[1]
Ye H-Y, Li Z-Y, Zheng Y, Chen Y, Zhou Z-H, Jin J. The attenuation of chlorogenic acid on oxidative stress for renal injury in streptozotocin-induced diabetic nephropathy rats. Arch Pharm Res 2016; 39(7): 989-97.
[2]
Duran-Salgado MB, Rubio-Guerra AF. Diabetic nephropathy and inflammation. World J Diabetes 2014; 5(3): 393.
[3]
Arora MK, Sarup Y, Tomar R, Singh M, Kumar P. Amelioration of diabetes-induced diabetic nephropathy by aloe vera: Implication of oxidative stress and hyperlipidemia. J Diet Suppl 2018; 1-18.
[4]
Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol 2017; 13(10): 629.
[5]
5. Y Li Y, Zhang L, Wang X, Wu W, Qin R. Effect of Syringic acid on antioxidant biomarkers and associated inflammatory markers in mice model of asthma. Drug Dev Res 2019; 80: 253-61.
[6]
Cikman O, Soylemez O, Ozkan OF, et al. Antioxidant activity of syringic acid prevents oxidative stress in l-arginine–induced acute pancreatitis: an experimental study on rats. Int surgery 2015; 100(5): 891-6.
[7]
Tanaka T, Kawaguchi N, Zaima N, Moriyama T, Fukuta Y, Shirasaka N. Antiosteoporotic activity of a syringic acid diet in ovariectomized mice. J Nat Med 2017; 71(4): 632-41.
[8]
Itoh A, Isoda K, Kondoh M, et al. Hepatoprotective effect of syringic acid and vanillic acid on CCl-induced liver injury. Biol Pharm Bulletin 2010; 33(6): 983-7.
[9]
Shi C, Sun Y, Zheng Z, et al. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chem 2016; 197: 100-6.
[10]
Ham JR, Lee H-I, Choi R-Y, Sim M-O, Seo K-I, Lee M-K. Anti-steatotic and anti-inflammatory roles of syringic acid in high-fat diet-induced obese mice. Food & Function 2016; 7(2): 689-97.
[11]
Arumugam B, Balagangadharan K, Selvamurugan N. Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells. J Cell Commun Signal 2018; 12(3): 561-73.
[12]
Ha SJ, Lee J, Park J, et al. Syringic acid prevents skin carcinogenesis via regulation of NoX and EGFR signaling. Biochem Pharmacol 2018; 154: 435-45.
[13]
Muthukumaran J, Srinivasan S, Venkatesan RS, Ramachandran V, Muruganathan U. Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. J Acute Disease 2013; 2(4): 304-9.
[14]
Sancak EB, Akbas A, Silan C, Cakir DU, Turkon H, Ozkanli SS. Protective effect of syringic acid on kidney ischemia-reperfusion injury. Renal Failure 2016; 38(4): 629-35.
[15]
Sabahi Z, Khoshnood-Mansoorkhani MJ, Rahmani Namadi S, Moein M. Antidiabetic and Synergistic Effects Study of Anthocyanin Fraction from Berberis integerrima Fruit on Streptozotocin-Induced Diabetic Rats Model. Trends Pharm Sci 2016; 2(1): 43-50.
[16]
Khodaei F, Rashedinia M, Heidari R, Rezaei M, Khoshnoud MJ. Ellagic acid improves muscle dysfunction in cuprizone-induced demyelinated mice via mitochondrial Sirt3 regulation. Life Sci 2019; 237: 116954.
[17]
Arabsolghar R, Saberzadeh J, Khodaei F, Borojeni RA, Khorsand M, Rashedinia M. The protective effect of sodium benzoate on aluminum toxicity in PC12 cell line. Res Pharm Sci 2017; 12(5): 391.
[18]
Khodaei F, Kholghipour H, Hosseinzadeh M, Rashedinia M. Effect of sodium benzoate on liver and kidney lipid peroxidation and antioxidant enzymes in mice. J Reports Pharma Sci 2019; 8(2): 217.
[19]
Mima A. Inflammation and oxidative stress in diabetic nephropathy: new insights on its inhibition as new therapeutic targets. J Diabetes Res 2013.
[20]
Choi K-M, Yoo H-S. Amelioration of hyperglycemia-induced nephropathy by 3,3¢-diindolylmethane in diabetic mice. Molecules 2019; 24(24): 4474.
[21]
Kashihara N, Haruna YK, Kondeti VS, Kanwar Y. Oxidative stress in diabetic nephropathy. Curr Med Chem 2010; 17(34): 4256-69.
[22]
Pradeep SR, Srinivasan K. Alleviation of oxidative stress-mediated nephropathy by dietary fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) in streptozotocin-induced diabetic rats. Food & Function 2018.
[23]
Sabahi Z, Khoshnoud MJ, khalvati B, et al. Syringic acid improves oxidative stress and mitochondrial biogenesis in the liver of streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 2020; 10(3): 111.
[24]
Rodriguez de Sotillo DV, Hadley M. Chlorogenic acid modifies plasma and liver concentrations of: Cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J Nutr Biochem 2002; 13(12): 717-26.
[25]
Cherng Y-G, Tsai C-C, Chung H-H, Lai Y-W, Kuo S-C, Cheng J-T. Antihyperglycemic action of sinapic acid in diabetic rats. Journal of Agricultural and Food Chemistry 2013; 61(49): 12053-9.
[26]
Choi R, Kim BH, Naowaboot J, et al. Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes. Exp Mol Med 2011; 43(12): 676-83.
[27]
Punithavathi VR, Prince PSM, Kumar R, Selvakumari J. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol 2011; 650(1): 465-71.
[28]
Vinayagam R, Jayachandran M, Xu B. Antidiabetic effects of simple phenolic acids: A comprehensive review. Phytother Res 2016; 30(2): 184-99.
[29]
Jung EH, Ran Kim S, Hwang IK, Youl Ha T. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agri Food Chem 2007; 55(24): 9800-4.
[30]
Wiwanitkit V. High serum alkaline phosphatase levels, a study in 181 Thai adult hospitalized patients. BMC Family practice 2001; 2(1): 2.
[31]
Oh SW, Han KH, Han SY. Associations between renal hyperfiltration and serum alkaline phosphatase. PloS one 2015; 10(4): e0122921.
[32]
Zhang S, Xu H, Yu X, Wu Y, Sui D. Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Exp Ther Med 2017; 14(1): 383-90.
[33]
Dabla PK. Renal function in diabetic nephropathy. World J Diabetes 2010; 1(2): 48-56.
[34]
Marzieh R, Hosseinzadeh H, Mohsen I, Parisa L, Bibi Marjan R, Khalil A. Effect of exposure to diazinon on adult rat’s brain. Toxicol Ind Health 2013.
[35]
Parhizkar E, Rashedinia M, Karimi M, Alipour S. Design and development of vitamin C-encapsulated proliposome with improved in-vitro and ex-vivo antioxidant efficacy. J microencapsul 2018; 35(3): 301-11.
[36]
Sasikala C, Sudhakar Y. Effect of compounds isolated from Filicium decipiens and Ventilago madraspatana against diabetic nephropathy in streptozotocin induced diabetic rats. Indian J Pharma Edu Res 2015; 49(2): 146-51.
[37]
Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chemico-biological interactions 2014; 219: 64-75.
[38]
Sabahi Z, Soltani F, Moein M. Insight into DNA protection ability of medicinal herbs and potential mechanisms in hydrogen peroxide damages model. Asian Pac J Trop Biomed 2018; 8(2): 120-9.
[39]
Vondra K, Rath R, Bass A, Slabochova Z, Teisinger J, Vitek V. Enzyme activities in quadriceps femoris muscle of obese diabetic male patients. Diabetologia 1977; 13(5): 527-9.
[40]
Zamora M, Pardo R, Villena JA. Pharmacological induction of mitochondrial biogenesis as a therapeutic strategy for the treatment of type 2 diabetes. Biochem pharmacol 2015; 98(1): 16-28.
[41]
Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol applied Pharmacol 2006; 212(2): 167-78.
[42]
Palikaras K, Tavernarakis N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 2014; 56: 182-8.
[43]
Kang J-W, Hong J-M, Lee S-M. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res 2016; 60(4): 383-93.
[44]
Guo K, Lu J, Huang Y, et al. Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS One 2015; 10(4): e0125176.
[45]
Imasawa T, Obre E, Bellance N, et al. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB J 2016; 31(1): 294-307.
[46]
Dugan LL, You Y-H, Ali SS, et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Investig 2013; 123(11)
[47]
Yu J, Auwerx J. Protein deacetylation by SIRT1: An emerging key post-translational modification in metabolic regulation. Pharmacol Res 2010; 62(1): 35-41.
[48]
Rehman H, Krishnasamy Y, Haque K, et al. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats. PLoS One 2013; 8(6): e65029.
[49]
Rasbach KA, Schnellmann RG. Isoflavones promote mitochondrial biogenesis. J Pharmacol Exp Ther 2008; 325(2): 536-43.
[50]
Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol - Heart and Circ Physiol 2009; 297(1): H13-20.
[51]
Rashedinia M, Saberzadeh J, Bakhtiari TK, Hozhabri S, Arabsolghar R. Glycyrrhizic acid ameliorates mitochondrial function and biogenesis against aluminum toxicity in PC12 cells. Neurotox Res 2019; 35(3): 584-93.
[52]
de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF. Curcumin, mitochondrial biogenesis, and mitophagy: exploring recent data and indicating future needs. Biotechnol adv 2016; 34(5): 813-26.