Recent Advances in c-Jun N-Terminal Kinase (JNK) Inhibitors

Page: [607 - 627] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

c-Jun N-Terminal Kinases (JNKs), members of the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, play a key role in the pathogenesis of many diseases including cancer, inflammation, Parkinson’s disease, Alzheimer’s disease, cardiovascular disease, obesity, and diabetes. Therefore, JNKs represent new and excellent target by therapeutic agents. Many JNK inhibitors based on different molecular scaffolds have been discovered in the past decade. However, only a few of them have advanced to clinical trials. The major obstacle for the development of JNK inhibitors as therapeutic agents is the JNKisoform selectivity. In this review, we describe the recent development of JNK inhibitors, including ATP competitive and ATP non-competitive (allosteric) inhibitors, bidentatebinding inhibitors and dual inhibitors, the challenges, and the future direction of JNK inhibitors as potential therapeutic agents.

Keywords: JNK, inhibitors, ATP binding site, JNK isoform-selective, allosteric, bidentate, Mitogen-activated Protein Kinase (MAPK).

[1]
Zhou, Y.Y.; Li, Y.; Jiang, W.Q.; Zhou, L.F. MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci. Rep., 2015, 35(3)e00199
[http://dx.doi.org/10.1042/BSR20140141] [PMID: 26182361]
[2]
Papa, S.; Choy, P.M.; Bubici, C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene, 2019, 38(13), 2223-2240.
[http://dx.doi.org/10.1038/s41388-018-0582-8] [PMID: 30487597]
[3]
Lu, L.; Liu, Q.; Wang, P.; Wu, Y.; Liu, X.; Weng, C.; Fang, X.; Li, B.; Cao, X.; Mao, H.; Wang, L.; Guan, M.; Wang, W.; Liu, G. MicroRNA-148b regulates tumor growth of non-small cell lung cancer through targeting MAPK/JNK pathway. BMC Cancer, 2019, 19(1), 209.
[http://dx.doi.org/10.1186/s12885-019-5400-3] [PMID: 30849960]
[4]
Zhang, Q.; Luna-Vital, D.; de Mejia, G.E. Anthocyanins from colored maize ameliorated the inflammatory paracrine interplay between macrophages and adipocytes through regulation of NF-B and JNK-dependent MAPK pathways. J. Funct. Foods, 2019, 54, 175-186.
[http://dx.doi.org/10.1016/j.jff.2019.01.016]
[5]
Wolle, P.; Hardick, J.; Cronin, S.J.F.; Engel, J.; Baumann, M.; Lategahn, J.; Penninger, J.M.; Rauh, D. Targeting the MKK7-JNK (mitogen-activated protein kinase kinase 7-c-Jun N-terminal kinase) pathway with covalent inhibitors. J. Med. Chem., 2019, 62(5), 2843-2848.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00102] [PMID: 30768270]
[6]
Grynberg, K.; Ma, F.Y.; Nikolic-Paterson, D.J. The JNK signaling pathway in renal fibrosis. Front. Physiol., 2017, 8, 829.
[http://dx.doi.org/10.3389/fphys.2017.00829] [PMID: 29114233]
[7]
Bubici, C.; Papa, S. JNK signalling in cancer: in need of new, smarter therapeutic targets. Br. J. Pharmacol., 2014, 171(1), 24-37.
[http://dx.doi.org/10.1111/bph.12432] [PMID: 24117156]
[8]
Garnica, P.; Encío, I.; Plano, D.; Palop, J.A.; Sanmartín, C. Organoseleno cytostatic derivatives: autophagic cell death with AMPK and JNK activation. Eur. J. Med. Chem., 2019, 175, 234-246.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.074] [PMID: 31082766]
[9]
Shakya, B.; Shahi, N.; Ahmad, F.; Yadav, P.N.; Pokharel, Y.R. 2-Pyridineformamide N(4)-ring incorporated thiosemicarbazones inhibit MCF-7 cells by inhibiting JNK pathway. Bioorg. Med. Chem. Lett., 2019, 29(13), 1677-1681.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.031] [PMID: 31053506]
[10]
Solinas, G.; Becattini, B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol. Metab., 2016, 6(2), 174-184.
[http://dx.doi.org/10.1016/j.molmet.2016.12.001] [PMID: 28180059]
[11]
Grabiec, A.M.; Angiolilli, C.; Hartkamp, L.M.; van Baarsen, L.G.; Tak, P.P.; Reedquist, K.A. JNK-dependent downregulation of FoxO1 is required to promote the survival of fibroblast-like synoviocytes in rheumatoid arthritis. Ann. Rheum. Dis., 2015, 74(9), 1763-1771.
[http://dx.doi.org/10.1136/annrheumdis-2013-203610] [PMID: 24812285]
[12]
Yarza, R.; Vela, S.; Solas, M.; Ramirez, M.J. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front. Pharmacol., 2016, 6, 321.
[http://dx.doi.org/10.3389/fphar.2015.00321] [PMID: 26793112]
[13]
Messoussi, A.; Feneyrolles, C.; Bros, A.; Deroide, A.; Daydé-Cazals, B.; Chevé, G.; Van Hijfte, N.; Fauvel, B.; Bougrin, K.; Yasri, A. Recent progress in the design, study and development of c-Jun N-terminal kinase inhibitors as anticancer agents. Chem. Biol., 2014, 21(11), 1433-1443.
[http://dx.doi.org/10.1016/j.chembiol.2014.09.007] [PMID: 25442375]
[14]
Ferrao, P.T. Taking out the JNK: a window of opportunity to improve cancer therapy. Mol. Cell. Oncol., 2016, 3(3)e1128515
[http://dx.doi.org/10.1080/23723556.2015.1128515] [PMID: 27314087]
[15]
Liu, J.; Wang, T.; Creighton, C.J.; Wu, S.P.; Ray, M.; Janardhan, K.S.; Willson, C.J.; Cho, S.N.; Castro, P.D.; Ittmann, M.M.; Li, J.L.; Davis, R.J.; DeMayo, F.J. JNK1/2 represses Lkb1-deficiency-induced lung squamous cell carcinoma progression. Nat. Commun., 2019, 10(1), 2148.
[http://dx.doi.org/10.1038/s41467-019-09843-1] [PMID: 31089135]
[16]
LoGrasso, P.; Kamenecka, T. Inhibitors of c-jun-N-terminal kinase (JNK). Mini Rev. Med. Chem., 2008, 8(8), 755-766.
[http://dx.doi.org/10.2174/138955708784912120] [PMID: 18673131]
[17]
Yan, C.; Kaoud, T.; Lee, S.; Dalby, K.N.; Ren, P. Understanding the specificity of a docking interaction between JNK1 and the scaffolding protein JIP1. J. Phys. Chem. B, 2011, 115(6), 1491-1502.
[http://dx.doi.org/10.1021/jp1073522] [PMID: 21261310]
[18]
Smyth, L.A.; Collins, I. Measuring and interpreting the selectivity of protein kinase inhibitors. J. Chem. Biol., 2009, 2(3), 131-151.
[http://dx.doi.org/10.1007/s12154-009-0023-9] [PMID: 19568781]
[19]
Koch, P.; Gehringer, M.; Laufer, S.A. Inhibitors of c-Jun N-terminal kinases: an update. J. Med. Chem., 2015, 58(1), 72-95.
[http://dx.doi.org/10.1021/jm501212r] [PMID: 25415535]
[20]
Graczyk, P.P. JNK inhibitors as anti-inflammatory and neuroprotective agents. Future Med. Chem., 2013, 5(5), 539-551.
[http://dx.doi.org/10.4155/fmc.13.34] [PMID: 23573972]
[21]
Palmer, S.S.; Altan, M.; Denis, D.; Tos, E.G.; Gotteland, J.P.; Osteen, K.G.; Bruner-Tran, K.L.; Nataraja, S.G. Bentamapimod (JNK Inhibitor AS602801) induces regression of endometriotic lesions in animal models. Reprod. Sci., 2016, 23(1), 11-23.
[http://dx.doi.org/10.1177/1933719115600553] [PMID: 26335175]
[22]
Yamamoto, M.; Suzuki, S.; Togashi, K.; Sanomachi, T.; Seino, S.; Kitanaka, C.; Okada, M. AS602801 sensitizes ovarian cancer stem cells to paclitaxel by down-regulating MDR1. Anticancer Res., 2019, 39(2), 609-617.
[http://dx.doi.org/10.21873/anticanres.13154] [PMID: 30711936]
[23]
Yamamoto, M.; Suzuki, S.; Togashi, K.; Sanomachi, T.; Seino, S.; Kitanaka, C.; Okada, M. AS602801, an anticancer stem cell candidate drug, reduces survivin expression and sensitizes A2780 ovarian cancer stem cells to carboplatin and paclitaxel. Anticancer Res., 2018, 38(12), 6699-6706.
[http://dx.doi.org/10.21873/anticanres.13038] [PMID: 30504379]
[24]
Krenitsky, V.P.; Nadolny, L.; Delgado, M.; Ayala, L.; Clareen, S.S.; Hilgraf, R.; Albers, R.; Hegde, S.; D’Sidocky, N.; Sapienza, J.; Wright, J.; McCarrick, M.; Bahmanyar, S.; Chamberlain, P.; Delker, S.L.; Muir, J.; Giegel, D.; Xu, L.; Celeridad, M.; Lachowitzer, J.; Bennett, B.; Moghaddam, M.; Khatsenko, O.; Katz, J.; Fan, R.; Bai, A.; Tang, Y.; Shirley, M.A.; Benish, B.; Bodine, T.; Blease, K.; Raymon, H.; Cathers, B.E.; Satoh, Y. Discovery of CC-930, an orally active anti-fibrotic JNK inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(3), 1433-1438.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.027] [PMID: 22244937]
[25]
van der Velden, J.L.J.; Ye, Y.; Nolin, J.D.; Hoffman, S.M.; Chapman, D.G.; Lahue, K.G.; Abdalla, S.; Chen, P.; Liu, Y.; Bennett, B.; Khalil, N.; Sutherland, D.; Smith, W.; Horan, G.; Assaf, M.; Horowitz, Z.; Chopra, R.; Stevens, R.M.; Palmisano, M.; Janssen-Heininger, Y.M.W.; Schafer, P.H. JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clin. Transl. Med., 2016, 5(1), 36.
[http://dx.doi.org/10.1186/s40169-016-0117-2] [PMID: 27590145]
[26]
Reich, N.; Tomcik, M.; Zerr, P.; Lang, V.; Dees, C.; Avouac, J.; Palumbo, K.; Horn, A.; Akhmetshina, A.; Beyer, C.; Xie, W.; Bennett, B.L.; Distler, O.; Schett, G.; Distler, J.H. Jun N-terminal kinase as a potential molecular target for prevention and treatment of dermal fibrosis. Ann. Rheum. Dis., 2012, 71(5), 737-745.
[http://dx.doi.org/10.1136/annrheumdis-2011-200412] [PMID: 22258492]
[27]
Deo, N.; El-Hoss, J.; Kolind, M.; Mikulec, K.; Peacock, L.; Little, D.G.; Schindeler, A. JNK inhibitor CC-930 reduces fibrosis in a murine model of Nf1-deficient fracture repair. J. Appl. Biomed., 2018, 16(4), 350-357.
[http://dx.doi.org/10.1016/j.jab.2018.01.006]
[28]
Zheng, S.; Long, L.; Li, Y.; Xu, Y.; Jiqin, Z.; Ji, W.; Min, W. A novel ASK inhibitor AGI-1067 inhibits TLR-4-mediated activation of ASK1 by preventing dissociation of thioredoxin from ASK1. Cardiovasc. Pharm. Open Access, 2015, 4(1), 132.
[http://dx.doi.org/10.4172/2329-6607.1000132] [PMID: 28435845]
[29]
Liu, Z.; Shi, S.; Zhu, H.; Chen, Y.; Zhang, Y.; Zheng, Z.; Wang, X. Novel ASK1 inhibitor AGI-1067 attenuates AGE-induced fibrotic response by suppressing the MKKs/p38 MAPK pathway in human coronary arterial smooth muscle cells. Int. Heart J., 2018, 59(6), 1416-1424.
[http://dx.doi.org/10.1536/ihj.17-625] [PMID: 30305582]
[30]
Liu, Z.; Zheng, S.; Wang, X.; Qiu, C.; Guo, Y. Novel ASK1 inhibitor AGI-1067 improves AGE-induced cardiac dysfunction by inhibiting MKKs/p38 MAPK and NF-B apoptotic signaling. FEBS Open Bio, 2018, 8(9), 1445-1456.
[http://dx.doi.org/10.1002/2211-5463.12499] [PMID: 30186746]
[31]
Vasilevskaya, I.A.; Selvakumaran, M.; Hierro, L.C.; Goldstein, S.R.; Winkler, J.D.; O’Dwyer, P.J. Inhibition of JNK sensitizes hypoxic colon cancer cells to DNA-damaging agents. Clin. Cancer Res., 2015, 21(18), 4143-4152.
[http://dx.doi.org/10.1158/1078-0432.ccr-15-0352] [PMID: 26023085]
[32]
Abdolazimi, Y.; Zhao, Z.; Lee, S.; Xu, H.; Allegretti, P.; Horton, T.M.; Yeh, B.; Moeller, H.P.; Nichols, R.J.; McCutcheon, D.; Shalizi, A.; Smith, M.; Armstrong, N.A.; Annes, J.P. CC-401 promotes β-cell replication via pleiotropic consequences of DYRK1A/B inhibition. Endocrinology, 2018, 159(9), 3143-3157.
[http://dx.doi.org/10.1210/en.2018-00083] [PMID: 29514186]
[33]
Bowers, S.; Truong, A.P.; Jeffrey Neitz, R.; Hom, R.K.; Sealy, J.M.; Probst, G.D.; Quincy, D.; Peterson, B.; Chan, W.; Galemmo, R.A. Jr.; Konradi, A.W.; Sham, H.L.; Tóth, G.; Pan, H.; Lin, M.; Yao, N.; Artis, D.R.; Zhang, H.; Chen, L.; Dryer, M.; Samant, B.; Zmolek, W.; Wong, K.; Lorentzen, C.; Goldbach, E.; Tonn, G.; Quinn, K.P.; Sauer, J.M.; Wright, S.; Powell, K.; Ruslim, L.; Ren, Z.; Bard, F.; Yednock, T.A.; Griswold-Prenner, I. Design and synthesis of brain penetrant selective JNK inhibitors with improved pharmacokinetic properties for the prevention of neurodegeneration. Bioorg. Med. Chem. Lett., 2011, 21(18), 5521-5527.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.100] [PMID: 21813278]
[34]
Haynes, N.E.; Scott, N.R.; Chen, L.C.; Janson, C.A.; Li, J.K.; Lukacs, C.M.; Railkar, A.; Tozzo, E.; Whittard, T.; Brown, N.F.; Cheung, A.W. Identification of an adamantyl azaquinolone JNK selective inhibitor. ACS Med. Chem. Lett., 2012, 3(9), 764-768.
[http://dx.doi.org/10.1021/ml300175c] [PMID: 24900545]
[35]
Gong, L.; Han, X.; Silva, T.; Tan, Y.C.; Goyal, B.; Tivitmahaisoon, P.; Trejo, A.; Palmer, W.; Hogg, H.; Jahagir, A.; Alam, M.; Wagner, P.; Stein, K.; Filonova, L.; Loe, B.; Makra, F.; Rotstein, D.; Rapatova, L.; Dunn, J.; Zuo, F.; Dal Porto, J.; Wong, B.; Jin, S.; Chang, A.; Tran, P.; Hsieh, G.; Niu, L.; Shao, A.; Reuter, D.; Hermann, J.; Kuglstatter, A.; Goldstein, D. Development of indole/indazole-aminopyrimidines as inhibitors of c-Jun N-terminal kinase (JNK): optimization for JNK potency and physicochemical properties. Bioorg. Med. Chem. Lett., 2013, 23(12), 3565-3569.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.029] [PMID: 23664880]
[36]
Palmer, W.S.; Alam, M.; Arzeno, H.B.; Chang, K.C.; Dunn, J.P.; Goldstein, D.M.; Gong, L.; Goyal, B.; Hermann, J.C.; Hogg, J.H.; Hsieh, G.; Jahangir, A.; Janson, C.; Jin, S.; Ursula Kammlott, R.; Kuglstatter, A.; Lukacs, C.; Michoud, C.; Niu, L.; Reuter, D.C.; Shao, A.; Silva, T.; Trejo-Martin, T.A.; Stein, K.; Tan, Y.C.; Tivitmahaisoon, P.; Tran, P.; Wagner, P.; Weller, P.; Wu, S.Y. Development of amino-pyrimidine inhibitors of c-Jun N-terminal kinase (JNK): kinase profiling guided optimization of a 1,2,3-benzotriazole lead. Bioorg. Med. Chem. Lett., 2013, 23(5), 1486-1492.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.047] [PMID: 23352510]
[37]
Li, B.; Cociorva, O.M.; Nomanbhoy, T.; Weissig, H.; Li, Q.; Nakamura, K.; Liyanage, M.; Zhang, M.C.; Shih, A.Y.; Aban, A.; Hu, Y.; Cajica, J.; Pham, L.; Kozarich, J.W.; Shreder, K.R. Hit-to-lead optimization and kinase selectivity of imidazo[1,2-a]quinoxalin-4-amine derived JNK1 inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(18), 5217-5222.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.087] [PMID: 23916259]
[38]
Park, H.; Iqbal, S.; Hernandez, P.; Mora, R.; Zheng, K.; Feng, Y.; LoGrasso, P. Structural basis and biological consequences for JNK2/3 isoform selective aminopyrazoles. Sci. Rep., 2015, 5, 8047.
[http://dx.doi.org/10.1038/srep08047] [PMID: 25623238]
[39]
Zheng, K.; Park, C.M.; Iqbal, S.; Hernandez, P.; Park, H.; LoGrasso, P.V.; Feng, Y. Pyridopyrimidinone derivatives as potent and selective c-Jun N-terminal kinase (JNK) inhibitors. ACS Med. Chem. Lett., 2015, 6(4), 413-418.
[http://dx.doi.org/10.1021/ml500474d] [PMID: 25893042]
[40]
Ansideri, F.; Macedo, J.T.; Eitel, M.; El-Gokha, A.; Zinad, D.S.; Scarpellini, C.; Kudolo, M.; Schollmeyer, D.; Boeckler, F.M.; Blaum, B.S.; Laufer, S.A.; Koch, P. Structural optimization of a pyridinylimidazole scaffold: shifting the selectivity from p38α mitogen-activated protein kinase to c-Jun N-terminal kinase 3. ACS Omega, 2018, 3(7), 7809-7831.
[http://dx.doi.org/10.1021/acsomega.8b00668] [PMID: 30087925]
[41]
Bennett, B.L.; Sasaki, D.T.; Murray, B.W.; O’Leary, E.C.; Sakata, S.T.; Xu, W.; Leisten, J.C.; Motiwala, A.; Pierce, S.; Satoh, Y.; Bhagwat, S.S.; Manning, A.M.; Anderson, D.W. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13681-13686.
[http://dx.doi.org/10.1073/pnas.251194298] [PMID: 11717429]
[42]
Shen, H.; Wu, N.; Wang, Y.; Han, X.; Zheng, Q.; Cai, X.; Zhang, H.; Zhao, M. JNK inhibitor SP600125 attenuates paraquat-induced acute lung injury: an in vivo and in vitro study. 2017, 40(4), 1319-1330.
[http://dx.doi.org/10.1007/s10753-017-0575-8] [PMID: 28474156]
[43]
Wu, H.M.; Fang, L.; Shen, Q.Y.; Liu, R.Y. SP600125 promotes resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model. Mol. Immunol., 2015, 67(2 Pt B), 311-316.
[http://dx.doi.org/10.1016/j.molimm.2015.06.016] [PMID: 26139014]
[44]
Liu, Y.; Song, Y.; Zhu, X. MicroRNA-181a regulates apoptosis and autophagy process in Parkinson’s disease by inhibiting p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases (JNK) signaling pathways. Med. Sci. Monit., 2017, 23, 1597-1606.
[http://dx.doi.org/10.12659/MSM.900218] [PMID: 28365714]
[45]
Grassi, E.S.; Vezzoli, V.; Negri, I.; Lábadi, Á.; Fugazzola, L.; Vitale, G.; Persani, L. SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways. Oncotarget, 2015, 6(34), 36383-36399.
[http://dx.doi.org/10.18632/oncotarget.5799] [PMID: 26415230]
[46]
Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Hanks, T.S.; Kochetkova, I.; Pascual, D.W.; Jutila, M.A.; Quinn, M.T. Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors. Mol. Pharmacol., 2012, 81(6), 832-845.
[http://dx.doi.org/10.1124/mol.111.077446] [PMID: 22434859]
[47]
Kamenecka, T.; Habel, J.; Duckett, D.; Chen, W.; Ling, Y.Y.; Frackowiak, B.; Jiang, R.; Shin, Y.; Song, X.; LoGrasso, P. Structure-activity relationships and X-ray structures describing the selectivity of aminopyrazole inhibitors for c-Jun N-terminal kinase 3 (JNK3) over p38. J. Biol. Chem., 2009, 284(19), 12853-12861.
[http://dx.doi.org/10.1074/jbc.M809430200] [PMID: 19261605]
[48]
Gaillard, P.; Jeanclaude-Etter, I.; Ardissone, V.; Arkinstall, S.; Cambet, Y.; Camps, M.; Chabert, C.; Church, D.; Cirillo, R.; Gretener, D.; Halazy, S.; Nichols, A.; Szyndralewiez, C.; Vitte, P.A.; Gotteland, J.P. Design and synthesis of the first generation of novel potent, selective, and in vivo active (benzothiazol-2-yl)acetonitrile inhibitors of the c-Jun N-terminal kinase. J. Med. Chem., 2005, 48(14), 4596-4607.
[http://dx.doi.org/10.1021/jm0310986] [PMID: 15999997]
[49]
Swahn, B.M.; Huerta, F.; Kallin, E.; Malmström, J.; Weigelt, T.; Viklund, J.; Womack, P.; Xue, Y.; Ohberg, L. Design and synthesis of 6-anilinoindazoles as selective inhibitors of c-Jun N-terminal kinase-3. Bioorg. Med. Chem. Lett., 2005, 15(22), 5095-5099.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.083] [PMID: 16140012]
[50]
Jiang, R.; Frackowiak, B.; Shin, Y.; Song, X.; Chen, W.; Lin, L.; Cameron, M.D.; Duckett, D.R.; Kamenecka, T.M. Design and synthesis of 1-aryl-5-anilinoindazoles as c-Jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(9), 2683-2687.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.082] [PMID: 23518277]
[51]
He, Y.; Kamenecka, T.M.; Shin, Y.; Song, X.; Jiang, R.; Noel, R.; Duckett, D.; Chen, W.; Ling, Y.Y.; Cameron, M.D.; Lin, L.; Khan, S.; Koenig, M.; LoGrasso, P.V. Synthesis and SAR of novel quinazolines as potent and brain-penetrant c-jun N-terminal kinase (JNK) inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(6), 1719-1723.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.079] [PMID: 21316221]
[52]
Bowers, S.; Truong, A.P.; Neitz, R.J.; Neitzel, M.; Probst, G.D.; Hom, R.K.; Peterson, B.; Galemmo, R.A. Jr.; Konradi, A.W.; Sham, H.L.; Tóth, G.; Pan, H.; Yao, N.; Artis, D.R.; Brigham, E.F.; Quinn, K.P.; Sauer, J.M.; Powell, K.; Ruslim, L.; Ren, Z.; Bard, F.; Yednock, T.A.; Griswold-Prenner, I. Design and synthesis of a novel, orally active, brain penetrant, tri-substituted thiophene based JNK inhibitor. Bioorg. Med. Chem. Lett., 2011, 21(6), 1838-1843.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.046] [PMID: 21316234]
[53]
Schepetkin, I.A.; Khlebnikov, A.I.; Potapov, A.S.; Kovrizhina, A.R.; Matveevskaya, V.V.; Belyanin, M.L.; Atochin, D.N.; Zanoza, S.O.; Gaidarzhy, N.M.; Lyakhov, S.A.; Kirpotina, L.N.; Quinn, M.T. Synthesis, biological evaluation, and molecular modeling of 11H-indeno[1,2-b]quinoxalin-11-one derivatives and tryptanthrin-6-oxime as c-Jun N-terminal kinase inhibitors. Eur. J. Med. Chem., 2019, 161, 179-191.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.023] [PMID: 30347329]
[54]
Asano, Y.; Kitamura, S.; Ohra, T.; Aso, K.; Igata, H.; Tamura, T.; Kawamoto, T.; Tanaka, T.; Sogabe, S.; Matsumoto, S.; Yamaguchi, M.; Kimura, H.; Itoh, F. Discovery, synthesis and biological evaluation of isoquinolones as novel and highly selective JNK inhibitors (1). Bioorg. Med. Chem., 2008, 16(8), 4715-4732.
[http://dx.doi.org/10.1016/j.bmc.2008.02.027] [PMID: 18313304]
[55]
Asano, Y.; Kitamura, S.; Ohra, T.; Itoh, F.; Kajino, M.; Tamura, T.; Kaneko, M.; Ikeda, S.; Igata, H.; Kawamoto, T.; Sogabe, S.; Matsumoto, S.; Tanaka, T.; Yamaguchi, M.; Kimura, H.; Fukumoto, S. Discovery, synthesis and biological evaluation of isoquinolones as novel and highly selective JNK inhibitors (2). Bioorg. Med. Chem., 2008, 16(8), 4699-4714.
[http://dx.doi.org/10.1016/j.bmc.2008.02.028] [PMID: 18313930]
[56]
Alam, M.; Beevers, R.E.; Ceska, T.; Davenport, R.J.; Dickson, K.M.; Fortunato, M.; Gowers, L.; Haughan, A.F.; James, L.A.; Jones, M.W.; Kinsella, N.; Lowe, C.; Meissner, J.W.; Nicolas, A.L.; Perry, B.G.; Phillips, D.J.; Pitt, W.R.; Platt, A.; Ratcliffe, A.J.; Sharpe, A.; Tait, L.J. Synthesis and SAR of aminopyrimidines as novel c-Jun N-terminal kinase (JNK) inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(12), 3463-3467.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.078] [PMID: 17459703]
[57]
Gong, L.; Tan, Y.C.; Boice, G.; Abbot, S.; McCaleb, K.; Iyer, P.; Zuo, F.; Dal Porto, J.; Wong, B.; Jin, S.; Chang, A.; Tran, P.; Hsieh, G.; Niu, L.; Shao, A.; Reuter, D.; Lukacs, C.M.; Ursula Kammlott, R.; Kuglstatter, A.; Goldstein, D. Discovery of a novel series of 4-quinolone JNK inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(24), 7381-7387.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.066] [PMID: 23142618]
[58]
Rückle, T.; Biamonte, M.; Grippi-Vallotton, T.; Arkinstall, S.; Cambet, Y.; Camps, M.; Chabert, C.; Church, D.J.; Halazy, S.; Jiang, X.; Martinou, I.; Nichols, A.; Sauer, W.; Gotteland, J.P. Design, synthesis, and biological activity of novel, potent, and selective (benzoylaminomethyl) thiophene sulfonamide inhibitors of c-Jun-N-terminal kinase. J. Med. Chem., 2004, 47(27), 6921-6934.
[http://dx.doi.org/10.1021/jm031112e] [PMID: 15615541]
[59]
Cerbone, A.; Toaldo, C.; Pizzimenti, S.; Pettazzoni, P.; Dianzani, C.; Minelli, R.; Ciamporcero, E.; Roma, G.; Dianzani, M.U.; Canaparo, R.; Ferretti, C.; Barrera, G. AS601245, an anti-inflammatory JNK inhibitor, and clofibrate have a synergistic effect in inducing cell responses and in affecting the gene expression profile in CaCo-2 colon cancer cells. PPAR Res., 2012, 2012269751
[http://dx.doi.org/10.1155/2012/269751] [PMID: 22619672]
[60]
Carboni, S.; Hiver, A.; Szyndralewiez, C.; Gaillard, P.; Gotteland, J.P.; Vitte, P.A. AS601245 (1,3-benzothiazol-2-yl (2-[[2-(3-pyridinyl) ethyl] amino]-4 pyrimidinyl) acetonitrile): a c-Jun NH2-terminal protein kinase inhibitor with neuroprotective properties. J. Pharmacol. Exp. Ther., 2004, 310(1), 25-32.
[http://dx.doi.org/10.1124/jpet.103.064246] [PMID: 14988419]
[61]
Angell, R.M.; Atkinson, F.L.; Brown, M.J.; Chuang, T.T.; Christopher, J.A.; Cichy-Knight, M.; Dunn, A.K.; Hightower, K.E.; Malkakorpi, S.; Musgrave, J.R.; Neu, M.; Rowland, P.; Shea, R.L.; Smith, J.L.; Somers, D.O.; Thomas, S.A.; Thompson, G.; Wang, R.N. -(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)amides as potent, selective, inhibitors of JNK2 and JNK3. Bioorg. Med. Chem. Lett., 2007, 17(5), 1296-1301.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.003] [PMID: 17194588]
[62]
Jiang, R.; Duckett, D.; Chen, W.; Habel, J.; Ling, Y.Y.; LoGrasso, P.; Kamenecka, T.M. 3,5-Disubstituted quinolines as novel c-Jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(22), 6378-6382.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.054] [PMID: 17911023]
[63]
Song, X.; Chen, W.; Lin, L.; Ruiz, C.H.; Cameron, M.D.; Duckett, D.R.; Kamenecka, T.M. Synthesis and SAR of 2-phenoxypyridines as novel c-Jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(23), 7072-7075.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.090] [PMID: 22004719]
[64]
Stocks, M.J.; Barber, S.; Ford, R.; Leroux, F.; St-Gallay, S.; Teague, S.; Xue, Y. Structure-driven HtL: design and synthesis of novel aminoindazole inhibitors of c-Jun N-terminal kinase activity. Bioorg. Med. Chem. Lett., 2005, 15(14), 3459-3462.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.008] [PMID: 15950471]
[65]
Kim, M.H.; Lee, J.; Jung, K.; Kim, M.; Park, Y.J.; Ahn, H.; Kwon, Y.H.; Hah, J.M. Syntheses and biological evaluation of 1-heteroaryl-2-aryl-1H-benzimidazole derivatives as c-Jun N-terminal kinase inhibitors with neuroprotective effects. Bioorg. Med. Chem., 2013, 21(8), 2271-2285.
[http://dx.doi.org/10.1016/j.bmc.2013.02.021] [PMID: 23498914]
[66]
Neitz, R.J.; Konradi, A.W.; Sham, H.L.; Zmolek, W.; Wong, K.; Qin, A.; Lorentzen, C.; Nakamura, D.; Quinn, K.P.; Sauer, J.M.; Powell, K.; Ruslim, L.; Chereau, D.; Ren, Z.; Anderson, J.; Bard, F.; Yednock, T.A.; Griswold-Prenner, I. Highly selective c-Jun N-terminal kinase (JNK) 3 inhibitors with in vitro CNS-like pharmacokinetic properties II. Central core replacement. Bioorg. Med. Chem. Lett., 2011, 21(12), 3726-3729.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.074] [PMID: 21570836]
[67]
Liu, M.; Xin, Z.; Clampit, J.E.; Wang, S.; Gum, R.J.; Haasch, D.L.; Trevillyan, J.M.; Abad-Zapatero, C.; Fry, E.H.; Sham, H.L.; Liu, G. Synthesis and SAR of 1,9-dihydro-9-hydroxypyrazolo[3,4-b]quinolin-4-ones as novel, selective c-Jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(10), 2590-2594.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.046] [PMID: 16527482]
[68]
Kaneko, M.; Saito, Y.; Saito, H.; Matsumoto, T.; Matsuda, Y.; Vaught, J.L.; Dionne, C.A.; Angeles, T.S.; Glicksman, M.A.; Neff, N.T.; Rotella, D.P.; Kauer, J.C.; Mallamo, J.P.; Hudkins, R.L.; Murakata, C. Neurotrophic 3,9-bis[(alkylthio)methyl]-and-bis(alkoxymethyl)-K-252a derivatives. J. Med. Chem., 1997, 40(12), 1863-1869.
[http://dx.doi.org/10.1021/jm970031d] [PMID: 9191963]
[69]
Saporito, M.S.; Hudkins, R.L.; Maroney, A.C. Discovery of CEP-1347/KT-7515, an inhibitor of the JNK/SAPK pathway for the treatment of neurodegenerative diseases. Prog. Med. Chem., 2002, 40, 23-62.
[http://dx.doi.org/10.1016/S0079-6468(08)70081-X] [PMID: 12516522]
[70]
Shoulson, I.; Schwid, S.; Hyson, C.; Oakes, D.; Gorbold, E.; Rudolph, A.; Shinaman, A.; Kamp, C.; Kieburtz, K.; Lang, A.; Fahn, S.; Gauger, L.; Goetz, C.; Marek, K.; Seibyl, J. Parkinson Study Group PRECEPT Investigators. Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology, 2007, 69(15), 1480-1490.
[http://dx.doi.org/10.1212/01.wnl.0000277648.63931.c0] [PMID: 17881719]
[71]
Goettert, M.; Schattel, V.; Koch, P.; Merfort, I.; Laufer, S. Biological evaluation and structural determinants of p38α mitogen-activated-protein kinase and c-Jun-N-terminal kinase 3 inhibition by flavonoids. ChemBioChem, 2010, 11(18), 2579-2588.
[http://dx.doi.org/10.1002/cbic.201000487] [PMID: 21108268]
[72]
He, Y.; Duckett, D.; Chen, W.; Ling, Y.Y.; Cameron, M.D.; Lin, L.; Ruiz, C.H.; Lograsso, P.V.; Kamenecka, T.M.; Koenig, M. Synthesis and SAR of novel isoxazoles as potent c-jun N-terminal kinase (JNK) inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(1), 161-164.
[http://dx.doi.org/10.1016/j.bmcl.2013.11.052] [PMID: 24332487]
[73]
Hom, R.K.; Bowers, S.; Sealy, J.M.; Truong, A.P.; Probst, G.D.; Neitzel, M.L.; Neitz, R.J.; Fang, L.; Brogley, L.; Wu, J.; Konradi, A.W.; Sham, H.L.; Tóth, G.; Pan, H.; Yao, N.; Artis, D.R.; Quinn, K.; Sauer, J.M.; Powell, K.; Ren, Z.; Bard, F.; Yednock, T.A.; Griswold-Prenner, I. Design and synthesis of disubstituted thiophene and thiazole based inhibitors of JNK. Bioorg. Med. Chem. Lett., 2010, 20(24), 7303-7307.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.066] [PMID: 21071223]
[74]
Humphries, P.S.; Lafontaine, J.A.; Agree, C.S.; Alexander, D.; Chen, P.; Do, Q.Q.; Li, L.Y.; Lunney, E.A.; Rajapakse, R.J.; Siegel, K.; Timofeevski, S.L.; Wang, T.; Wilhite, D.M. Synthesis and SAR of 4-substituted-2-aminopyri-midines as novel c-Jun N-terminal kinase (JNK) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(8), 2099-2102.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.023] [PMID: 19327989]
[75]
Shin, Y.; Chen, W.; Habel, J.; Duckett, D.; Ling, Y.Y.; Koenig, M.; He, Y.; Vojkovsky, T.; LoGrasso, P.; Kamenecka, T.M. Synthesis and SAR of piperazine amides as novel c-jun N-terminal kinase (JNK) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(12), 3344-3347.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.086] [PMID: 19433357]
[76]
Swahn, B.M.; Xue, Y.; Arzel, E.; Kallin, E.; Magnus, A.; Plobeck, N.; Viklund, J. Design and synthesis of 2′-anilino-4,4′-bipyridines as selective inhibitors of c-Jun N-terminal kinase-3. Bioorg. Med. Chem. Lett., 2006, 16(5), 1397-1401.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.039] [PMID: 16337120]
[77]
Szczepankiewicz, B.G.; Kosogof, C.; Nelson, L.T.J.; Liu, G.; Liu, B.; Zhao, H.; Serby, M.D.; Xin, Z.; Liu, M.; Gum, R.J.; Haasch, D.L.; Wang, S.; Clampit, J.E.; Johnson, E.F.; Lubben, T.H.; Stashko, M.A.; Olejniczak, E.T.; Sun, C.; Dorwin, S.A.; Haskins, K.; Abad-Zapatero, C.; Fry, E.H.; Hutchins, C.W.; Sham, H.L.; Rondinone, C.M.; Trevillyan, J.M. Aminopyridine-based c-Jun N-terminal kinase inhibitors with cellular activity and minimal cross-kinase activity. J. Med. Chem., 2006, 49(12), 3563-3580.
[http://dx.doi.org/10.1021/jm060199b] [PMID: 16759099]
[78]
Zhao, H.; Serby, M.D.; Xin, Z.; Szczepankiewicz, B.G.; Liu, M.; Kosogof, C.; Liu, B.; Nelson, L.T.; Johnson, E.F.; Wang, S.; Pederson, T.; Gum, R.J.; Clampit, J.E.; Haasch, D.L.; Abad-Zapatero, C.; Fry, E.H.; Rondinone, C.; Trevillyan, J.M.; Sham, H.L.; Liu, G. Discovery of potent, highly selective, and orally bioavailable pyridine carboxamide c-Jun NH2-terminal kinase inhibitors. J. Med. Chem., 2006, 49(15), 4455-4458.
[http://dx.doi.org/10.1021/jm060465l] [PMID: 16854050]
[79]
Doma, A.; Kulkarni, R.; Palakodety, R.; Sastry, G.N.; Sridhara, J.; Garlapati, A. Pyrazole derivatives as potent inhibitors of c-Jun N-terminal kinase: synthesis and SAR studies. Bioorg. Med. Chem., 2014, 22(21), 6209-6219.
[http://dx.doi.org/10.1016/j.bmc.2014.08.028] [PMID: 25261929]
[80]
Noël, R.; Shin, Y.; Song, X.; He, Y.; Koenig, M.; Chen, W.; Ling, Y.Y.; Lin, L.; Ruiz, C.H.; LoGrasso, P.; Cameron, M.D.; Duckett, D.R.; Kamenecka, T.M. Synthesis and SAR of 4-(pyrazol-3-yl)-pyridines as novel c-jun N-terminal kinase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(9), 2732-2735.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.104] [PMID: 21185177]
[81]
Noel, R.; Song, X.; Shin, Y.; Banerjee, S.; Kojetin, D.; Lin, L.; Ruiz, C.H.; Cameron, M.D.; Burris, T.P.; Kamenecka, T.M. Synthesis and SAR of tetrahydroisoquinolines as Rev-erbα agonists. Bioorg. Med. Chem. Lett., 2012, 22(11), 3739-3742.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.023] [PMID: 22560469]
[82]
Liu, M.; Wang, S.; Clampit, J.E.; Gum, R.J.; Haasch, D.L.; Rondinone, C.M.; Trevillyan, J.M.; Abad-Zapatero, C.; Fry, E.H.; Sham, H.L.; Liu, G. Discovery of a new class of 4-anilinopyrimidines as potent c-Jun N-terminal kinase inhibitors: synthesis and SAR studies. Bioorg. Med. Chem. Lett., 2007, 17(3), 668-672.
[http://dx.doi.org/10.1016/j.bmcl.2006.10.093] [PMID: 17107797]
[83]
Liu, G.; Zhao, H.; Liu, B.; Xin, Z.; Liu, M.; Kosogof, C.; Szczepankiewicz, B.G.; Wang, S.; Clampit, J.E.; Gum, R.J.; Haasch, D.L.; Trevillyan, J.M.; Sham, H.L. Aminopyridine carboxamides as c-Jun N-terminal kinase inhibitors: targeting the gatekeeper residue and beyond. Bioorg. Med. Chem. Lett., 2006, 16(22), 5723-5730.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.097] [PMID: 16971120]
[84]
Wityak, J.; McGee, K.F.; Conlon, M.P.; Song, R.H.; Duffy, B.C.; Clayton, B.; Lynch, M.; Wang, G.; Freeman, E.; Haber, J.; Kitchen, D.B.; Manning, D.D.; Ismail, J.; Khmelnitsky, Y.; Michels, P.; Webster, J.; Irigoyen, M.; Luche, M.; Hultman, M.; Bai, M.; Kuok, I.D.; Newell, R.; Lamers, M.; Leonard, P.; Yates, D.; Matthews, K.; Ongeri, L.; Clifton, S.; Mead, T.; Deupree, S.; Wheelan, P.; Lyons, K.; Wilson, C.; Kiselyov, A.; Toledo-Sherman, L.; Beconi, M.; Muñoz-Sanjuan, I.; Bard, J.; Dominguez, C. Lead optimization toward proof-of-concept tools for Huntington’s disease within a 4-(1H-pyrazol-4-yl)pyrimidine class of pan-JNK inhibitors. J. Med. Chem., 2015, 58(7), 2967-2987.
[http://dx.doi.org/10.1021/jm5013598] [PMID: 25760409]
[85]
Foulkes, D.M.; Byrne, D.P.; Yeung, W.; Shrestha, S.; Bailey, F.P.; Ferries, S.; Eyers, C.E.; Keeshan, K.; Wells, C.; Drewry, D.H.; Zuercher, W.J.; Kannan, N.; Eyers, P.A. Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Sci. Signal., 2018, 11(549)eaat7951
[http://dx.doi.org/10.1126/scisignal.aat7951] [PMID: 30254057]
[86]
Lu, X.; Yu, L.; Zhang, Z.; Ren, X.; Smaill, J.B.; Ding, K. Targeting EGFRL858R/T790M and EGFRL858R/T790M/C797S resistance mutations in NSCLC: current developments in medicinal chemistry. Med. Res. Rev., 2018, 38(5), 1550-1581.
[http://dx.doi.org/10.1002/med.21488] [PMID: 29377179]
[87]
Smith, C.I.E. From identification of the BTK kinase to effective management of leukemia. Oncogene, 2017, 36(15), 2045-2053.
[http://dx.doi.org/10.1038/onc.2016.343] [PMID: 27669440]
[88]
Liang, C.; Tian, D.; Ren, X.; Ding, S.; Jia, M.; Xin, M.; Thareja, S. The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: a mini-review. Eur. J. Med. Chem., 2018, 151, 315-326.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.062] [PMID: 29631132]
[89]
Zhang, T.; Inesta-Vaquera, F.; Niepel, M.; Zhang, J.; Ficarro, S.B.; Machleidt, T.; Xie, T.; Marto, J.A.; Kim, N.; Sim, T.; Laughlin, J.D.; Park, H.; LoGrasso, P.V.; Patricelli, M.; Nomanbhoy, T.K.; Sorger, P.K.; Alessi, D.R.; Gray, N.S. Discovery of potent and selective covalent inhibitors of JNK. Chem. Biol., 2012, 19(1), 140-154.
[http://dx.doi.org/10.1016/j.chembiol.2011.11.010] [PMID: 22284361]
[90]
Muth, F.; El-Gokha, A.; Ansideri, F.; Eitel, M.; Döring, E.; Sievers-Engler, A.; Lange, A.; Boeckler, F.M.; Lämmerhofer, M.; Koch, P.; Laufer, S.A. Tri- and tetrasubstituted pyridinylimidazoles as covalent inhibitors of c-Jun N-terminal kinase 3. J. Med. Chem., 2017, 60(2), 594-607.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01180] [PMID: 27977190]
[91]
Stebbins, J.L.; De, S.K.; Pavlickova, P.; Chen, V.; Machleidt, T.; Chen, L.H.; Kuntzen, C.; Kitada, S.; Karin, M.; Pellecchia, M. Design and characterization of a potent and selective dual ATP- and substrate-competitive subnanomolar bidentate c-Jun N-terminal kinase (JNK) inhibitor. J. Med. Chem., 2011, 54(18), 6206-6214.
[http://dx.doi.org/10.1021/jm200479c] [PMID: 21815634]
[92]
Borsello, T.; Clarke, P.G.; Hirt, L.; Vercelli, A.; Repici, M.; Schorderet, D.F.; Bogousslavsky, J.; Bonny, C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat. Med., 2003, 9(9), 1180-1186.
[http://dx.doi.org/10.1038/nm911] [PMID: 12937412]
[93]
Ngoei, K.R.; Catimel, B.; Milech, N.; Watt, P.M.; Bogoyevitch, M.A. A novel retro-inverso peptide is a preferential JNK substrate-competitive inhibitor. Int. J. Biochem. Cell Biol., 2013, 45(8), 1939-1950.
[http://dx.doi.org/10.1016/j.biocel.2013.06.006] [PMID: 23792175]
[94]
Kaoud, T.S.; Mitra, S.; Lee, S.; Taliaferro, J.; Cantrell, M.; Linse, K.D.; Van Den Berg, C.L.; Dalby, K.N. Development of JNK2-selective peptide inhibitors that inhibit breast cancer cell migration. ACS Chem. Biol., 2011, 6(6), 658-666.
[http://dx.doi.org/10.1021/cb200017n] [PMID: 21438496]
[95]
Ngoei, K.R.; Catimel, B.; Church, N.; Lio, D.S.; Dogovski, C.; Perugini, M.A.; Watt, P.M.; Cheng, H.C.; Ng, D.C.; Bogoyevitch, M.A. Characterization of a novel JNK (c-Jun N-terminal kinase) inhibitory peptide. Biochem. J., 2011, 434(3), 399-413.
[http://dx.doi.org/10.1042/BJ20101244] [PMID: 21162712]
[96]
Stebbins, J.L.; De, S.K.; Machleidt, T.; Becattini, B.; Vazquez, J.; Kuntzen, C.; Chen, L.H.; Cellitti, J.F.; Riel-Mehan, M.; Emdadi, A.; Solinas, G.; Karin, M.; Pellecchia, M. Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proc. Natl. Acad. Sci. USA, 2008, 105(43), 16809-16813.
[http://dx.doi.org/10.1073/pnas.0805677105] [PMID: 18922779]
[97]
De, S.K.; Stebbins, J.L.; Chen, L.H.; Riel-Mehan, M.; Machleidt, T.; Dahl, R.; Yuan, H.; Emdadi, A.; Barile, E.; Chen, V.; Murphy, R.; Pellecchia, M. Design, synthesis, and structure-activity relationship of substrate competitive, selective, and in vivo active triazole and thiadiazole inhibitors of the c-Jun N-terminal kinase. J. Med. Chem., 2009, 52(7), 1943-1952.
[http://dx.doi.org/10.1021/jm801503n] [PMID: 19271755]
[98]
Busquets, O.; Ettcheto, M.; Verdaguer, E.; Castro-Torres, R.D.; Auladell, C.; Beas-Zarate, C.; Folch, J.; Camins, A. JNK1 inhibition by licochalcone A leads to neuronal protection against excitotoxic insults derived of kainic acid. Neuropharmacology, 2018, 131, 440-452.
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.030] [PMID: 29111385]
[99]
Yao, K.; Cho, Y.Y.; Bode, A.M.; Vummenthala, A.; Park, J.G.; Liu, K.; Pang, Y.P.; Dong, Z. A selective small-molecule inhibitor of c-Jun N-terminal kinase 1. FEBS Lett., 2009, 583(13), 2208-2212.
[http://dx.doi.org/10.1016/j.febslet.2009.06.017] [PMID: 19527717]
[100]
Hill, Z.B.; Perera, B.G.; Maly, D.J. A chemical genetic method for generating bivalent inhibitors of protein kinases. J. Am. Chem. Soc., 2009, 131(19), 6686-6688.
[http://dx.doi.org/10.1021/ja900871y] [PMID: 19391594]
[101]
Enkvist, E.; Lavogina, D.; Raidaru, G.; Vaasa, A.; Viil, I.; Lust, M.; Viht, K.; Uri, A. Conjugation of adenosine and hexa-(D-arginine) leads to a nanomolar bisubstrate-analog inhibitor of basophilic protein kinases. J. Med. Chem., 2006, 49(24), 7150-7159.
[http://dx.doi.org/10.1021/jm0605942] [PMID: 17125267]
[102]
Lavogina, D.; Enkvist, E.; Uri, A. Bisubstrate inhibitors of protein kinases: from principle to practical applications. ChemMedChem, 2010, 5(1), 23-34.
[http://dx.doi.org/10.1002/cmdc.200900252] [PMID: 19774589]
[103]
Lee, J.H.; Kumar, S.; Lawrence, D.S. Stepwise combinatorial evolution of Akt bisubstrate inhibitors. ChemBioChem, 2008, 9(4), 507-509.
[http://dx.doi.org/10.1002/cbic.200700583] [PMID: 18224646]
[104]
Pflug, A.; Rogozina, J.; Lavogina, D.; Enkvist, E.; Uri, A.; Engh, R.A.; Bossemeyer, D. Diversity of bisubstrate binding modes of adenosine analogue-oligoarginine conjugates in protein kinase a and implications for protein substrate interactions. J. Mol. Biol., 2010, 403(1), 66-77.
[http://dx.doi.org/10.1016/j.jmb.2010.08.028] [PMID: 20732331]
[105]
Fischer, P.M. The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr. Protein Pept. Sci., 2003, 4(5), 339-356.
[http://dx.doi.org/10.2174/1389203033487054] [PMID: 14529528]
[106]
Feng, Y.; Chambers, J.W.; Iqbal, S.; Koenig, M.; Park, H.; Cherry, L.; Hernandez, P.; Figuera-Losada, M.; LoGrasso, P.V. A small molecule bidentate-binding dual inhibitor probe of the LRRK2 and JNK kinases. ACS Chem. Biol., 2013, 8(8), 1747-1754.
[http://dx.doi.org/10.1021/cb3006165] [PMID: 23751758]
[107]
Chen, T.; Kablaoui, N.; Little, J.; Timofeevski, S.; Tschantz, W.R.; Chen, P.; Feng, J.; Charlton, M.; Stanton, R.; Bauer, P. Identification of small-molecule inhibitors of the JIP-JNK interaction. Biochem. J., 2009, 420(2), 283-294.
[http://dx.doi.org/10.1042/BJ20081899] [PMID: 19243309]
[108]
De, S.K.; Barile, E.; Chen, V.; Stebbins, J.L.; Cellitti, J.F.; Machleidt, T.; Carlson, C.B.; Yang, L.; Dahl, R.; Pellecchia, M. Design, synthesis, and structure-activity relationship studies of thiophene-3-carboxamide derivatives as dual inhibitors of the c-Jun N-terminal kinase. Bioorg. Med. Chem., 2011, 19(8), 2582-2588.
[http://dx.doi.org/10.1016/j.bmc.2011.03.017] [PMID: 21458276]
[109]
Dou, X.; Huang, H.; Li, Y.; Jiang, L.; Wang, Y.; Jin, H.; Jiao, N.; Zhang, L.; Zhang, L.; Liu, Z. Multistage screening reveals 3-substituted indolin-2-one derivatives as novel and isoform-selective c-Jun N-terminal kinase 3 (JNK3) inhibitors: implications to drug discovery for potential treatment of neurodegenerative diseases. J. Med. Chem., 2019, 62(14), 6645-6664.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00537] [PMID: 31268308]
[110]
Laurini, E.; Posocco, P.; Fermeglia, M.; Gibbons, D.L.; Quintás-Cardama, A.; Pricl, S. Through the open door: preferential binding of dasatinib to the active form of BCR-ABL unveiled by in silico experiments. Mol. Oncol., 2013, 7(5), 968-975.
[http://dx.doi.org/10.1016/j.molonc.2013.06.001] [PMID: 23816609]
[111]
Goldblatt, M.; Huggins, J.T.; Doelken, P.; Gurung, P.; Sahn, S.A. Dasatinib-induced pleural effusions: a lymphatic network disorder? Am. J. Med. Sci., 2009, 338(5), 414-417.
[http://dx.doi.org/10.1097/MAJ.0b013e3181ae9227] [PMID: 19838099]