Lemon Peel Powder: A Natural Catalyst for Multicomponent Synthesis of Coumarin Derivatives

Page: [140 - 148] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Lemon peel powder was used as a natural catalyst for the synthesis of biscoumarins and 3,4-dihydropyrano[c]chromene derivatives. The catalyst is natural, biodegradable, environmentally benign and thus contributes a valuable addition to the existing sustainable methods for the synthesis of coumarin derivatives.

Objective: Development of Green synthesis and use of Natural catalyst.

Methods: Lemon peel powder was used as a natural, biodegradable, environmentally benign heterogenous catalyst for the synthesis of coumarin derivatives.

Results: Natural lemon peel powder was successfully used as a heterogeneous catalyst for the synthesis of coumarin based heterocyclic compounds.

Conclusion: In conclusion, an environmentally benign, green and one-pot multicomponent protocol has been developed for the synthesis of biscoumarins and 3,4-dihydropyrano[c]chromene derivatives using lemon peel powder as a natural and biodegradable catalyst. Lemon peel being natural, the present approach is sustainable and will highlight the emerging applications of natural resources for synthetic organic transformations. This protocol offers several advantages such as high yields, clean reaction conditions, and no pollution threat to the environment making it a useful and attractive process for the synthesis of coumarin derivatives.

Keywords: Coumarin, green chemistry, lemon peel powder, multicomponent, natural catalyst, biscoumarins.

Graphical Abstract

[1]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101(28), 476-495.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.010] [PMID: 26188907]
[2]
Deirdre, C.B. Studies on the mode of action of coumarins (coumarin, 6-hydroxycoumarin, 7-Hydroxycoumarin & esculetin) at a cellular level, Ph. D. Thesis, Dublin City University: Ireland. 1999.
[3]
Bhagat, K.; Bhagat, J.; Gupta, M.K.; Singh, J.V.; Gulati, H.K.; Singh, A.; Kaur, K.; Kaur, G.; Sharma, S.; Rana, A.; Singh, H.; Sharma, S.; Singh Bedi, P.M. Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione-coumarin molecular hybrids. ACS Omega, 2019, 4(5), 8720-8730.
[http://dx.doi.org/10.1021/acsomega.8b02481] [PMID: 31459961]
[4]
Liu, L.; Hu, Y.; Shen, Y.F.; Wang, G.X.; Zhu, B. Evaluation on antiviral activity of coumarin derivatives against spring viraemia of carp virus in epithelioma papulosum cyprini cells. Antiviral Res., 2017, 144, 173-185.
[http://dx.doi.org/10.1016/j.antiviral.2017.06.007] [PMID: 28624462]
[5]
Carlosde, F.; Valquíria, A.; Lozano, F.; Segin, A.; Velosa, V.; Regina, M.; Santos, M.; Mara, R.; Pereira, S. New coumarin complexes of Zn, Cu, Ni and Fe with antiparasitic activity. Polyhedron, 2015, 101, 165-170.
[http://dx.doi.org/10.1016/j.poly.2015.09.010]
[6]
Li, H.; Yao, Y.; Li, L. Coumarins as potential antidiabetic agents. J. Pharm. Pharmacol., 2017, 69(10), 1253-1264.
[http://dx.doi.org/10.1111/jphp.12774] [PMID: 28675434]
[7]
Thomas, V.; Giles, D.; Basavarajaswamy, G.P.M.; Das, A.K.; Patel, A. Coumarin derivatives as anti-inflammatory and anticancer agents. Anticancer. Agents Med. Chem., 2017, 17(3), 415-423.
[http://dx.doi.org/10.2174/1871520616666160902094739] [PMID: 27592545]
[8]
Torres, R.; Faini, F.; Modak, B.; Urbina, F.; Labbé, C.; Guerrero, J. Antioxidant activity of coumarins and flavonols from the resinous exudate of Haplopappus multifolius. Phytochemistry, 2006, 67(10), 984-987.
[http://dx.doi.org/10.1016/j.phytochem.2006.03.016] [PMID: 16684545]
[9]
Keri, R.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem., 2015, 100, 257-269.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.017] [PMID: 26112067]
[10]
Zhu, H.L.; Wan, J.B.; Wang, Y.T.; Li, B.C.; Xiang, C.; He, J.; Li, P. Medicinal compounds with antiepileptic/anticonvulsant activities. Epilepsia, 2014, 55(1), 3-16.
[http://dx.doi.org/10.1111/epi.12463] [PMID: 24299155]
[11]
Liu, G.L.; Hu, Y.; Chen, X.H.; Wang, G.X.; Ling, F. Synthesis and anthelmintic activity of coumarin-imidazole hybrid derivatives against Dactylogyrus intermedius in goldfish. Bioorg. Med. Chem. Lett., 2016, 26(20), 5039-5043.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.090] [PMID: 27617878]
[12]
Sajjadi, S.E.; Eskandarian, A.A.; Shokoohinia, Y.; Yousefi, H.A.; Mansourian, M.; Asgarian-Nasab, H.; Mohseni, N. Antileishmanial activity of prenylated coumarins isolated from Ferulago angulata and Prangos asperula. Res. Pharm. Sci., 2016, 11(4), 324-331.
[http://dx.doi.org/10.4103/1735-5362.189314] [PMID: 27651813]
[13]
Srikrishna, D.; Godugu, C.; Dubey, P.K. A review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 2018, 18(2), 113-141.
[http://dx.doi.org/10.2174/1389557516666160801094919] [PMID: 27488585]
[14]
Mendes, D.E.; Schoffstall, A.M. Citrus peel additives for one-pot triazole formation by decarboxylation, nucleophilic substitution, and azide-alkyne cycloaddition reactions. J. Chem. Educ., 2011, 88, 1582-1585.
[http://dx.doi.org/10.1021/ed101140z]
[15]
Khandare, P.M.; Ingle, R.D.; Tekale, S.U.; Jadhav, A.S.; Mashele, S.; Kendrekar, P.S.; Pawar, R.P.S.F. Green synthesis of pyran derivatives using lemon peel powder as a natural catalyst and their antimicrobial activity. J. Pharm. & Ana. Chem. Sci., 2018, 1(1), 1-3.
[16]
Pal, R. Fruit Juice: A natural, green and biocatalyst system in organic synthesis Open. J. Org. Chem., 2013, 47-56.
[17]
Saha, A.; Jana, A.; Choudhury, L.H. Lemon juice mediated multicomponent reactions for the synthesis of fused imidazoles. New J. Chem., 2018, 42, 17909-17922.
[http://dx.doi.org/10.1039/C8NJ03480J]
[18]
Khan, M.M.; Khan, S. Saigal; Sahoo, S. C. Efficient and eco-friendly one-pot synthesis of functionalized furan-2-one, pyrrol-2-one, and tetrahydropyridine using lemon juice as a biodegradable catalyst. Chem. Select, 2018, 3, 1371-1380.
[19]
Metwally, N.H.; Badawy, M.A.; Okpy, D.S. Green synthesis of some new thiopyrano[2,3-d][1,3]thiazoles using lemon juice and their antibacterial activity. Synth. Commun., 2018, 48(19), 2496-2509.
[http://dx.doi.org/10.1080/00397911.2018.1495234]
[20]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[21]
Tabatabaeian, K.; Heidari, H.; Khorshidi, A.; Mamaghani, M.; Mahmoodi, N.O. Aldehydes and 4-hydroxycoumarin using ruthenium(III) chloride hydrate as a versatile homogeneous catalyst. J. Serb. Chem. Soc., 2012, 77(4), 407-413.
[http://dx.doi.org/10.2298/JSC110427189T]
[22]
Sadeghi, B.; Ziya, T. A fast, highly efficient, and green protocol for synthesis of biscoumarins catalyzed by silica sulfuric acid nanoparticles as a reusable catalyst. 2013, 2013, 179013
[http://dx.doi.org/10.1155/2013/179013]
[23]
Khurana, J.M.; Kumar, S. Tetrabutylammonium bromide (TBAB): A neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett., 2009, 50, 4125-4127.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.125]
[24]
Vahabi, V.; Hatamjafari, F. A novel synthesis of biscoumarin derivatives catalyzed by ZnCl2 under solvent-free conditions. Orient. J. Chem., 2014, 30(2), 853-855.
[http://dx.doi.org/10.13005/ojc/300263]
[25]
Shamsaddini, A.; Sheikhhosseini, E. Synthesis of 3,3-arylidene bis(4-hydroxycoumarin) catalyzed by p-dodecylbenzenesulfonic acid (DBSA) in aqueous media and microwave irradiation. Int. J. Org. Chem. (Irvine), 2014, 4, 135-141.
[http://dx.doi.org/10.4236/ijoc.2014.42015]
[26]
Heravi, M.M.; Zakeri, M.; Mohammadi, N. Morpholine catalyzed one-pot multicomponent synthesis of compounds containing chromene core in water. Chin. J. Chem., 2011, 29, 1163-1166.
[http://dx.doi.org/10.1002/cjoc.201190217]
[27]
Montaghami, A.; Montazeri, N. An efficient method for the one-pot, three-component synthesis of 3,4-dihydropyrano[c]chromenes catalyzed by nano Al2O3. Orient. J. Chem., 2014, 30(3), 1361-1364.
[http://dx.doi.org/10.13005/ojc/300355]
[28]
Shitole, B.V.; Shitole, N.V.; Kakde, G.K. Disodium phosphate: A highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes. Orbital: Electron. J. Chem., 2017, 9(3), 131-134.
[http://dx.doi.org/10.17807/orbital.v9i3.896]
[29]
Hazeri, N.; Maghsoodlou, M.T.; Mir, F.; Kangani, M.; Saravani, H.; Molashahi, E. An efficient one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using starch solution as catalyst. Chin. J. Catal., 2014, 35, 391-395.
[http://dx.doi.org/10.1016/S1872-2067(14)60003-6]
[30]
Esmaeilpour, M.; Javidi, J.; Dehghani, F.; Dodeji, F.N. A green one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using a Fe3O4@SiO2-imid-PMA magnetic nanocatalyst under ultrasonic irradiation or reflux conditions. RSC Advances, 2015, 5, 26625-26633.
[http://dx.doi.org/10.1039/C5RA01021G]
[31]
More, Y.W.; Tekale, S.U.; Kaminwar, N.S.; Kótai, L.; Pasinszki, T.; Kendrekar, P.S.; Pawar, R.P. Synthesis of 3,4-dihydropyrano [c]chromenes using carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin as a catalyst. Curr. Org. Synth., 2019, 16(2), 288-293.
[http://dx.doi.org/10.2174/1570179415666181116104931] [PMID: 31975678]
[32]
Tekale, S.U.; Munde, S.B.; Kauthale, S.S.; Pawar, R.P. An efficient, convenient, and solvent-free synthesis of 2,3-dihydroquinazolin-4(1H)-ones using montmorillonite-KSF clay as a heterogeneous catalyst. Org. Prep. Proced. Int., 2018, 50, 314-322.
[http://dx.doi.org/10.1080/00304948.2018.1462058]
[33]
Khurana, J.M.; Vij, K. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis of tetraketones and biscoumarins. J. Chem. Sci., 2012, 124(4), 907-912.
[http://dx.doi.org/10.1007/s12039-012-0275-8]
[34]
Manolov, I.; Maichle-Moessmer, C.; Nicolova, I.; Danchev, N. Synthesis and anticoagulant activities of substituted 2,4-diketochromans, biscoumarins, and chromanocoumarins. Arch. Pharm. (Weinheim), 2006, 339(6), 319-326.
[http://dx.doi.org/10.1002/ardp.200500149] [PMID: 16649158]