
[38]
Xing, Y.; Wang, M.; Wang, J.; Nie, Z.; Wu, G.; Yang, X.; Shen, Y. Dimerization of MICU proteins controls Ca(2+) influx through the mitochondrial Ca(2+) uniporter. Cell Rep., 2019, 26(5), 1203e4-1212e4.
[http://dx.doi.org/10.1016/j.celrep.2019.01.022] [PMID: 30699349]
[39]
Penna, E.; Espino, J.; De Stefani, D.; Rizzuto, R. The MCU complex in cell death. Cell Calcium, 2018, 69, 73-80.
[http://dx.doi.org/10.1016/j.ceca.2017.08.008] [PMID: 28867646]
[40]
Rizzuto, R.; Brini, M.; Murgia, M.; Pozzan, T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science, 1993, 262(5134), 744-747.
[http://dx.doi.org/10.1126/science.8235595] [PMID: 8235595]
[41]
Tubbs, E.; Chanon, S.; Robert, M.; Bendridi, N.; Bidaux, G.; Chauvin, M.A.; Ji-Cao, J.; Durand, C.; Gauvrit-Ramette, D.; Vidal, H.; Lefai, E.; Rieusset, J. Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans. Diabetes, 2018, 67(4), 636-650.
[http://dx.doi.org/10.2337/db17-0316] [PMID: 29326365]
[42]
Qi, H.; Li, L.; Shuai, J. Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations. Sci. Rep., 2015, 5, 7984.
[http://dx.doi.org/10.1038/srep07984] [PMID: 25614067]
[43]
Yuan, L.; Liu, Q.; Wang, Z.; Hou, J.; Xu, P. EI24 tethers endoplasmic reticulum and mitochondria to regulate autophagy flux. Cell. Mol. Life Sci., 2020, 77(8), 1591-1606.
[http://dx.doi.org/10.1007/s00018-019-03236-9] [PMID: 31332481]
[44]
Szabadkai, G.; Bianchi, K.; Várnai, P.; De Stefani, D.; Wieckowski, M.R.; Cavagna, D.; Nagy, A.I.; Balla, T.; Rizzuto, R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol., 2006, 175(6), 901-911.
[http://dx.doi.org/10.1083/jcb.200608073] [PMID: 17178908]
[45]
Csordás, G.; Renken, C.; Várnai, P.; Walter, L.; Weaver, D.; Buttle, K.F.; Balla, T.; Mannella, C.A.; Hajnóczky, G. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol., 2006, 174(7), 915-921.
[http://dx.doi.org/10.1083/jcb.200604016] [PMID: 16982799]
[46]
De Vos, K.J.; Mórotz, G.M.; Stoica, R.; Tudor, E.L.; Lau, K.F.; Ackerley, S.; Warley, A.; Shaw, C.E.; Miller, C.C. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet., 2012, 21(6), 1299-1311.
[http://dx.doi.org/10.1093/hmg/ddr559] [PMID: 22131369]
[47]
Paillusson, S.; Gomez-Suaga, P.; Stoica, R.; Little, D.; Gissen, P.; Devine, M.J.; Noble, W.; Hanger, D.P.; Miller, C.C.J. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol., 2017, 134(1), 129-149.
[http://dx.doi.org/10.1007/s00401-017-1704-z] [PMID: 28337542]
[48]
Hayashi, T. The sigma-1 receptor in cellular stress signaling. Front. Neurosci., 2019, 13, 733.
[http://dx.doi.org/10.3389/fnins.2019.00733] [PMID: 31379486]
[49]
Tagashira, H.; Bhuiyan, M.S.; Shioda, N.; Fukunaga, K. Fluvoxamine rescues mitochondrial Ca2+ transport and ATP production through σ(1)-receptor in hypertrophic cardiomyocytes. Life Sci., 2014, 95(2), 89-100.
[http://dx.doi.org/10.1016/j.lfs.2013.12.019] [PMID: 24373833]
[50]
Hayashi, T.; Su, T.P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell, 2007, 131(3), 596-610.
[http://dx.doi.org/10.1016/j.cell.2007.08.036] [PMID: 17981125]
[51]
Jia, J.; Cheng, J.; Wang, C.; Zhen, X. Sigma-1 receptor-modulated neuroinflammation in neurological diseases. Front. Cell. Neurosci., 2018, 12, 314.
[http://dx.doi.org/10.3389/fncel.2018.00314] [PMID: 30294261]
[52]
Reddish, F.N.; Miller, C.L.; Gorkhali, R.; Yang, J.J. Calcium dynamics mediated by the endoplasmic/sarcoplasmic reticulum and related diseases. Int. J. Mol. Sci., 2017, 18(5)E1024
[http://dx.doi.org/10.3390/ijms18051024] [PMID: 28489021]
[53]
Gottschalk, B.; Klec, C.; Waldeck-Weiermair, M.; Malli, R.; Graier, W.F. Intracellular Ca2+ release decelerates mitochondrial cristae dynamics within the junctions to the endoplasmic reticulum. Pflugers Arch., 2018, 470(8), 1193-1203.
[http://dx.doi.org/10.1007/s00424-018-2133-0] [PMID: 29527615]
[54]
Tanaka, T.; Hosaka, K.; Hoshimaru, M.; Numa, S. Purification and properties of long-chain acyl-coenzyme-A synthetase from rat liver. Eur. J. Biochem., 1979, 98(1), 165-172.
[http://dx.doi.org/10.1111/j.1432-1033.1979.tb13173.x] [PMID: 467438]
[55]
Bell, R.M.; Ballas, L.M.; Coleman, R.A. Lipid topogenesis. J. Lipid Res., 1981, 22(3), 391-403.
[http://dx.doi.org/10.1016/S0022-2275(20)34952-X] [PMID: 7017050]
[56]
Stone, S.J.; Vance, J.E. Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J. Biol. Chem., 2000, 275(44), 34534-34540.
[http://dx.doi.org/10.1074/jbc.M002865200] [PMID: 10938271]
[57]
Vance, J.E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta, 2014, 1841(4), 595-609.
[http://dx.doi.org/10.1016/j.bbalip.2013.11.014] [PMID: 24316057]
[58]
Steenbergen, R.; Nanowski, T.S.; Beigneux, A.; Kulinski, A.; Young, S.G.; Vance, J.E. Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects. J. Biol. Chem., 2005, 280(48), 40032-40040.
[http://dx.doi.org/10.1074/jbc.M506510200] [PMID: 16192276]
[59]
Nakatsuka, A.; Matsuyama, M.; Yamaguchi, S.; Katayama, A.; Eguchi, J.; Murakami, K.; Teshigawara, S.; Ogawa, D.; Wada, N.; Yasunaka, T.; Ikeda, F.; Takaki, A.; Watanabe, E.; Wada, J. Insufficiency of phosphatidylethanolamine N-methyltransferase is risk for lean non-alcoholic steatohepatitis. Sci. Rep., 2016, 6, 21721.
[http://dx.doi.org/10.1038/srep21721] [PMID: 26883167]
[60]
Gao, X.; van der Veen, J.N.; Vance, J.E.; Thiesen, A.; Vance, D.E.; Jacobs, R.L. Lack of phosphatidylethanolamine N-methyltransferase alters hepatic phospholipid composition and induces endoplasmic reticulum stress. Biochim. Biophys. Acta, 2015, 1852(12), 2689-2699.
[http://dx.doi.org/10.1016/j.bbadis.2015.09.006] [PMID: 26391255]
[61]
Elustondo, P.; Martin, L.A.; Karten, B. Mitochondrial cholesterol import. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(1), 90-101.
[http://dx.doi.org/10.1016/j.bbalip.2016.08.012] [PMID: 27565112]
[62]
Prasad, M.; Kaur, J.; Pawlak, K.J.; Bose, M.; Whittal, R.M.; Bose, H.S. Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction. J. Biol. Chem., 2015, 290(5), 2604-2616.
[http://dx.doi.org/10.1074/jbc.M114.605808] [PMID: 25505173]
[63]
Duarte, A.; Poderoso, C.; Cooke, M.; Soria, G.; Cornejo Maciel, F.; Gottifredi, V.; Podestá, E.J. Mitochondrial fusion is essential for steroid biosynthesis. PLoS One, 2012, 7(9)e45829
[http://dx.doi.org/10.1371/journal.pone.0045829] [PMID: 23029265]
[64]
Area-Gomez, E. Assessing the function of mitochondria-associated ER membranes. Methods Enzymol., 2014, 547, 181-197.
[http://dx.doi.org/10.1016/B978-0-12-801415-8.00011-4] [PMID: 25416359]
[65]
Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med., 2017, 23(7), 804-814.
[http://dx.doi.org/10.1038/nm.4350] [PMID: 28697184]
[66]
Beale, E.G. Insulin signaling and insulin resistance. J. Investig. Med., 2013, 61(1), 11-14.
[http://dx.doi.org/10.2310/JIM.0b013e3182746f95] [PMID: 23111650]
[67]
Shinjo, S.; Jiang, S.; Nameta, M.; Suzuki, T.; Kanai, M.; Nomura, Y.; Goda, N. Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid-induced insulin resistance. Exp. Cell Res., 2017, 359(1), 86-93.
[http://dx.doi.org/10.1016/j.yexcr.2017.08.006] [PMID: 28827061]
[68]
Sylow, L.; Kleinert, M.; Pehmøller, C.; Prats, C.; Chiu, T.T.; Klip, A.; Richter, E.A.; Jensen, T.E. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell. Signal., 2014, 26(2), 323-331.
[http://dx.doi.org/10.1016/j.cellsig.2013.11.007] [PMID: 24216610]
[69]
Zhang, Y.; Zhang, Y.; Yu, Y. Global phosphoproteomic analysis of insulin/Akt/mTORC1/S6K signaling in rat hepatocytes. J. Proteome Res., 2017, 16(8), 2825-2835.
[http://dx.doi.org/10.1021/acs.jproteome.7b00140] [PMID: 28689409]
[70]
Xu, Z.H.; Liu, C.H.; Hang, J.B.; Gao, B.L.; Hu, J.A. Rituximab effectively reverses tyrosine kinase inhibitors (TKIs) resistance through inhibiting the accumulation of rictor on mitochondria-associated ER-membrane (MAM). Cancer Biomark., 2017, 20(4), 581-588.
[http://dx.doi.org/10.3233/CBM-170575] [PMID: 28946557]
[71]
Kleinert, M.; Sylow, L.; Fazakerley, D.J.; Krycer, J.R.; Thomas, K.C.; Oxbøll, A.J.; Jordy, A.B.; Jensen, T.E.; Yang, G.; Schjerling, P.; Kiens, B.; James, D.E.; Ruegg, M.A.; Richter, E.A. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. Mol. Metab., 2014, 3(6), 630-641.
[http://dx.doi.org/10.1016/j.molmet.2014.06.004] [PMID: 25161886]
[72]
Jiang, H.; Westerterp, M.; Wang, C.; Zhu, Y.; Ai, D. Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia, 2014, 57(11), 2393-2404.
[http://dx.doi.org/10.1007/s00125-014-3350-5] [PMID: 25120095]
[73]
Gomez, L.; Thiebaut, P.A.; Paillard, M.; Ducreux, S.; Abrial, M.; Da Silva, C.C.; Durand, A.; Alam, M.R.; Coppenolle, F.V.; Sheu, S-S.; Ovize, M. The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ., 2016, 23(2), 313-322.
[http://dx.doi.org/10.1038/cdd.2015.101] [PMID: 26206086]
[74]
Tubbs, E.; Theurey, P.; Vial, G.; Bendridi, N.; Bravard, A.; Chauvin, M.A.; Ji-Cao, J.; Zoulim, F.; Bartosch, B.; Ovize, M.; Vidal, H.; Rieusset, J. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes, 2014, 63(10), 3279-3294.
[http://dx.doi.org/10.2337/db13-1751] [PMID: 24947355]
[75]
Tavecchio, M.; Lisanti, S.; Bennett, M.J.; Languino, L.R.; Altieri, D.C. Deletion of cyclophilin D impairs β-oxidation and promotes glucose metabolism. Sci. Rep., 2015, 5, 15981.
[http://dx.doi.org/10.1038/srep15981] [PMID: 26515038]
[76]
Rieusset, J. Role of endoplasmic reticulum-mitochondria communication in type 2 diabetes. Adv. Exp. Med. Biol., 2017, 997, 171-186.
[http://dx.doi.org/10.1007/978-981-10-4567-7_13] [PMID: 28815530]
[77]
Basso, V.; Marchesan, E.; Peggion, C.; Chakraborty, J.; von Stockum, S.; Giacomello, M.; Ottolini, D.; Debattisti, V.; Caicci, F.; Tasca, E.; Pegoraro, V.; Angelini, C.; Antonini, A.; Bertoli, A.; Brini, M.; Ziviani, E. Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol. Res., 2018, 138, 43-56.
[http://dx.doi.org/10.1016/j.phrs.2018.09.006] [PMID: 30219582]
[78]
Sebastián, D.; Hernández-Alvarez, M.I.; Segalés, J.; Sorianello, E.; Muñoz, J.P.; Sala, D.; Waget, A.; Liesa, M.; Paz, J.C.; Gopalacharyulu, P.; Orešič, M.; Pich, S.; Burcelin, R.; Palacín, M.; Zorzano, A. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5523-5528.
[http://dx.doi.org/10.1073/pnas.1108220109] [PMID: 22427360]
[79]
Gan, K.X.; Wang, C.; Chen, J.H.; Zhu, C.J.; Song, G.Y. Mitofusin-2 ameliorates high-fat diet-induced insulin resistance in liver of rats. World J. Gastroenterol., 2013, 19(10), 1572-1581.
[http://dx.doi.org/10.3748/wjg.v19.i10.1572] [PMID: 23538485]
[80]
Nasrallah, C.M.; Horvath, T.L. Mitochondrial dynamics in the central regulation of metabolism. Nat. Rev. Endocrinol., 2014, 10(11), 650-658.
[http://dx.doi.org/10.1038/nrendo.2014.160] [PMID: 25200564]
[81]
Betz, C.; Stracka, D.; Prescianotto-Baschong, C.; Frieden, M.; Demaurex, N.; Hall, M.N. Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl. Acad. Sci. USA, 2013, 110(31), 12526-12534.
[http://dx.doi.org/10.1073/pnas.1302455110] [PMID: 23852728]
[82]
Hagiwara, A.; Cornu, M.; Cybulski, N.; Polak, P.; Betz, C.; Trapani, F.; Terracciano, L.; Heim, M.H.; Rüegg, M.A.; Hall, M.N. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab., 2012, 15(5), 725-738.
[http://dx.doi.org/10.1016/j.cmet.2012.03.015] [PMID: 22521878]
[83]
Tubbs, E.; Axelsson, A.S.; Vial, G.; Wollheim, C.B.; Rieusset, J.; Rosengren, A.H. Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production. Mol. Cell. Endocrinol., 2018, 461, 205-214.
[http://dx.doi.org/10.1016/j.mce.2017.09.016] [PMID: 28923347]
[84]
Guerrero-Hernandez, A.; Verkhratsky, A. Calcium signalling in diabetes. Cell Calcium, 2014, 56(5), 297-301.
[http://dx.doi.org/10.1016/j.ceca.2014.08.009] [PMID: 25217232]
[85]
van Vliet, A.R.; Agostinis, P. Mitochondria-associated mem-branes and ER stress. Curr. Top. Microbiol. Immunol., 2018, 414, 73-102.
[http://dx.doi.org/10.1007/82_2017_2] [PMID: 28349285]
[86]
Ozcan, L.; de Souza, J.C.; Harari, A.A.; Backs, J.; Olson, E.N.; Tabas, I. Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell Metab., 2013, 18(6), 803-815.
[http://dx.doi.org/10.1016/j.cmet.2013.10.011] [PMID: 24268736]
[87]
Mohankumar, S.K.; Taylor, C.G.; Zahradka, P. Domain-dependent modulation of insulin-induced AS160 phosphorylation and glucose uptake by Ca2+/calmodulin-dependent protein kinase II in L6 myotubes. Cell. Signal., 2012, 24(1), 302-308.
[http://dx.doi.org/10.1016/j.cellsig.2011.09.014] [PMID: 21964065]
[88]
Dadi, P.K.; Vierra, N.C.; Ustione, A.; Piston, D.W.; Colbran, R.J.; Jacobson, D.A. Inhibition of pancreatic β-cell Ca2+/calmodulin-dependent protein kinase II reduces glucose-stimulated calcium influx and insulin secretion, impairing glucose tolerance. J. Biol. Chem., 2014, 289(18), 12435-12445.
[http://dx.doi.org/10.1074/jbc.M114.562587] [PMID: 24627477]
[89]
Fu, S.; Yang, L.; Li, P.; Hofmann, O.; Dicker, L.; Hide, W.; Lin, X.; Watkins, S.M.; Ivanov, A.R.; Hotamisligil, G.S. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature, 2011, 473(7348), 528-531.
[http://dx.doi.org/10.1038/nature09968] [PMID: 21532591]
[90]
Rieusset, J.; Fauconnier, J.; Paillard, M.; Belaidi, E.; Tubbs, E.; Chauvin, M.A.; Durand, A.; Bravard, A.; Teixeira, G.; Bartosch, B.; Michelet, M.; Theurey, P.; Vial, G.; Demion, M.; Blond, E.; Zoulim, F.; Gomez, L.; Vidal, H.; Lacampagne, A.; Ovize, M. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia, 2016, 59(3), 614-623.
[http://dx.doi.org/10.1007/s00125-015-3829-8] [PMID: 26660890]
[91]
Arner, P. Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes Metab. Res. Rev., 2002, 18(Suppl. 2), S5-S9.
[http://dx.doi.org/10.1002/dmrr.254] [PMID: 11921432]
[92]
Zhang, X.; Wang, Y.; Ge, H.Y.; Gu, Y.J.; Cao, F.F.; Yang, C.X.; Uzan, G.; Peng, B.; Zhang, D.H. Celastrol reverses palmitic acid (PA)-caused TLR4-MD2 activation-dependent insulin resistance via disrupting MD2-related cellular binding to PA. J. Cell. Physiol., 2018, 233(10), 6814-6824.
[http://dx.doi.org/10.1002/jcp.26547] [PMID: 29667734]
[93]
Horst, K.W.T.; Gilijamse, P.W.; Versteeg, R.I.; Ackermans, M.T.; Nederveen, A.J.; la Fleur, S.E.; Romijn, J.A.; Nieuwdorp, M.; Zhang, D.; Samuel, V.T.; Vatner, D.F.; Petersen, K.F.; Shulman, G.I.; Serlie, M.J. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep., 2017, 19(10), 1997-2004.
[http://dx.doi.org/10.1016/j.celrep.2017.05.035] [PMID: 28591572]
[94]
Rachek, L.I. Free fatty acids and skeletal muscle insulin resistance. Prog. Mol. Biol. Transl. Sci., 2014, 121, 267-292.
[http://dx.doi.org/10.1016/B978-0-12-800101-1.00008-9] [PMID: 24373240]
[95]
Vollenweider, P.; von Eckardstein, A.; Widmann, C. HDLs, diabetes, and metabolic syndrome. Handb. Exp. Pharmacol., 2015, 224, 405-421.
[http://dx.doi.org/10.1007/978-3-319-09665-0_12] [PMID: 25522996]
[96]
von Eckardstein, A.; Schulte, H.; Assmann, G. Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. Prospective Cardiovascular Münster. J. Clin. Endocrinol. Metab., 2000, 85(9), 3101-3108.
[http://dx.doi.org/10.1210/jcem.85.9.6773] [PMID: 10999793]
[97]
Garofalo, T.; Matarrese, P.; Manganelli, V.; Marconi, M.; Tinari, A.; Gambardella, L.; Faggioni, A.; Misasi, R.; Sorice, M.; Malorni, W. Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation. Autophagy, 2016, 12(6), 917-935.
[http://dx.doi.org/10.1080/15548627.2016.1160971] [PMID: 27123544]
[98]
Christian, P.; Su, Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: implications for lipoprotein metabolism in metabolic syndrome. Am. J. Physiol. Endocrinol. Metab., 2014, 307(9), E729-E737.
[http://dx.doi.org/10.1152/ajpendo.00194.2014] [PMID: 25184990]
[99]
Naik, R.; Obiang-Obounou, B.W.; Kim, M.; Choi, Y.; Lee, H.S.; Lee, K. Therapeutic strategies for metabolic diseases: small-molecule diacylglycerol acyltransferase (DGAT) inhibitors. ChemMedChem, 2014, 9(11), 2410-2424.
[http://dx.doi.org/10.1002/cmdc.201402069] [PMID: 24954424]
[100]
Stone, S.J.; Myers, H.M.; Watkins, S.M.; Brown, B.E.; Feingold, K.R.; Elias, P.M.; Farese, R.V. Jr. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem., 2004, 279(12), 11767-11776.
[http://dx.doi.org/10.1074/jbc.M311000200] [PMID: 14668353]
[101]
Stone, S.J.; Levin, M.C.; Zhou, P.; Han, J.; Walther, T.C.; Farese, R.V. Jr. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J. Biol. Chem., 2009, 284(8), 5352-5361.
[http://dx.doi.org/10.1074/jbc.M805768200] [PMID: 19049983]
[102]
Faergeman, N.J.; Knudsen, J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem. J., 1997, 323(Pt 1), 1-12.
[http://dx.doi.org/10.1042/bj3230001] [PMID: 9173866]
[103]
Suzuki, H.; Kawarabayasi, Y.; Kondo, J.; Abe, T.; Nishikawa, K.; Kimura, S.; Hashimoto, T.; Yamamoto, T. Structure and regulation of rat long-chain acyl-CoA synthetase. J. Biol. Chem., 1990, 265(15), 8681-8685.
[http://dx.doi.org/10.1016/S0021-9258(19)38942-2] [PMID: 2341402]
[104]
Shimbara-Matsubayashi, S.; Kuwata, H.; Tanaka, N.; Kato, M.; Hara, S. Analysis on the substrate specificity of recombinant human Acyl-CoA synthetase ACSL4 variants. Biol. Pharm. Bull., 2019, 42(5), 850-855.
[http://dx.doi.org/10.1248/bpb.b19-00085] [PMID: 31061331]
[105]
Teodoro, B.G.; Sampaio, I.H.; Bomfim, L.H.; Queiroz, A.L.; Silveira, L.R.; Souza, A.O.; Fernandes, A.M.; Eberlin, M.N.; Huang, T.Y.; Zheng, D.; Neufer, P.D.; Cortright, R.N.; Alberici, L.C. Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle. J. Physiol., 2017, 595(3), 677-693.
[http://dx.doi.org/10.1113/JP272962] [PMID: 27647415]
[106]
Houten, S.M.; Violante, S.; Ventura, F.V.; Wanders, R.J. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol., 2016, 78, 23-44.
[http://dx.doi.org/10.1146/annurev-physiol-021115-105045] [PMID: 26474213]
[107]
Singh, A.B.; Kan, C.F.K.; Kraemer, F.B.; Sobel, R.A.; Liu, J. Liver-specific knockdown of long-chain acyl-CoA synthetase 4 reveals its key role in VLDL-TG metabolism and phospholipid synthesis in mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab., 2019, 316(5), E880-E894.
[http://dx.doi.org/10.1152/ajpendo.00503.2018] [PMID: 30721098]
[108]
Sala-Vila, A.; Navarro-Lérida, I.; Sánchez-Alvarez, M.; Bosch, M.; Calvo, C.; López, J.A.; Calvo, E.; Ferguson, C.; Giacomello, M.; Serafini, A.; Scorrano, L.; Enriquez, J.A.; Balsinde, J.; Parton, R.G.; Vázquez, J.; Pol, A.; Del Pozo, M.A. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci. Rep., 2016, 6, 27351.
[http://dx.doi.org/10.1038/srep27351] [PMID: 27272971]
[109]
Kumari, R.; Kumar, S.; Kant, R. An update on metabolic syndrome: metabolic risk markers and adipokines in the development of metabolic syndrome. Diabetes Metab. Syndr., 2019, 13(4), 2409-2417.
[http://dx.doi.org/10.1016/j.dsx.2019.06.005] [PMID: 31405652]
[110]
Jaganathan, R.; Ravindran, R.; Dhanasekaran, S. Emerging role of adipocytokines in type 2 diabetes as mediators of insulin resistance and cardiovascular disease. Can. J. Diabetes, 2018, 42(4), 446.e1-456.e1.
[http://dx.doi.org/10.1016/j.jcjd.2017.10.040]] [PMID: 29229313]
[111]
Grundy, S.M. Adipose tissue and metabolic syndrome: too much, too little or neither. Eur. J. Clin. Invest., 2015, 45(11), 1209-1217.
[http://dx.doi.org/10.1111/eci.12519] [PMID: 26291691]
[112]
Chang, J.W.; Chen, H.L.; Su, H.J.; Lee, C.C. Abdominal obesity and insulin resistance in people exposed to moderate-to-high levels of dioxin. PLoS One, 2016, 11(1)e0145818
[http://dx.doi.org/10.1371/journal.pone.0145818] [PMID: 26752053]
[113]
Sargeant, J.A.; Gray, L.J.; Bodicoat, D.H.; Willis, S.A.; Stensel, D.J.; Nimmo, M.A.; Aithal, G.P.; King, J.A. The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: a systematic review and meta-analysis. Obes. Rev., 2018, 19(10), 1446-1459.
[http://dx.doi.org/10.1111/obr.12719] [PMID: 30092609]
[114]
Gaggini, M.; Morelli, M.; Buzzigoli, E.; DeFronzo, R.A.; Bugianesi, E.; Gastaldelli, A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients, 2013, 5(5), 1544-1560.
[http://dx.doi.org/10.3390/nu5051544] [PMID: 23666091]
[115]
Theurey, P.; Tubbs, E.; Vial, G.; Jacquemetton, J.; Bendridi, N.; Chauvin, M.A.; Alam, M.R.; Le Romancer, M.; Vidal, H.; Rieusset, J. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J. Mol. Cell Biol., 2016, 8(2), 129-143.
[http://dx.doi.org/10.1093/jmcb/mjw004] [PMID: 26892023]
[116]
Schneeberger, M.; Dietrich, M.O.; Sebastián, D.; Imbernón, M.; Castaño, C.; Garcia, A.; Esteban, Y.; Gonzalez-Franquesa, A.; Rodríguez, I.C.; Bortolozzi, A.; Garcia-Roves, P.M.; Gomis, R.; Nogueiras, R.; Horvath, T.L.; Zorzano, A.; Claret, M. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell, 2013, 155(1), 172-187.
[http://dx.doi.org/10.1016/j.cell.2013.09.003] [PMID: 24074867]
[117]
Han, J.; Kaufman, R.J. The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res., 2016, 57(8), 1329-1338.
[http://dx.doi.org/10.1194/jlr.R067595] [PMID: 27146479]
[118]
Fan, Y.; Simmen, T. Mechanistic connections between endoplasmic reticulum (ER) redox control and mitochondrial metabolism. Cells, 2019, 8(9)E1071
[http://dx.doi.org/10.3390/cells8091071] [PMID: 31547228]
[119]
Lu, K.; Ding, R.; Wang, L.; Wu, S.; Chen, J.; Hu, D. Association between prevalence of hypertension and components of metabolic syndrome: the data from Kailuan community. Clin. Exp. Hypertens., 2015, 37(4), 303-307.
[http://dx.doi.org/10.3109/10641963.2014.960973] [PMID: 25272319]
[120]
Battault, S.; Meziat, C.; Nascimento, A.; Braud, L.; Gayrard, S.; Legros, C.; De Nardi, F.; Drai, J.; Cazorla, O.; Thireau, J.; Meyer, G.; Reboul, C. Vascular endothelial function masks increased sympathetic vasopressor activity in rats with metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(3), H497-H507.
[http://dx.doi.org/10.1152/ajpheart.00217.2017] [PMID: 29127233]
[121]
Gurgenian, S.V.; Vatinian, S.Kh.; Zelveian, P.A. Arterial hypertension in metabolic syndrome: pathophysiological aspects. Ter. Arkh., 2014, 86(8), 128-132.
[PMID: 25306760]
[122]
Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res. Int., 2014, 2014406960
[http://dx.doi.org/10.1155/2014/406960] [PMID: 25136585]
[123]
Te Riet, L.; van Esch, J.H.M.; Roks, A.J.M.; van den Meiracker, A.H.V.; Danser, A.H. J. Hypertension: renin-angiotensin-aldosterone system alterations. Circ. Res., 2015, 116(6), 960-975.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303587] [PMID: 25767283]
[124]
Young, C.N.; Cao, X.; Guruju, M.R.; Pierce, J.P.; Morgan, D.A.; Wang, G.; Iadecola, C.; Mark, A.L.; Davisson, R.L. ER stress in the brain subfornical organ mediates angiotensin-dependent hypertension. J. Clin. Invest., 2012, 122(11), 3960-3964.
[http://dx.doi.org/10.1172/JCI64583] [PMID: 23064361]
[125]
Koyama, M.; Furuhashi, M.; Ishimura, S.; Mita, T.; Fuseya, T.; Okazaki, Y.; Yoshida, H.; Tsuchihashi, K.; Miura, T. Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol., 2014, 306(9), H1314-H1323.
[http://dx.doi.org/10.1152/ajpheart.00869.2013] [PMID: 24610918]
[126]
Kassan, M.; Galán, M.; Partyka, M.; Saifudeen, Z.; Henrion, D.; Trebak, M.; Matrougui, K. Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice. Arterioscler. Thromb. Vasc. Biol., 2012, 32(7), 1652-1661.
[http://dx.doi.org/10.1161/ATVBAHA.112.249318] [PMID: 22539597]
[127]
Carlisle, R.E.; Werner, K.E.; Yum, V.; Lu, C.; Tat, V.; Memon, M.; No, Y.; Ask, K.; Dickhout, J.G. Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function. J. Hypertens., 2016, 34(8), 1556-1569.
[http://dx.doi.org/10.1097/HJH.0000000000000943] [PMID: 27115336]
[128]
Spitler, K.M.; Matsumoto, T.; Webb, R.C. Suppression of endoplasmic reticulum stress improves endothelium-dependent contractile responses in aorta of the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol., 2013, 305(3), H344-H353.
[http://dx.doi.org/10.1152/ajpheart.00952.2012] [PMID: 23709602]
[129]
Verfaillie, T.; Rubio, N.; Garg, A.D.; Bultynck, G.; Rizzuto, R.; Decuypere, J.P.; Piette, J.; Linehan, C.; Gupta, S.; Samali, A.; Agostinis, P. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ., 2012, 19(11), 1880-1891.
[http://dx.doi.org/10.1038/cdd.2012.74] [PMID: 22705852]
[130]
Simonenko, V.B.; Goriutskii, V.N.; Dulin, P.A. The role of insulin resistance in pathogenesis of arterial hypertension. Klin. Med. (Mosk.), 2014, 92(9), 27-33.
[PMID: 25790708]
[131]
Cieslik, K.A.; Trial, J.; Carlson, S.; Taffet, G.E.; Entman, M.L. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J., 2013, 27(4), 1761-1771.
[http://dx.doi.org/10.1096/fj.12-220145] [PMID: 23303205]
[132]
Shuang, T.; Fu, M.; Yang, G.; Wu, L.; Wang, R. The interaction of IGF-1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells. Biochem. Pharmacol., 2018, 149, 143-152.
[http://dx.doi.org/10.1016/j.bcp.2017.12.009] [PMID: 29248598]
[133]
Foster, M.C.; Hwang, S.J.; Porter, S.A.; Massaro, J.M.; Hoffmann, U.; Fox, C.S. Fatty kidney, hypertension, and chronic kidney disease: the Framingham heart study. Hypertension, 2011, 58(5), 784-790.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.175315] [PMID: 21931075]
[134]
DeMarco, V.G.; Aroor, A.R.; Sowers, J.R. The pathophysiology of hypertension in patients with obesity. Nat. Rev. Endocrinol., 2014, 10(6), 364-376.
[http://dx.doi.org/10.1038/nrendo.2014.44] [PMID: 24732974]
[135]
Sutendra, G.; Dromparis, P.; Wright, P.; Bonnet, S.; Haromy, A.; Hao, Z.; McMurtry, M.S.; Michalak, M.; Vance, J.E.; Sessa, W.C.; Michelakis, E.D. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci. Transl. Med., 2011, 3(88)88ra55
[http://dx.doi.org/10.1126/scitranslmed.3002194] [PMID: 21697531]
[136]
Rämö, O.; Kumar, D.; Gucciardo, E.; Joensuu, M.; Saarekas, M.; Vihinen, H.; Belevich, I.; Smolander, O.P.; Qian, K.; Auvinen, P.; Jokitalo, E. NOGO-A/RTN4A and NOGO-B/RTN4B are simultaneously expressed in epithelial, fibroblast and neuronal cells and maintain ER morphology. Sci. Rep., 2016, 6, 35969.
[http://dx.doi.org/10.1038/srep35969] [PMID: 27786289]
[137]
Meshkani, R.; Zargari, M.; Larijani, B. The relationship between uric acid and metabolic syndrome in normal glucose tolerance and normal fasting glucose subjects. Acta Diabetol., 2011, 48(1), 79-88.
[http://dx.doi.org/10.1007/s00592-010-0231-3] [PMID: 21046418]
[138]
Park, S.M.; Choi, J.; Nam, T.G.; Ku, J.M.; Jeong, K. Anti-diabetic effect of 3-hydroxy-2-naphthoic acid, an endoplasmic reticulum stress-reducing chemical chaperone. Eur. J. Pharmacol., 2016, 779, 157-167.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.023] [PMID: 26983645]
[139]
Ozcan, U.; Yilmaz, E.; Ozcan, L.; Furuhashi, M.; Vaillancourt, E.; Smith, R.O.; Görgün, C.Z.; Hotamisligil, G.S. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science, 2006, 313(5790), 1137-1140.
[http://dx.doi.org/10.1126/science.1128294] [PMID: 16931765]
[140]
Kars, M.; Yang, L.; Gregor, M.F.; Mohammed, B.S.; Pietka, T.A.; Finck, B.N.; Patterson, B.W.; Horton, J.D.; Mittendorfer, B.; Hotamisligil, G.S.; Klein, S. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes, 2010, 59(8), 1899-1905.
[http://dx.doi.org/10.2337/db10-0308] [PMID: 20522594]
[141]
Thoudam, T.; Ha, C.M.; Leem, J.; Chanda, D.; Park, J.S.; Kim, H.J.; Jeon, J.H.; Choi, Y.K.; Liangpunsakul, S.; Huh, Y.H.; Kwon, T.H.; Park, K.G.; Harris, R.A.; Park, K.S.; Rhee, H.W.; Lee, I.K. PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes, 2019, 68(3), 571-586.
[http://dx.doi.org/10.2337/db18-0363] [PMID: 30523025]
[142]
Lynes, E.M.; Bui, M.; Yap, M.C.; Benson, M.D.; Schneider, B.; Ellgaard, L.; Berthiaume, L.G.; Simmen, T. Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO J., 2012, 31(2), 457-470.
[http://dx.doi.org/10.1038/emboj.2011.384] [PMID: 22045338]