Synthesis of TFA-protected α-Amino Acid Chloride via a Vilsmeier Reagent for Friedel–Crafts Acylation

Page: [645 - 653] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

α-Amino acid chlorides are reactive coupling agents in amide (peptide) formation. The Vilsmeier reagent ((chloromethylene)dimethylammonium chloride) offers a convenient way to prepare α-amino acid chlorides for peptide synthesis. Its use with N-trifluoracetyl (TFA)-protected isoleucine and allo-isoleucine is described. The 1H-NMR of the α-proton signal offers a convenient way to monitor the chirality retention in the acid chloride forming reaction and subsequent Friedel-Crafts acylation of arenes which result in α-amino acid aryl-ketone with no loss of chirality.

Keywords: Vilsmeier reagent, α-Amino acid chloride, Friedel-Crafts acylation, α-amino acid, α-amino arylketone, racemization.

Graphical Abstract

[1]
Joullie, M.M.; Lassen, K.M. ARKIVOC, 2010, (8), 189-250.
[2]
Jarrahpour, A.; Zarei, M. Tetrahedron, 2009, 65, 2927-2934.
[http://dx.doi.org/10.1016/j.tet.2009.02.005]
[3]
Varie, D.L. Tetrahedron Lett., 1990, 31(52), 7583-7586.
[http://dx.doi.org/10.1016/S0040-4039(00)97304-0]
[4]
Buckley, T.F.; Rapoport, H. J. Am. Chem. Soc., 1981, 103(20), 6157-6163.
[http://dx.doi.org/10.1021/ja00410a030]
[5]
Di Gioia, M.L.; Leggio, A.; Liguori, A.; Napoli, A.; Siciliano, C.; Sindona, G. J. Org. Chem., 2001, 66(21), 7002-7007.
[http://dx.doi.org/10.1021/jo010414q] [PMID: 11597220]
[6]
McClure, D.E.; Arison, B.H.; Jones, J.H.; Baldwin, J.J. J. Org. Chem., 1981, 46(11), 2431-2433.
[http://dx.doi.org/10.1021/jo00324a057]
[7]
Nordlander, J.E.; Njoroge, F.G.; Payne, M.J.; Warman, D. J. Org. Chem., 1985, 50(19), 3481-3484.
[http://dx.doi.org/10.1021/jo00219a012]
[8]
Pines, S.H.; Chemerda, J.M.; Kozlowski, M.A.; Weinstock, L.M.; Davis, P.; Handelsman, B.; Grenda, V.J.; Lindberg, G.W. J. Med. Chem., 1967, 10(4), 725-728.
[http://dx.doi.org/10.1021/jm00316a044] [PMID: 6037067]
[9]
Nordlander, J.E.; Payne, M.J.; Njoroge, F.G.; Balk, M.A.; Laikos, G.D.; Vishwanath, V.M. J. Org. Chem., 1984, 49(22), 4107-4111.
[http://dx.doi.org/10.1021/jo00196a001]
[10]
Katritzky, A.R.; Jiang, R.; Suzuki, K. J. Org. Chem., 2005, 70(13), 4993-5000.
[http://dx.doi.org/10.1021/jo050226q] [PMID: 15960497]
[11]
Tachrim, Z.P.; Oida, K.; Ikemoto, H.; Ohashi, F.; Kurokawa, N.; Hayashi, K.; Shikanai, M.; Sakihama, Y.; Hashidoko, Y.; Hashimoto, M. Molecules, 2017, 22(10), 1748-1762.
[http://dx.doi.org/10.3390/molecules22101748] [PMID: 29039791]
[12]
Tachrim, Z.P.; Oida, K.; Ohashi, F.; Wakasa, H.; Ikemoto, H.; Kurokawa, N.; Sakihama, Y.; Hashidoko, Y.; Suzuki, T.; Hashimoto, M. Heterocycles, 2018, 97(2), 877-893.
[http://dx.doi.org/10.3987/COM-18-S(T)65]
[13]
Kurokawa, N.; Tokoro, Y.; Tachrim, Z.P.; Wakasa, H.; Sakihama, Y.; Hashidoko, Y.; Suzuki, T.; Hashimoto, M. ARKIVOC, 2019, (5), 42-49.
[http://dx.doi.org/10.24820/ark.5550190.p010.815]
[14]
Prabhu, G. Tetrahedron, 2015, 71(19), 2785-2832.
[http://dx.doi.org/10.1016/j.tet.2015.03.026]
[15]
Jass, P.A.; Rosso, V.W.; Racha, S.; Soundararajan, N.; Venit, J.J.; Rusowicz, A.; Swaminathan, S.; Livshitz, J.; Delaney, E.J. Tetrahedron, 2003, 59(45), 9019-9029.
[http://dx.doi.org/10.1016/j.tet.2003.02.002]
[16]
Schallenberg, E.E.; Calvin, M. J. Am. Chem. Soc., 1955, 77(10), 2779-2783.
[http://dx.doi.org/10.1021/ja01615a032]
[17]
Souter, R.W. J. Chromatogr. A., 1975, 108(2), 265-274.
[http://dx.doi.org/10.1016/S0021-9673(00)84669-5] [PMID: 1127054]
[18]
Su, W.; Weng, Y.; Jiang, L.; Yang, Y.; Zhao, L.; Chen, Z.; Li, Z. Li. J. Org. Prep. Proced. Int., 2010, 42(6), 503-555.
[http://dx.doi.org/10.1080/00304948.2010.513911]
[19]
Fleš, D.; Balenović, B. J. Am. Chem. Soc., 1956, 78(13), 3072-3074.
[http://dx.doi.org/10.1021/ja01594a035]
[20]
Fleš, D.; Majhofer, B.; Kovač, M. Tetrahedron, 1968, 24(7), 3053-3057.
[http://dx.doi.org/10.1016/S0040-4020(01)98713-7]
[21]
Beckett, A.H.; Kirk, G.; Sharpen, A.J. Tetrahedron, 1965, 21(6), 1489-1493.
[http://dx.doi.org/10.1016/S0040-4020(01)98311-5]
[22]
Proctor, G.R.; Thomson, R.H. J. Chem. Soc., 1957, 2302-2311.
[http://dx.doi.org/10.1039/JR9570002302]
[23]
Steglich, W.; Hinze, S. Synthesis, 1976, 399-401.
[http://dx.doi.org/10.1055/s-1976-24057]
[24]
Curphey, T.J. J. Org. Chem., 1979, 44(15), 2805-2807.
[http://dx.doi.org/10.1021/jo01329a049]
[25]
Deblander, J.; Van Aeken, S.; Jacobs, J.; De Kimpe, N.; Tehrani, K.A. Eur. J. Org. Chem., 2009, 4882-4892.
[http://dx.doi.org/10.1002/ejoc.200900562]
[26]
Weygand, F. Chem. Ber., 1959, 92(9), 2095-2099.
[http://dx.doi.org/10.1002/cber.19590920921]
[27]
Fones, W.S.; Lee, M. J. Biol. Chem., 1954, 210(1), 227-238.
[PMID: 13201584]
[28]
Reay, A.J.; Williams, T.J.; Fairlamb, I.J.S. Org. Biomol. Chem., 2015, 13(30), 8298-8309.
[http://dx.doi.org/10.1039/C5OB01174D] [PMID: 26146008]
[29]
Kricheldorf, H.R.; Fehrle, M. Synthesis, 1974, 420-422.
[http://dx.doi.org/10.1055/s-1974-23327]
[30]
Cherevin, M.S.; Gulevich, T.G.; Popova, L.A.; Zubreichuk, Z.P.; Knizhnikov, V.A. Russ. J. Org. Chem., 2007, 43(10), 1427-1431.
[http://dx.doi.org/10.1134/S1070428007100028]
[31]
Davis, F.A.; Chai, J. ARKIVOC, 2008, (2), 190-203.