GC-analysis, and Antioxidant, Anti-inflammatory, and Anticancer Activities of Some Extracts and Fractions of Linum usitatissimum

Page: [1306 - 1318] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Context: Linum usitatissimum (Linn); known as Flaxseed, is one of the most important medicinal plants traditionally used for health benefits and also as nutritional purposes.

Objective: Estimation of total phenolic and flavonoid contents, and evaluation of the antioxidant, antiinflammatory and anticancer activities have been performed on hexane, ethyl acetate, n-butanol, and methanol extracts and also on fractions of methanol extract (hexane, ethyl acetate, and n-butanol).

Materials and Methods: Phenolic and flavonoid contents were detected using spectrophotometric and colorimetric assays. Antioxidant and anti-inflammatory activities were estimated in-vitro. Anticancer activity of extracts was tested on Hepatocellular carcinoma cell line (HepG2) and breast cancer cell line (MCF7).

Results: The methanolic extract and its ethyl acetate fraction showed higher contents of total phenols and flavonoids. Also, the methanolic extract showed a higher antioxidant activity. The butanolic and ethyl acetate fractions at concentration 500μg/ml yielded a higher percent of inhibition of protein denaturation; 87.9% and 90%, respectively. The ethyl acetate fraction and the methanolic extract showed an obvious anticancer activity against HepG2 and MCF7 (IC50=60±0.24 and 29.4±0.12μg. ml-1) and (IC50=94.7±0.21 and 227±0.48μg. ml-1), respectively. The GC-MS analysis showed that the methanolic extract had 32 compounds whereas the ethyl acetate and butanol fractions contained 40 and 36 compounds, respectively.

Conclusion: Flaxseed contains different biologically active compounds that have been found to possess various activities, which can protect the human body against several diseases.

Keywords: Flavonoid, flaxseed, hemolysis-assay, HepG2, MCF7, phenolic compounds.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Ziada, D.H.; El Sadany, S.; Soliman, H.; Abd-Elsalam, S.; Salama, M.; Hawash, N.; Selim, A.; Hamisa, M.; Elsabagh, H.M. Prevalence of hepatocellular carcinoma in chronic hepatitis C patients in Mid Delta, Egypt: A single center study. J. Egypt. Natl. Canc. Inst., 2016, 28(4), 257-262.
[http://dx.doi.org/10.1016/j.jnci.2016.06.001] [PMID: 27378258]
[3]
Okasha, H.; Hassan, M.; Aboushousha, T.; Samir, S. Effect of Interferon- Beta (IFN-β) on tumor suppressor and apoptotic markers in hepatocellular carcinoma cell line. Int. J. Res. Pharm. Sci 2019, 1610(4), 2936-43.https://pharmascope.org/index.php/ijrps/article/view/1574
[4]
Toss, A.; Cristofanilli, M. Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res.,, 2015, 17(1), 60.http://breast-cancer-research.biomedcentral.com/articles/10.1186/13058-015-0560-9
[http://dx.doi.org/10.1186/s13058-015-0560-9]
[5]
Azim, H.A.; Ibrahim, A.S. Breast cancer in Egypt, China and Chinese: Statistics and beyond. J. Thorac. Dis., 2014, 6(7), 864-866.
[PMID: 25093081]
[6]
Voravuthikunchai, S.; Lortheeranuwat, A.; Jeeju, W.; Sririrak, T.; Phongpaichit, S.; Supawita, T. Effective medicinal plants against en-terohaemorrhagic Escherichia coli O157: H7. J. Ethnopharmacol., 2004, 94(1), 49-54.
[http://dx.doi.org/10.1016/j.jep.2004.03.036] [PMID: 15261962]
[7]
Al-Saeed, A. Gastrointestinal and cardiovascular risk of nonsteroidal anti-inflammatory drugs. Vol. 26. Oman Med. J., 2011, 26(6), 385-391.
[http://dx.doi.org/10.5001/omj.2011.101] [PMID: 22253945]
[8]
Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol., 2002, 79(3), 379-381.
[http://dx.doi.org/10.1016/S0378-8741(01)00413-5] [PMID: 11849846]
[9]
Khalil, W.K.B.; Zarouk, W.; Eldeen, G.N.; Ramadan, A.; Fayez, A.; Esmaiel, N. Apoptosis, reactive oxygen species and DNA damage in familial mediterranean fever patients. Gene Rep., 2019, 14, 76-80.
[http://dx.doi.org/10.1016/j.genrep.2018.11.010]
[10]
Hida, T.; Yatabe, Y.; Achiwa, H.; Muramatsu, H.; Kozaki, K.; Nakamura, S.; Ogawa, M.; Mitsudomi, T.; Sugiura, T.; Takahashi, T. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res., 1998, 58(17), 3761-3764.
[PMID: 9731479]
[11]
Shaikh, R.; Pund, M.; Dawane, A.; Iliyas, S. Evaluation of anticancer, antioxidant, and possible anti-inflammatory properties of selected me-dicinal plants used in Indian traditional medication. J. Tradit. Complement. Med., 2014, 4(4), 253-257.
[http://dx.doi.org/10.4103/2225-4110.128904] [PMID: 25379467]
[12]
Basharat, Z.; Zaib, S.; Yasmin, A. Computational study of some amoebicidal phytochemicals against heat shock protein of Naegleria fowleri. Gene Rep., 2017, 6, 158-162.
[http://dx.doi.org/10.1016/j.genrep.2016.09.003]
[13]
Masoko, P.; Eloff, J.N. Screening of twenty-four South African Combretum and six Terminalia species (Combretaceae) for antioxidant ac-tivities. Afr. J. Tradit. Complement. Altern. Med., 2006, 4(2), 231-239.
[PMID: 20162097]
[14]
Bichra, M.; El-Modafar, C.; El-Abbassi, A.; Bouamama, H.; Benkhalti, F. Antioxidant activities and phenolic profile of six moroccan selected herbs. J. Microbiol. Biotechnol. Food Sci., 2016, 7(3), 2320-2338.
[15]
Bozan, B.; Temelli, F. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresour. Technol., 2008, 99(14), 6354-6359.
[http://dx.doi.org/10.1016/j.biortech.2007.12.009] [PMID: 18198133]
[16]
Dave Oomah, B. Processing of flaxseed fiber, oil, protein, and lignan. Flaxseed in Human Nutrition; Second, 2003.
[http://dx.doi.org/10.1201/9781439831915.ch20]
[17]
Udenigwe, C.C.; Lu, Y.L.; Han, C.H.; Hou, W.C.; Aluko, R.E. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem., 2009, 116(1), 277-284.
[http://dx.doi.org/10.1016/j.foodchem.2009.02.046]
[18]
El-Sayed, M.M.; Hashash, M.M.; Abdel-Hady, A.A.; Abdel-Hady, H.; Abdel-Lateef, E.E. Total phenolic and flavonoid contents and antioxi-dant activity of Lantana camara and Cucurbita pepo (Squash) extracts as well as GC-MS analysis of Lantana camara essential oils 137 world. J. Pharm. Res., 2017, 6(1), 137-153.www.wjpr.net
[19]
Rohman, A.; Riyanto, S.; Yuniarti, N.; Saputra, W.R.; Utami, R.; Mulatsih, W. Antioxidant activity, total phenolic, and total flavaonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). Int. Food Res. J., 2010, 17(1), 97-106.
[20]
Akroum, S.; Bendjeddou, D.; Satta, D.; Lalaoui, K. Antibacterial, antioxidant and acute toxicity tests on flavonoids extracted from some medicinal plants. Int. J. Green Pharm., 2010, 4(3), 165-169.
[http://dx.doi.org/10.4103/0973-8258.69174]
[21]
Awan, K.A.; Butt, M.S.; Ul Haq, I.; Suleria, H.A.R. Investigating the antioxidant potential of garlic (Allium sativum) extracts through different extraction modes. Curr. Bioact. Compd., 2019, 15(1), 45-50.http://www.eurekaselect.com/156543/article
[22]
Zardo, D.M.; Alvarez, L.V.H.; Los, F.B.G.; Ito, V.C.; Travalini, A.P.; Cardoso, T. In vitro assessment of the antibacterial and antioxidant properties of essential oils. Curr. Bioact. Compd., 2019, 15(5), 592-9.
[http://dx.doi.org/www.eurekaselect.com/163947/article]
[23]
Bielawski, J. Two types of haemolytic activity of detergents. BBA - Gen. Subj., 1990, 10335(2), 214-7.
[24]
Ansari, P.; Uddin, M.J.; Rahman, M.M.; Abdullah-Al-Mamun, M.; Islam, M.R.; Ali, M.H.; Reza, A.S. Anti-inflammatory, anti-diarrheal, thrombolytic and cytotoxic activities of an ornamental medicinal plant: Persicaria orientalis. J. Basic Clin. Physiol. Pharmacol., 2017, 28(1), 51-58.
[http://dx.doi.org/10.1515/jbcpp-2016-0023] [PMID: 27487493]
[25]
Singh, D.P.; Zerihun, A.; Kelly, D.; Cain, N.; Nankervis, P.; Downey, M. A GC-MS based analytical method for detection of smoke taint associated phenols in smoke affected wines. Curr. Bioact. Compd., 2012, 8(3), 190-199.
[http://dx.doi.org/10.2174/157340712802762483]
[26]
Keypour, S.; Mirzania, F.; Farimani, M.M. Antioxidant activity, total flavonoid and phenolic contents of three different extracts of Hyrcanian reishi. Curr. Bioact. Compd., 2019, 15(1), 109-113.http://www.eurekaselect.com/156889/article
[27]
Lagouri, V.; Dimitreli, G.; Kouvatsi, A. Effects of greek pomegranate extracts in the antioxidant properties and storage stability of Kefir. Curr. Bioact. Compd., 2018.
[28]
Krishnaswamy, K. Traditional Indian spices and their health significance. Asia Pac. J. Clin. Nutr., 2008, 17(Suppl. 1), 265-268.
[PMID: 18296352]
[29]
El Beyrouthy, M.; Arnold, N.; Delelis-Dusollier, A.; Dupont, F. Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon. J. Ethnopharmacol., 2008, 120(3), 315-334.
[http://dx.doi.org/10.1016/j.jep.2008.08.024] [PMID: 18809483]
[30]
Sulaiman, S.F.; Yusoff, N.A.M.; Eldeen, I.M.; Seow, E.M.; Sajak, A.A.B. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.). J. Food Compos. Anal., 2011, 24(1), 1-10.
[http://dx.doi.org/10.1016/j.jfca.2010.04.005]
[31]
Shettar, A.K.; Kotresha, K.; Kaliwal, B.B.; Vedamurthy, A.B. Evaluation of in vitro antioxidant and anti-inflammatory activities of Ximenia americana extracts. Asian Pac. J. Trop. Dis., 2015, 5(11), 918-923.
[http://dx.doi.org/10.1016/S2222-1808(15)60957-4]
[32]
Leelaprakash, G.; Mohan Dass, S. In vitro anti-inflammatory activity of methanol extract of enicostemma axillare. Int. J. Drug Dev. Res., 2011, 3(3), 189-196.
[33]
Konoshima, T.; Kokumai, M.; Kozuka, M.; Tokuda, H.; Nishino, H.; Iwashima, A. Anti-tumor-promoting activities of afromosin and soyasaponin I isolated from Wistaria brachybotrys. J. Nat. Prod., 1992, 55(12), 1776-1778.
[http://dx.doi.org/10.1021/np50090a011] [PMID: 1294698]
[34]
Li, H.; Zhang, X.; Wang, W. Anticancer activity of 5, 7-Dimethoxyflavone against liver cancer cell line Hepg2 involves apoptosis, ros generation and cell cycle arrest. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(4), 213-220.
[http://dx.doi.org/10.21010/ajtcam.v14i4.24] [PMID: 28638884]
[35]
Simopoulos, A.P. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol. Neurobiol., 2011, 44(2), 203-215.
[http://dx.doi.org/10.1007/s12035-010-8162-0] [PMID: 21279554]
[36]
Alam, P.; Al-Yousef, H.M.; Siddiqui, N.A.; Alhowiriny, T.A.; Alqasoumi, S.I.; Amina, M.; Hassan, W.H.B.; Abdelaziz, S.; Abdalla, R.H. Anticancer activity and concurrent analysis of ursolic acid, β-sitosterol and lupeol in three different Hibiscus species (aerial parts) by validated HPTLC method. Saudi Pharm. J., 2018, 26(7), 1060-1067.
[http://dx.doi.org/10.1016/j.jsps.2018.05.015] [PMID: 30416363]
[37]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[38]
Es-Safi, N.E. Mass spectroscopic methods for the characterization of flavonoid compounds. Curr. Bioact. Compd., 2012, 8(3), 240-65.
[http://dx.doi.org/10.2174/157340712802762456]
[39]
Zhao, M.; Yang, B.; Wang, J.; Liu, Y.; Yu, L.; Jiang, Y. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Li-tchi chinensis Sonn) pericarp. Int. Immunopharmacol., 2007, 7(2), 162-166.
[http://dx.doi.org/10.1016/j.intimp.2006.09.003] [PMID: 17178382]
[40]
Buckle, J. Basic plant taxonomy, basic essential oil chemistry, extraction, biosynthesis, and analysis. InClinical Aromatherapy; Elsevier Science B. V: Amsterdam, 2015, pp. 37-72.
[41]
Lima, E.J.S.P.; Alves, R.G. D; Elia, G.M.A.; Anunciação, T.A.D.; Silva, V.R.; Santos, L.S.; Soares, M.B.P.; Cardozo, N.M.D.; Costa, E.V.; Silva, F.M.A.D.; Koolen, H.H.F.; Bezerra, D.P. Antitumor effect of the essential oil from the leaves of Crotonmatourensis Aubl. (Euphorbiaceae). Molecules, 2018, 23(11)E2974
[http://dx.doi.org/10.3390/molecules23112974] [PMID: 30441836]
[42]
Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules, 2014, 19(11), 17773-17798.
[http://dx.doi.org/10.3390/molecules191117773] [PMID: 25372394]
[43]
Jaafari, A.; Tilaoui, M.; Mouse, H.A.; M’Bark, L.A.; Aboufatima, R.; Chait, A. Comparative study of the antitumor effect of natural monoterpenes: Relationship to cell cycle analysis. Brazilian J. Pharmacogn., 2012, 22(3), 534-540.
[http://dx.doi.org/10.1590/S0102-695X2012005000021]
[44]
Moro, I.J.; Gondo, G.D.G.A.; Pierri, E.G.; Pietro, R.C.L.R.; Soares, C.P.; de Sousa, D.P. Evaluation of antimicrobial, cytotoxic and chem-opreventive activities of carvone and its derivatives. Braz. J. Pharm. Sci., 2017, 53(4)e00076
[http://dx.doi.org/10.1590/s2175-97902017000400076]
[45]
Igarashi, M.; Miyazawa, T. The growth inhibitory effect of conjugated linoleic acid on a human hepatoma cell line, HepG2, is induced by a change in fatty acid metabolism, but not the facilitation of lipid peroxidation in the cells. Biochim. Biophys. Acta, 2001, 1530(2-3), 162-171.
[http://dx.doi.org/10.1016/S1388-1981(00)00180-3] [PMID: 11239819]
[46]
Vaithilingam, M.; Chandrasekaran, S.; Mehra, A.; Prakash, S.; Agarwal, A.; Ethiraj, S. Fermentation of beet juice using lactic acid bacteria and its cytotoxic activity against human liver cancer cell lines HepG2. Curr. Bioact. Compd., 2016, 12(4), 258-263.
[http://dx.doi.org/10.2174/1573407212666160418163831]
[47]
Desai, S.J.; Prickril, B.; Rasooly, A. Mechanisms of phytonutrient modulation of Cyclooxygenase-2 (COX-2) and inflammation related to cancer. Nutr. Cancer, 2018, 70(3), 350-375.
[http://dx.doi.org/10.1080/01635581.2018.1446091] [PMID: 29578814]