Metabolite Fingerprinting of Novel Streptomyces UK-238 from the Himalayan Forest

Page: [640 - 645] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Aims: Characterization of antimicrobial metabolites of novel Streptomyces sp. UK-238.

Background: Novel antimicrobial drug discovery is urgently needed due to emerging multi antimicrobial drug resistance among pathogens. Since many years, natural products have provided the basic skeletons for many therapeutic compounds including antibiotics. Bioprospection of un/under explored habitats and focussing on selective isolation of actinobacteria as a major reservoir of bio and chemodiversity has yielded good results.

Objective: The main objectives of the study were the identification of UK-238 by 16S rDNA sequencing and antimicrobial metabolite fingerprinting of culture extracts.

Methods: In the present study, a promising isolate, UK-238, has been screened for antimicrobial activity and metabolite fingerprinting from the Himalayan Thano Reserve forest. It was identified by 16S rDNA sequencing. Ethyl acetate extract was partially purified by column chromatography. The pooled active fractions were fingerprinted by GC-MS and compounds were tentatively identified by collated data analysis based on Similarity Index, observed Retention Index from Databases and calculated Retention Index.

Results: UK-238 was identified as Streptomyces sp. with 98.4% similarity to S. niveiscabiei. It exhibited broad-spectrum antibacterial and antifungal activity. The GC-MS analysis of active fractions of ethyl acetate extract showed the presence of eighteen novel compounds, some with antimicrobial activity, belonging to four major categories- alcohols, alkaloids, esters and peptide.

Conclusion: The study confirms that bioprospection of underexplored habitats can elaborate novel bio and chemodiversity.

Keywords: Multidrug resistant, natural products, forest, Streptomyces, antimicrobial, metabolite fingerprinting.

Graphical Abstract

[1]
Bérdy, J. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. (Tokyo), 2012, 65(8), 385-395.
[http://dx.doi.org/10.1038/ja.2012.27] [PMID: 22511224]
[2]
Jose, P.A.; Jha, B. New dimensions of research on actinomycetes: quest for next generation antibiotics. Front. Microbiol., 2016, 7, 1295.
[http://dx.doi.org/10.3389/fmicb.2016.01295] [PMID: 27594853]
[3]
Goodfellow, M.; Fiedler, H-P. A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek, 2010, 98(2), 119-142.
[http://dx.doi.org/10.1007/s10482-010-9460-2] [PMID: 20582471]
[4]
Srivastava, N.; Nandi, I.; Ibeyaima, A.; Gupta, S.; Sarethy, I.P. Microbial diversity of a himalayan forest and characterization of rare actinomycetes for antimicrobial compounds. 3 Biotech, 2019, 9(1), 27..
[http://dx.doi.org/10.1007/s13205-018-1556-9]
[5]
Abdelkader, M.S.A.; Philippon, T.; Asenjo, J.A.; Bull, A.T.; Goodfellow, M.; Ebel, R.; Jaspars, M.; Rateb, M.E. Asenjonamides A-C, antibacterial metabolites isolated from Streptomyces asenjonii strain KNN 42.f from an extreme-hyper arid Atacama Desert soil. J. Antibiot. (Tokyo), 2018, 71(4), 425-431.
[http://dx.doi.org/10.1038/s41429-017-0012-0] [PMID: 29362461]
[6]
Ibeyaima, A.; Dwivedi, A.K.; Saini, N.; Gupta, S.; Sarethy, I.P. Saccharothrix sp. TD-093 from the thar desert, india: metabolite fingerprinting of antimicrobial compounds and in silico analysis. Curr. Microbiol., 2017, 74(3), 334-343.
[http://dx.doi.org/10.1007/s00284-016-1183-9] [PMID: 28120024]
[7]
Law, J.W-F.; Ser, H-L.; Duangjai, A.; Saokaew, S.; Bukhari, S.I.; Khan, T.M.; Ab Mutalib, N-S.; Chan, K-G.; Goh, B-H.; Lee, L-H. Streptomyces colonosanans sp. nov., a novel actinobacterium isolated from malaysia mangrove soil exhibiting antioxidative activity and cytotoxic potential against human colon cancer cell lines. Front. Microbiol., 2017, 8, 877.
[http://dx.doi.org/10.3389/fmicb.2017.00877] [PMID: 28559892]
[8]
Law, J.W-F.; Ser, H-L.; Ab Mutalib, N-S.; Saokaew, S.; Duangjai, A.; Khan, T.M.; Chan, K-G.; Goh, B-H.; Lee, L-H. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci. Rep., 2019, 9(1), 3056.
[http://dx.doi.org/10.1038/s41598-019-39592-6] [PMID: 30816228]
[9]
Nguyen, M.; Kim, J. Streptomyces gilvifuscus sp. nov., an actinomycete that produces antibacterial compounds isolated from soil. Int. J. Syst. Evol. Microbiol., 2015, 65(10), 3493-3500.
[http://dx.doi.org/10.1099/ijsem.0.000447] [PMID: 26297131]
[10]
Das, R.; Romi, W.; Das, R.; Sharma, H.K.; Thakur, D. Antimicrobial potentiality of actinobacteria isolated from two microbiologically unexplored forest ecosystems of Northeast India. BMC Microbiol., 2018, 18(1), 71.
[http://dx.doi.org/10.1186/s12866-018-1215-7] [PMID: 29996765]
[11]
Shah, A.M. Shakeel-U-Rehman; Hussain, A.; Mushtaq, S.; Rather, M.A.; Shah, A.; Ahmad, Z.; Khan, I.A.; Bhat, K.A.; Hassan, Q.P. Antimicrobial investigation of selected soil actinomycetes isolated from unexplored regions of Kashmir Himalayas, India. Microb. Pathog., 2017, 110, 93-99.
[http://dx.doi.org/10.1016/j.micpath.2017.06.017] [PMID: 28647504]
[12]
Jones, K.L. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J. Bacteriol., 1949, 57(2), 141-145.
[http://dx.doi.org/10.1128/JB.57.2.141-145.1949] [PMID: 16561658]
[13]
Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493] [PMID: 5325707]
[14]
Conn, V.M.; Franco, C.M.M. Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl. Environ. Microbiol., 2004, 70(3), 1787-1794.
[http://dx.doi.org/10.1128/AEM.70.3.1787-1794.2004] [PMID: 15006805]
[15]
Kim, O-S.; Cho, Y-J.; Lee, K.; Yoon, S-H.; Kim, M.; Na, H.; Park, S-C.; Jeon, Y.S.; Lee, J-H.; Yi, H.; Won, S.; Chun, J. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol., 2012, 62(Pt 3), 716-721.
[http://dx.doi.org/10.1099/ijs.0.038075-0] [PMID: 22140171]
[16]
Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. Mammalian Protein Metabolism; Elsevier, 1969, pp. 21-132.
[http://dx.doi.org/10.1016/B978-1-4832-3211-9.50009-7]
[17]
Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 2013, 30(12), 2725-2729.
[http://dx.doi.org/10.1093/molbev/mst197] [PMID: 24132122]
[18]
Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data, 2011, 40(4)043101
[http://dx.doi.org/10.1063/1.3653552]
[19]
Boone, D.R.; Castenholz, R.W.; Garrity, G.M. Bergey’s Manual of Systematic Bacteriology; Springer, 2001.
[http://dx.doi.org/10.1007/978-0-387-21609-6]
[20]
Kim, M.; Oh, H.S.; Park, S.C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol., 2014, 64(Pt 2), 346-351.
[http://dx.doi.org/10.1099/ijs.0.059774-0] [PMID: 24505072]
[21]
Safaei-Ghomi, J.; Ahd, A.A. Antimicrobial and antifungal properties of the essential oil and methanol extracts of Eucalyptus largiflorens and Eucalyptus Intertexta. Pharmacogn. Mag., 2010, 6(23), 172-175.
[http://dx.doi.org/10.4103/0973-1296.66930] [PMID: 20931074]
[22]
Guleria, S.; Tiku, A.K.; Koul, A.; Gupta, S.; Singh, G.; Razdan, V.K. Antioxidant and antimicrobial properties of the essential oil and extracts of Zanthoxylum alatum grown in north-western Himalaya. Scient. World J., 2013, 2013790580
[http://dx.doi.org/10.1155/2013/790580] [PMID: 23781160]
[23]
Kiran, G.S.; Priyadharsini, S.; Sajayan, A.; Ravindran, A.; Selvin, J. An Antibiotic Agent Pyrrolo[1,2- a ]Pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv, 2018, 8(32), 17837-17846.
[http://dx.doi.org/10.1039/C8RA00820E]
[24]
Manimaran, M.; Gopal, J.V.; Kannabiran, K. Antibacterial Activity of Streptomyces sp. VITMK1 isolated from mangrove soil of pichavaram, Tamil Nadu, India. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2017, 87(2), 499-506.
[http://dx.doi.org/10.1007/s40011-015-0619-5]
[25]
Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; Nabavi, S.M. Update on monoterpenes as antimicrobial agents: a particular focus on p-Cymene. Materials (Basel), 2017, 10(8)E947
[http://dx.doi.org/10.3390/ma10080947] [PMID: 28809799]
[26]
Li, L.; Shi, C.; Yin, Z.; Jia, R.; Peng, L.; Kang, S.; Li, Z. Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Braz. J. Microbiol., 2015, 45(4), 1409-1413.
[http://dx.doi.org/10.1590/S1517-83822014000400035] [PMID: 25763048]
[27]
Wright, M.H.; Lee, C.J.; Arnold, M.S.J.; Shalom, J.; White, A.; Greene, A.C.; Cock, I.E. GC-MS analysis of Tasmannia lanceolata extracts which inhibit the growth of the pathogenic bacterium Clostridium perfringens. Pharmacogn. J., 2017, 9(5), 626-637.
[http://dx.doi.org/10.5530/pj.2017.5.100]
[28]
Wintola, O.A.; Afolayan, A.J. Chemical constituents and biological activities of essential oils of Hydnora africana thumb used to treat associated infections and diseases in South Africa. Appl. Sci. (Basel), 2017, 7(5), 443.
[http://dx.doi.org/10.3390/app7050443]
[29]
Tyagi, T.; Agarwal, M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J. Pharmacogn. Phytochem., 2017, 6(1), 195-206.