Cross-talk of Signaling Pathways in the Pathogenesis of Allergic Asthma and Cataract

Page: [810 - 822] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Allergic asthma is a chronic inflammatory disease, which involves many cellular and cellular components. Cataract is a condition that affects the transparency of the lens, which the opacity of the lens caused by any innate or acquired factor degrades its transparency or changes in color. Both of them belong to diseases induced by immune disorders or inflammation. We want to confirm the signaling pathways involved in the regulation of asthma and cataract simultaneously, and provide reference for the later related experiments. So we conducted a scoping review of many databases and searched for studies (Academic research published in Wiley, Springer and Bentham from 2000 to 2019) about the possible relationship between asthma and cataract. It was found that during the onset of asthma and cataract, Rho/Rock signaling pathway, Notch signaling pathway, Wnt/β-catenin signaling pathway, PI3K/AKT signaling pathway, JAK/STAT signaling pathway, MAPK signaling pathway, TGF-β1/Smad signaling pathway and NF-κB signaling pathway are all active, so they may have a certain correlation in pathogenesis. Asthma may be associated with cataract through the eight signaling pathways, causing inflammation or immune imbalance based on allergy that can lead to cataract. According to these studies, we speculated that the three most likely signaling pathways are PI3K/AKT, MAPK and NF-κB signaling pathway.

Keywords: Allergy, asthma, cataract, signaling pathway, pathogenesis, inflammation, immune imbalance.

Graphical Abstract

[1]
Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol., 2015, 16(1), 45-56.
[http://dx.doi.org/10.1038/ni.3049 ] [PMID: 25521684 ]
[2]
Brian, G.; Taylor, H. Cataract blindness-challenges for the 21st century. Bull. World Health Organ., 2001, 79(3), 249-256.
[PMID: 11285671 ]
[3]
Duan, W.; Aguinaldo Datiles, A.M.; Leung, B.P.; Vlahos, C.J.; Wong, W.S.F. An anti-inflammatory role for a phosphoinositide 3-kinase inhibitor LY294002 in a mouse asthma model. Int. Immunopharmacol., 2005, 5(3), 495-502.
[http://dx.doi.org/10.1016/j.intimp.2004.10.015 ] [PMID: 15683846 ]
[4]
Burgess, J.K.; Lee, J.H.; Ge, Q.; Ramsay, E.E.; Poniris, M.H.; Parmentier, J.; Roth, M.; Johnson, P.R.; Hunt, N.H.; Black, J.L.; Ammit, A.J. Dual ERK and phosphatidylinositol 3-kinase pathways control airway smooth muscle proliferation: Differences in asthma. J. Cell. Physiol., 2008, 216(3), 673-679.
[http://dx.doi.org/10.1002/jcp.21450 ] [PMID: 18338817 ]
[5]
Lee, K.S.; Lee, H.K.; Hayflick, J.S.; Lee, Y.C.; Puri, K.D. Inhibition of phosphoinositide 3-kinase delta attenuates allergic airway inflammation and hyper-responsiveness in murine asthma model. FASEB J., 2006, 20(3), 455-465.
[http://dx.doi.org/10.1096/fj.05-5045com ] [PMID: 16507763]
[6]
Franke, T.F. PI3K/Akt: Getting it right matters. Oncogene, 2008, 27(50), 6473-6488.
[http://dx.doi.org/10.1038/onc.2008.313 ] [PMID: 18955974 ]
[7]
Hemmings, B.A.; Restuccia, D.F. PI3K-PKB/Akt pathway. Cold Spring Harb. Perspect. Biol., 2012, 4(9), a011189.
[http://dx.doi.org/10.1101/cshperspect.a011189 ] [PMID: 22952397 ]
[8]
Xue, G.; Hemmings, B.A. PKB/Akt-dependent regulation of cell motility. J. Natl. Cancer Inst., 2013, 105(6), 393-404.
[http://dx.doi.org/10.1093/jnci/djs648 ] [PMID: 23355761 ]
[9]
Laplante, M.; Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci., 2009, 122(Pt 20), 3589-3594.
[http://dx.doi.org/10.1242/jcs.051011 ] [PMID: 19812304 ]
[10]
Jewell, J.L.; Russell, R.C.; Guan, K.L. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol., 2013, 14(3), 133-139.
[http://dx.doi.org/10.1038/nrm3522 ] [PMID: 23361334 ]
[11]
Saqcena, M.; Menon, D.; Patel, D.; Mukhopadhyay, S.; Chow, V.; Foster, D.A. Amino acids and mTOR mediate distinct metabolic checkpoints in mammalian G1 cell cycle. PLoS One, 2013, 8(8), e74157.
[http://dx.doi.org/10.1371/journal.pone.0074157 ] [PMID: 23977397]
[12]
Chen, Y.C.; Chien, L.H.; Huang, B.M.; Chia, Y.C.; Chiu, H.F. Aqueous extracts of Toona sinensis leaves inhibit renal carcinoma cell growth and migration through JAK2/stat3, Akt, MEK/ERK, and mTOR/HIF-2α Pathways. Nutr. Cancer, 2016, 68(4), 654-666.
[http://dx.doi.org/10.1080/01635581.2016.1158292 ] [PMID: 27115866 ]
[13]
Gao, H.; Zhong, F.; Xie, J.; Peng, J.; Han, Z. PTTG promotes invasion in human breast cancer cell line by upregulating EMMPRIN via FAK/Akt/mTOR signaling. Am. J. Cancer Res., 2016, 6(2), 425-439.
[PMID: 27186413]
[14]
Guo, R.; Meng, Q.; Guo, H. Xiao, L.; Yang, X.; Cui, Y.; Huang, Y. TGF-β2 induces epithelial-mesenchymal transition in cultured human lens epithelial cells through activation of the PI3K/Akt/mTOR signaling pathway. Mol. Med. Rep., 2015, 13, 1105-1110.
[http://dx.doi.org/10.3892/mmr.2015.4645 ] [PMID: 26647778]
[15]
Yao, K.; Ye, P.P.; Tan, J.; Tang, X.J.; Shen, Tu X.C. Involvement of PI3K/Akt pathway in TGF-beta2-mediated epithelial mesenchymal transition in human lens epithelial cells. Ophthalmic Res., 2008, 40(2), 69-76.
[http://dx.doi.org/10.1159/000113884 ] [PMID: 18223299]
[16]
Kumar, S.; Bryant, C.S.; Chamala, S.; Qazi, A.; Seward, S.; Pal, J.; Steffes, C.P.; Weaver, D.W.; Morris, R.; Malone, J.M.; Shammas, M.A.; Prasad, M.; Batchu, R.B. Ritonavir blocks AKT signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells. Mol. Cancer, 2009, 8, 26.
[http://dx.doi.org/10.1186/1476-4598-8-26 ] [PMID: 19386116 ]
[17]
Liegl, R.; Wertheimer, C.; Kernt, M.; Docheva, D.; Kampik, A.; Eibl-Lindner, K.H. Attenuation of human lens epithelial cell spreading, migration and contraction via downregulation of the PI3K/Akt pathway. Graefes Arch. Clin. Exp. Ophthalmol., 2014, 252(2), 285-292.
[http://dx.doi.org/10.1007/s00417-013-2524-z ] [PMID: 24263529 ]
[18]
Meng, Q.; Guo, H.; Xiao, L.; Cui, Y.; Guo, R.; Xiao, D.; Huang, Y. mTOR regulates TGF-β2-induced epithelial-mesenchymal transition in cultured human lens epithelial cells. Graefes Arch. Clin. Exp. Ophthalmol., 2013, 251(10), 2363-2370.
[http://dx.doi.org/10.1007/s00417-013-2435-z ] [PMID: 23907484 ]
[19]
Kariyawasam, H.H.; Robinson, D.S. The role of eosinophils in airway tissue remodelling in asthma. Curr. Opin. Immunol., 2007, 19(6), 681-686.
[http://dx.doi.org/10.1016/j.coi.2007.07.021 ] [PMID: 17949963 ]
[20]
Kay, A.B. TH2-type cytokines in asthma. Ann. N. Y. Acad. Sci., 1996, 796, 1-8.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb32561.x ] [PMID: 8906206]
[21]
Kay, A.B. The role of eosinophils in the pathogenesis of asthma. Trends Mol. Med., 2005, 11(4), 148-152.
[http://dx.doi.org/10.1016/j.molmed.2005.02.002 ] [PMID: 15823751]
[22]
Zhou, X.; Hu, H.; Balzar, S.; Trudeau, J.B.; Wenzel, S.E. MAPK regulation of IL-4/IL-13 receptors contributes to the synergistic increase in CCL11/eotaxin-1 in response to TGF-β1 and IL-13 in human airway fibroblasts. J. Immunol., 2012, 188(12), 6046-6054.
[http://dx.doi.org/10.4049/jimmunol.1102760 ] [PMID: 22573806]
[23]
Kampen, G.T.; Stafford, S.; Adachi, T.; Jinquan, T.; Quan, S.; Grant, J.A.; Skov, P.S.; Poulsen, L.K.; Alam, R. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood, 2000, 95(6), 1911-1917.
[http://dx.doi.org/10.1182/blood.V95.6.1911 ] [PMID: 10706854]
[24]
Chen, C.H.; Zhang, D.H.; LaPorte, J.M.; Ray, A. Cyclic AMP activates p38 mitogen-activated protein kinase in Th2 cells: Phosphorylation of GATA-3 and stimulation of Th2 cytokine gene expression. J. Immunol., 2000, 165(10), 5597-5605.
[http://dx.doi.org/10.4049/jimmunol.165.10.5597 ] [PMID: 11067915 ]
[25]
Chu, X.; Ci, X.; He, J.; Wei, M.; Yang, X.; Cao, Q.; Li, H.; Guan, S.; Deng, Y.; Pang, D.; Deng, X. A novel anti-inflammatory role for ginkgolide B in asthma via inhibition of the ERK/MAPK signaling pathway. Molecules, 2011, 16(9), 7634-7648.
[http://dx.doi.org/10.3390/molecules16097634 ] [PMID: 21900866]
[26]
Liu, H.; Feng, G.; Wu, L.; Fu, S.; Liu, P.; Yang, W.; Zhang, X. The effects of rapamycin on lens epithelial cell proliferation, migration, and matrix formation: An in vitro study. Mol. Vis., 2010, 16, 1646-1653.
[PMID: 20806034 ]
[27]
Pitteloud, N.; Meysing, A.; Quinton, R.; Acierno, J.S. Jr.; Dwyer, A.A.; Plummer, L.; Fliers, E.; Boepple, P.; Hayes, F.; Seminara, S.; Hughes, V.A.; Ma, J.; Bouloux, P.; Mohammadi, M.; Crowley, W.F.Jr. Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes. Mol. Cell. Endocrinol., 2006, 254-255, 60-69.
[http://dx.doi.org/10.1016/j.mce.2006.04.021 ] [PMID: 16764984 ]
[28]
Gerits, N.; Shiryaev, A.; Kostenko, S.; Klenow, H.; Shiryaeva, O.; Johannessen, M.; Moens, U. The transcriptional regulation and cell-specific expression of the MAPK-activated protein kinase MK5. Cell. Mol. Biol. Lett., 2009, 14(4), 548-574.
[http://dx.doi.org/10.2478/s11658-009-0020-6 ] [PMID: 19484198 ]
[29]
Oriowo, O.M.; Cullen, A.P.; Chou, B.R.; Sivak, J.G. Action spectrum and recovery for in vitro UV-induced cataract using whole lenses. Invest. Ophthalmol. Vis. Sci., 2001, 42(11), 2596-2602.
[PMID: 11581205 ]
[30]
Congdon, N.T.; West, S.T.; Duncan, D.T.; Fisher, D.T.; Vitale, S.T.; Rieger, K.T.; Urist, J.T.; Hazelwood, D.T.; Sanchez, A.T.; Pham, T.; Cole, L.; McNaughton, C. The effect of pantethine and ultraviolet-B radiation on the development of lenticular opacity in the emory mouse. Curr. Eye Res., 2000, 20(1), 17-24.
[http://dx.doi.org/10.1076/0271-3683(200001)2011-HFT017 ] [PMID: 10611711 ]
[31]
Nadkarni, V.; Gabbay, K.H.; Bohren, K.M.; Sheikh-Hamad, D. Osmotic response element enhancer activity. Regulation through p38 kinase and mitogen-activated extracellular signal-regulated kinase kinase. J. Biol. Chem., 1999, 274(29), 20185-20190.
[http://dx.doi.org/10.1074/jbc.274.29.20185 ] [PMID: 10400634 ]
[32]
Igarashi, M.; Wakasaki, H.; Takahara, N.; Ishii, H.; Jiang, Z.Y.; Yamauchi, T.; Kuboki, K.; Meier, M.; Rhodes, C.J.; King, G.L. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J. Clin. Invest., 1999, 103(2), 185-195.
[http://dx.doi.org/10.1172/JCI3326 ] [PMID: 9916130 ]
[33]
Volonté, D.; Galbiati, F.; Pestell, R.G.; Lisanti, M.P. Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr(14)) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J. Biol. Chem., 2001, 276(11), 8094-8103.
[http://dx.doi.org/10.1074/jbc.M009245200 ] [PMID: 11094059]
[34]
Zatechka, S.D. Jr.; Lou, M.F. Studies of the mitogen-activated protein kinases and phosphatidylinositol-3 kinase in the lens. 1. The mitogenic and stress responses. Exp. Eye Res., 2002, 74(6), 703-717.
[http://dx.doi.org/10.1006/exer.2002.1168 ] [PMID: 12126944]
[35]
Manabe, S.; Lipton, S.A. Divergent NMDA signals leading to proapoptotic and antiapoptotic pathways in the rat retina. Invest. Ophthalmol. Vis. Sci., 2003, 44(1), 385-392.
[http://dx.doi.org/10.1167/iovs.02-0187 ] [PMID: 12506100]
[36]
Alexander, G.; Carlsen, H.; Blomhoff, R. Strong in vivo activation of NF-κB in mouse lenses by classic stressors. Opthalmol. Vis. Sci., 2003, 44, 2683-2688.
[http://dx.doi.org/10.1167/iovs.02-0829]
[37]
Dudek, E.J.; Shang, F.; Taylor, A.H. (2)O(2)-mediated oxidative stress activates NF-kappa B in lens epithelial cells. Free Radic. Biol. Med., 2001, 31(5), 651-658.
[http://dx.doi.org/10.1016/S0891-5849(01)00634-7 ] [PMID: 11522450 ]
[38]
Park, H.Y.L.; Kim, I.T.; Lee, K.M.; Choi, J.S.; Park, M.O.; Joo, C.K. Effects of nuclear factor-kappaB small interfering RNA on posterior capsule opacification. Invest. Ophthalmol. Vis. Sci., 2010, 51(9), 4707-4715.
[http://dx.doi.org/10.1167/iovs.09-4984] [PMID: 20375325]
[39]
Lee, S.J.; Bae, S.; Seomun, Y.; Son, M.J.; Joo, C.K. The role of nuclear factor kappa B in lens epithelial cell proliferation using a capsular bag model. Ophthalmic Res., 2008, 40(5), 273-278.
[http://dx.doi.org/10.1159/000128162 ] [PMID: 18437038 ]
[40]
Yan, Z.; Kui, Z.; Ping, Z. Reviews and prospectives of signaling pathway analysis in idiopathic pulmonary fibrosis. Autoimmun. Rev., 2014, 13(10), 1020-1025.
[http://dx.doi.org/10.1016/j.autrev.2014.08.028 ] [PMID: 25182202]
[41]
Gómez-Orte, E.; Sáenz-Narciso, B.; Moreno, S.; Cabello, J. Multiple functions of the noncanonical Wnt pathway. Trends Genet., 2013, 29, 545-553.
[http://dx.doi.org/10.1016/j.tig.2013.06.003 ]
[42]
Sharma, S.; Tantisira, K.; Carey, V.; Murphy, A.J.; Lasky-Su, J.; Celedón, J.C.; Lazarus, R.; Klanderman, B.; Rogers, A.; Soto-Quirós, M.; Avila, L.; Mariani, T.; Gaedigk, R.; Leeder, S.; Torday, J.; Warburton, D.; Raby, B.; Weiss, S.T. A role for Wnt signaling genes in the pathogenesis of impaired lung function in asthma. Am. J. Respir. Crit. Care Med., 2010, 181(4), 328-336.
[http://dx.doi.org/10.1164/rccm.200907-1009OC ] [PMID: 19926868]
[43]
Jung, G.R.; Kim, K.J.; Choi, C.H.; Lee, T.B.; Han, S.I.; Han, H.K.; Lim, S.C. Effect of betulinic acid on anticancer drug-resistant colon cancer cells. Basic Clin. Pharmacol. Toxicol., 2007, 101(4), 277-285.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00115.x ] [PMID: 17845510 ]
[44]
Yao, L.; Zhao, H.; Tang, H.; Xiong, J.; Zhao, W.; Liu, L.; Dong, H.; Zou, F.; Cai, S. Blockade of β-catenin signaling attenuates toluene diisocyanate-induced experimental asthma. Allergy, 2017, 72(4), 579-589.
[http://dx.doi.org/10.1111/all.13045 ] [PMID: 27624805 ]
[45]
Fang, C.; Lu, W.; Li, C.; Peng, X.; Wang, Y.; Huang, X.; Yao, Z.; Cai, N.; Huang, Y.; Zhang, X.; Tan, J. MiR-3162-3p is a novel micro RNA that exacerbates asthma by regulating β-Catenin. PLoS One, 2016, 11, e0149257.
[http://dx.doi.org/10.1371/journal.pone.0149257] [PMID: 26959414]
[46]
Wu, Y.; Fu, H.; Yang, H.; Wang, H.; Zhang, H.; Qin, D. Smooth muscle progenitor cells involved in the development of airway remodeling in a murine model of asthma. Asian Pac. J. Allergy Immunol., 2014, 32(3), 203-210.
[PMID: 25268337 ]
[47]
Lee, H.Y.; Hur, J.; Kim, I.K.; Kang, J.Y.; Yoon, H.K.; Lee, S.Y.; Kwon, S.S.; Kim, Y.K.; Rhee, C.K. Effect of nintedanib on airway inflammation and remodeling in a murine chronic asthma model. Exp. Lung Res., 2017, 43(4-5), 187-196.
[http://dx.doi.org/10.1080/01902148.2017.1339141 ] [PMID: 28696800 ]
[48]
Hussain, M.; Xu, C.; Lu, M.; Wu, X.; Tang, L.; Wu, X. Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(12), 3226-3242.
[http://dx.doi.org/10.1016/j.bbadis.2017.08.031 ]
[49]
Kumawat, K.; Koopmans, T.; Gosens, R. β-catenin as a regulator and therapeutic target for asthmatic airway remodeling. Expert Opin. Ther. Targets, 2014, 18(9), 1023-1034.
[http://dx.doi.org/10.1517/14728222.2014.934813] [PMID: 25005144]
[50]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074 ] [PMID: 12724731 ]
[51]
Kang, K.A.; Piao, M.J.; Kim, K.C.; Kang, H.K.; Chang, W.Y.; Park, I.C.; Keum, Y.S.; Surh, Y.J.; Hyun, J.W. Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: Involvement of TET-dependent DNA demethylation. Cell Death Dis., 2014, 5, e1183.
[http://dx.doi.org/10.1038/cddis.2014.149 ] [PMID: 24743738]
[52]
Das, D.; Preet, R.; Mohapatra, P.; Satapathy, S.R.; Kundu, C.N. 1,3-Bis(2-chloroethyl)-1-nitrosourea enhances the inhibitory effect of resveratrol on 5-fluorouracil sensitive/resistant colon cancer cells. World J. Gastroenterol., 2013, 19(42), 7374-7388.
[http://dx.doi.org/10.3748/wjg.v19.i42.7374 ] [PMID: 24259968 ]
[53]
Kornmann, M.; Hebart, H.; Danenberg, K.; Goeb, R.; Staib, L.; Kron, M.; Henne-Bruns, D.; Danenberg, P.; Link, K.H. Response prediction in metastasised colorectal cancer using intratumoural thymidylate synthase: Results of a randomised multicentre trial. Eur. J. Cancer, 2012, 48(10), 1443-1451.
[http://dx.doi.org/10.1016/j.ejca.2011.11.007 ] [PMID: 22133572]
[54]
Donada, M.; Bonin, S.; Barbazza, R.; Pettirosso, D.; Stanta, G. Management of stage II colon cancer - the use of molecular biomarkers for adjuvant therapy decision. BMC Gastroenterol., 2013, 13, 36.
[http://dx.doi.org/10.1186/1471-230X-13-36 ] [PMID: 23446022]
[55]
Pandur, P.; Maurus, D.; Michael, M. Increasingly complex: New players enter the Wnt signaling network. BioEssays, 2002, 24, 881-884.
[http://dx.doi.org/10.1002/bies.10164 ] [PMID: 12325120]
[56]
Khul, M.; Sheldahl, L.C.; Park, M.; Miller, J.R.; Moon, R.T. The Wnt/Ca2+ pathway: A new vertebrate Wnt signaling pathway takes shape. Trends Genet., 2000, 16, 279-283.
[http://dx.doi.org/10.1016/s0168-9525(00)02028-x] [PMID: 10858654]
[57]
Jasoni, C.; Hendrickson, A.; Roelink, H. Analysis of chicken Wnt-13 expression demonstrates coincidence with cell division in the developing eye and is consistent with a role in induction. Dev. Dyn., 1999, 215(3), 215-224.
[http://dx.doi.org/10.1002/(SICI)1097-0177(199907)215:3<215:AID-AJA4>3.0.CO;2-W ] [PMID: 10398532 ]
[58]
Stark, M.R.; Biggs, J.J.; Schoenwolf, G.C.; Rao, M.S. Characterization of avian frizzled genes in cranial placode development. Mech. Dev., 2000, 93(1-2), 195-200.
[http://dx.doi.org/10.1016/S0925-4773(00)00263-X ] [PMID: 10781956]
[59]
Stump, R.J.W.; Ang, S.; Chen, Y.; von Bahr, T.; Lovicu, F.J.; Pinson, K.; de Iongh, R.U.; Yamaguchi, T.P.; Sassoon, D.A.; McAvoy, J.W. A role for Wnt/beta-catenin signaling in lens epithelial differentiation. Dev. Biol., 2003, 259(1), 48-61.
[http://dx.doi.org/10.1016/S0012-1606(03)00179-9 ] [PMID: 12812787]
[60]
Lyu, J.; Joo, C.K. Wnt signaling enhances FGF2-triggered lens fiber cell differentiation. Development, 2004, 131(8), 1813-1824.
[http://dx.doi.org/10.1242/dev.01060 ] [PMID: 15084465]
[61]
Liu, H.; Mohamed, O.; Dufort, D.; Wallace, V.A. Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev. Dyn., 2003, 227(3), 323-334.
[http://dx.doi.org/10.1002/dvdy.10315 ] [PMID: 12815618 ]
[62]
West-Mays, J.A.; Pino, G.; Lovicu, F.J. Development and use of the lens epithelial explant system to study lens differentiation and cataractogenesis. Prog. Retin. Eye Res., 2010, 29(2), 135-143.
[http://dx.doi.org/10.1016/j.preteyeres.2009.12.001 ] [PMID: 20006728 ]
[63]
Yang, G.; Yang, X. Smad4-mediated TGF-beta signaling in tumorigenesis. Int. J. Biol. Sci., 2010, 6(1), 1-8.
[http://dx.doi.org/10.7150/ijbs.6.1 ] [PMID: 20087440 ]
[64]
Luo, L.; Li, N.; Lv, N.; Huang, D. SMAD7: A timer of tumor progression targeting TGF-β signaling. Tumour Biol., 2014, 35(9), 8379-8385.
[http://dx.doi.org/10.1007/s13277-014-2203-7] [PMID: 24935472]
[65]
Zi, Z.; Chapnick, D.A.; Liu, X. Dynamics of TGF-β/Smad signaling. FEBS Lett., 2012, 586(14), 1921-1928.
[http://dx.doi.org/10.1016/j.febslet.2012.03.063 ] [PMID: 22710166]
[66]
Morales, J.K.; Falanga, Y.T.; Depcrynski, A.; Fernando, J.; Ryan, J.J. Mast cell homeostasis and the JAK–STAT pathway. Genes Immun., 2010, 11(8), 599-608.https://10.1038%2Fgene.2010.35
[PMID: 20535135]
[67]
Finley, S.D.; Gupta, D.; Cheng, N.; Klinke, D.J. Inferring relevant control mechanisms for interleukin-12 signaling in naïve CD4+ T cells. Immunol. Cell Biol., 2011, 89(1), 100-110.
[http://dx.doi.org/10.1038/icb.2010.69 ] [PMID: 20479776 ]
[68]
Cho, W.; Kim, Y.; Jeoung, D.I.; Kim, Y.M.; Choe, J. IL-4 and IL-13 suppress prostaglandins production in human follicular dendritic cells by repressing COX-2 and mPGES-1 expression through JAK1 and STAT6. Mol. Immunol., 2011, 48(6-7), 966-972.
[http://dx.doi.org/10.1016/j.molimm.2011.01.007 ] [PMID: 21277633]
[69]
Pernis, A.B.; Rothman, P.B. JAK-STAT signaling in asthma. J. Clin. Invest., 2002, 109(10), 1279-1283.
[http://dx.doi.org/10.1172/JCI0215786 ] [PMID: 12021241 ]
[70]
Damera, G.; Xia, B.; Sachdev, G.P. IL-4 induced MUC4 enhancement in respiratory epithelial cells in vitro is mediated through JAK-3 selective signaling. Respir. Res., 2006, 7, 39-40.
[http://dx.doi.org/10.1186/1465-9921-7-39 ] [PMID: 16551361 ]
[71]
Jakkula, E.; Leppä, V.; Sulonen, A.M.; Varilo, T.; Kallio, S.; Kemppinen, A.; Purcell, S.; Koivisto, K.; Tienari, P.; Sumelahti, M.L.; Elovaara, I.; Pirttilä, T.; Reunanen, M.; Aromaa, A.; Oturai, A.B.; Søndergaard, H.B.; Harbo, H.F.; Mero, I.L.; Gabriel, S.B.; Mirel, D.B.; Hauser, S.L.; Kappos, L.; Polman, C.; De Jager, P.L.; Hafler, D.A.; Daly, M.J.; Palotie, A.; Saarela, J.; Peltonen, L. Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene. Am. J. Hum. Genet., 2010, 86(2), 285-291.
[http://dx.doi.org/10.1016/j.ajhg.2010.01.017 ] [PMID: 20159113]
[72]
Sato, K.; Shiota, M.; Fukuda, S.; Iwamoto, E.; Machida, H.; Inamine, T.; Kondo, S.; Yanagihara, K.; Isomoto, H.; Mizuta, Y.; Kohno, S.; Tsukamoto, K. Strong evidence of a combination polymorphism of the tyrosine kinase 2 gene and the signal transducer and activator of transcription 3 gene as a DNA-based biomarker for susceptibility to Crohn’s disease in the Japanese population. J. Clin. Immunol., 2009, 29(6), 815-825.
[http://dx.doi.org/10.1007/s10875-009-9320-x ] [PMID: 19653082 ]
[73]
Chen, C.; Zhang, X.; Wang, Y. Analysis of JAK2 and STAT3 polymorphisms in patients with ankylosing spondylitis in Chinese Han population. Clin. Immunol., 2010, 136(3), 442-446.
[http://dx.doi.org/10.1016/j.clim.2010.05.003 ] [PMID: 20627814 ]
[74]
Anderson, C.A.; Massey, D.C.O.; Barrett, J.C.; Prescott, N.J.; Tremelling, M.; Fisher, S.A.; Gwilliam, R.; Jacob, J.; Nimmo, E.R.; Drummond, H.; Lees, C.W.; Onnie, C.M.; Hanson, C.; Blaszczyk, K.; Ravindrarajah, R.; Hunt, S.; Varma, D.; Hammond, N.; Lewis, G.; Attlesey, H.; Watkins, N.; Ouwehand, W.; Strachan, D.; McArdle, W.; Lewis, C.M.; Lobo, A.; Sanderson, J.; Jewell, D.P.; Deloukas, P.; Mansfield, J.C.; Mathew, C.G.; Satsangi, J.; Parkes, M. Welcome Trust Case Control Consortium. Investigation of Crohn’s disease risk loci in ulcerative colitis further defines their molecular relationship. Gastroenterology, 2009, 136(2), 523-9.e3.
[http://dx.doi.org/10.1053/j.gastro.2008.10.032 ] [PMID: 19068216 ]
[75]
Manzano, R.P.; Peyman, G.A.; Khan, P.; Kivilcim, M.; Chevez-Barrios, P.; Takahashi, W. Testing intravitreal toxicity of rapamycin in rabbit eyes. Arq. Bras. Oftalmol., 2009, 72(1), 18-22.
[http://dx.doi.org/10.1590/S0004-27492009000100004 ] [PMID: 19347116 ]
[76]
Zhang, Y.W.; Wang, L.M.; Jove, R.; Vande Woude, G.F. Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene, 2002, 21(2), 217-226.
[http://dx.doi.org/10.1038/sj.onc.1205004 ] [PMID: 11803465 ]
[77]
Hosui, A.; Takehara, T.; Ohkawa, K.; Kanazawa, Y.; Tatsumi, T.; Yamaguchi, S.; Sakamori, R.; Hiramatsu, N.; Kanto, T.; Hayashi, N. Suppressive effect on hepatocyte differentiation of hepatitis C virus core protein. Biochem. Biophys. Res. Commun., 2006, 346(4), 1125-1130.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.114 ] [PMID: 16806084 ]
[78]
Ebong, S.; Yu, C.R.; Carper, D.A.; Chepelinsky, A.B.; Egwuagu, C.E. Activation of STAT signaling pathways and induction of suppressors of cytokine signaling (SOCS) proteins in mammalian lens by growth factors. Invest. Ophthalmol. Vis. Sci., 2004, 45(3), 872-878.
[http://dx.doi.org/10.1167/iovs.03-0311 ] [PMID: 14985304]
[79]
Aihara, M.; Dobashi, K.; Iizuka, K.; Nakazawa, T.; Mori, M. Effect of Y-27632 on release of cytokines from peripheral T cells in asthmatic patients and normal subjects. Int. Immunopharmacol., 2004, 4(4), 557-561.
[http://dx.doi.org/10.1016/j.intimp.2003.12.014 ] [PMID: 15099533]
[80]
Chiba, Y.; Sakai, H.; Misawa, M. Augmented acetylcholine-induced translocation of RhoA in bronchial smooth muscle from antigen-induced airway hyperresponsive rats. Br. J. Pharmacol., 2001, 133(6), 886-890.
[http://dx.doi.org/10.1038/sj.bjp.0704137 ] [PMID: 11454662 ]
[81]
Chiba, Y.; Sakai, H.; Wachi, H.; Sugitani, H.; Seyama, Y.; Misawa, M. Upregulation of rhoA mRNA in bronchial smooth muscle of antigen-induced airway hyperresponsive rats. J. Smooth Muscle Res., 2003, 39, 221-228.
[http://dx.doi.org/10.1540/jsmr.39.221] [PMID: 15048014]
[82]
Saika, S. Relationship between posterior capsule opacification and intraocular lens biocompatibility. Prog. Retin. Eye Res., 2004, 23(3), 283-305.
[http://dx.doi.org/10.1016/j.preteyeres.2004.02.004 ] [PMID: 15177204 ]
[83]
Bhowmick, N.A.; Ghiassi, M.; Bakin, A. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell, 2001, 12, 27-36.
[http://dx.doi.org/10.1091/mbc.12.1.27 ] [PMID: 11160820 ]
[84]
Giles, R.H.; van Es, J.H.; Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta, 2003, 1653(1), 1-24.
[PMID: 12781368]
[85]
Hori, K.; Sen, A.; Artavanis-Tsakonas, S. Notch signaling at a glance. J. Cell Sci., 2013, 126(Pt 10), 2135-2140.
[http://dx.doi.org/10.1242/jcs.127308 ] [PMID: 23729744]
[86]
Dallman, M.J.; Smith, E.; Benson, R.A.; Lamb, J.R. Notch: Control of lymphocyte differentiation in the periphery. Curr. Opin. Immunol., 2005, 17(3), 259-266.
[http://dx.doi.org/10.1016/j.coi.2005.04.002 ] [PMID: 15886115]
[87]
Sun, J.; Krawczyk, C.J.; Pearce, E.J. Suppression of Th2 cell development by Notch ligands Delta1 and Delta4. J. Immunol., 2008, 180(3), 1655-1661.
[http://dx.doi.org/10.4049/jimmunol.180.3.1655 ] [PMID: 18209061]
[88]
Havrda, M.C.; Johnson, M.J.; O’Neill, C.F.; Liaw, L. A novel mechanism of transcriptional repression of p27kip1 through Notch/HRT2 signaling in vascular smooth muscle cells. Thromb. Haemost., 2006, 96(3), 361-370.
[http://dx.doi.org/10.1160/TH06-04-0224 ] [PMID: 16953280]
[89]
De Strooper, B.; Annaert, W.; Cupers, P.; Saftig, P.; Craessaerts, K.; Mumm, J.S.; Schroeter, E.H.; Schrijvers, V.; Wolfe, M.S.; Ray, W.J.; Goate, A.; Kopan, R. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature, 1999, 398(6727), 518-522.
[http://dx.doi.org/10.1038/19083 ] [PMID: 10206645 ]
[90]
Chen, X.; Xiao, W.; Wang, W.; Luo, L.; Ye, S.; Liu, Y. The complex interplay between ERK1/2, TGFβ/Smad, and Jagged/Notch signaling pathways in the regulation of epithelial-mesenchymal transition in retinal pigment epithelium cells. PLoS One, 2014, 9(5), e96365.
[http://dx.doi.org/10.1371/journal.pone.0096365 ] [PMID: 24788939]
[91]
Saravanamuthu, S.S.; Gao, C.Y.; Zelenka, P.S. Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation. Dev. Biol., 2009, 332(1), 166-176.
[http://dx.doi.org/10.1016/j.ydbio.2009.05.566 ] [PMID: 19481073 ]
[92]
Royce, S.G.; Cheng, V.; Samuel, C.S.; Tang, M.L.K. The regulation of fibrosis in airway remodeling in asthma. Mol. Cell. Endocrinol., 2012, 351(2), 167-175.
[http://dx.doi.org/10.1016/j.mce.2012.01.007 ] [PMID: 22266540]
[93]
Xiong, Y.Y.; Wang, J.S.; Wu, F.H.; Li, J.; Kong, L.Y. The effects of (±)-Praeruptorin A on airway inflammation, remodeling and transforming growth factor-β1/Smad signaling pathway in a murine model of allergic asthma. Int. Immunopharmacol., 2012, 14(4), 392-400.
[http://dx.doi.org/10.1016/j.intimp.2012.08.019 ] [PMID: 22974581 ]
[94]
Halwani, R.; Almuhsen, S.; Aljahdali, H.; Hamid, Q. Role of transforming growth factor-β in airway remodeling in asthma. Am. J. Respir. Cell Mol. Biol., 2011, 44(2), 127-133.
[http://dx.doi.org/10.1165/rcmb.2010-0027tr] [PMID: 20525803]
[95]
Colwell, A.S.; Faudoa, R.; Krummel, T.M.; Longaker, M.T.; Lorenz, H.P. Transforming growth factor-beta, Smad, and collagen expression patterns in fetal and adult keratinocytes. Plast. Reconstr. Surg., 2007, 119(3), 852-857.
[http://dx.doi.org/10.1097/01.prs.0000255541.39993.66 ] [PMID: 17312487 ]
[96]
Li, Y.; Wang, M.; Carra, C.; Cucinotta, F.A. Modularized Smad-regulated TGFβ Signaling Pathway. Math. Biosci., 2012, 240(2), 187-200.
[http://dx.doi.org/10.1016/j.mbs.2012.07.005] [PMID: 22892478]
[97]
Schmierer, B.; Hill, C.S. TGFβ–SMAD signal transduction: Molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol., 2007, 8, 970-982.
[http://dx.doi.org/10.1038/nrm2297 ] [PMID: 18000526 ]