Bentonite Clays for Therapeutic Purposes and Biomaterial Design

Page: [642 - 649] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Bentonite is a natural clay composed mainly of montmorillonite with other associated minerals such as feldspar, calcite and quartz. Owing to its high cation exchange, large surface area and ability to form thixotropic gels with water and to absorb large quantities of gas, it presents a large medicinal application.

Objective: This review focuses on the promising potential of bentonite clays for biomaterial design and for therapeutic purposes.

Methods: PubMed, ACS publications and Elsevier were searched for relevant papers. We have also evaluated the references of some pertinent articles.

Results: Healing properties of bentonite are derived from the crystalline structure of the smectite group, which is composed of two octahedral alumina sheets localized between two tetrahedral silica sheets. This structure is behind the ability to intercalate cationic bioactive agents and undergoes interaction with various toxic species and exchanging in return species such as Fe3+, Cu2+, Al3+ Ca2+ or Na+, presenting antibacterial activity and providing essential minerals to the body. Furthermore, due to to its layered structure, bentonite has wide application for the design of biomaterials providing, thus, the stability of bioactive agents and preventing them from aggregation.

Conclusion: Numerous publications have cited bentonite extensive applications as an alternative and complementary treatment for numerous health conditions as a detoxifying agent and for the preparation of several bionanocomposites.

Keywords: Bentonite, montmorillonite, bionanocomposite, antibacterial activity, therapeutic, pelotherapy.

[1]
Parker SP. McGraw-Hill encyclopedia of the geological sciences. 2nd ed. New York 1988.
[2]
Diamond JM. Evolutionary biology. Dirty eating for healthy living. Nature 1999; 400(6740): 120-1.
[http://dx.doi.org/10.1038/22014] [PMID: 10408435]
[3]
Ones RL, Hanson HC. Mineral Licks, Geophagy, and Biogeochemistry of North American Ungulates Iowa State Univ. Ames: Press 1985.
[4]
Kreulen DA. Lick use by large herbivores: a review on benefits of soils consuption. Mammal Rev 1985; 15: 107-23.
[http://dx.doi.org/10.1111/j.1365-2907.1985.tb00391.x]
[5]
Johns T. With Bitter Herbs They Shall Eat It: Chemical Ecology and the Origins of Human Diet and Medicine. Univ Arizona Press: Tucson 1990.
[6]
Johns T, Duquette M. Traditional detoxification of acorn bread with clay. Ecol Food Nutr 1991; 25: 221-8.
[http://dx.doi.org/10.1080/03670244.1991.9991170]
[7]
Hladik CM, Gueguen LCR. Geophagie et nutrition minerale ches les primates sauvagesAcad. Sci 1974; 279: 1393-6.
[8]
Davies AG, Baillie IC. Soil-eating by red leaf monkeys (Presbytis rubicunda) in Sabah, Northern Borneo. Biotropica 1988; 20(3): 252-8.
[http://dx.doi.org/10.2307/2388241]
[9]
Chavanne P. 200 remèdes à l’argile. éditions First. 2011. 978-2-7540-3136-3.
[10]
Carretero MI, Pozo M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl Clay Sci 2010; 47: 171-81.
[http://dx.doi.org/10.1016/j.clay.2009.10.016]
[11]
Carretero MI. Clay minerals and their beneficial effects upon human health: a review. Appl Clay Sci 2002; 21: 155-63.
[http://dx.doi.org/10.1016/S0169-1317(01)00085-0]
[12]
Carretero MI, Pozo M. Clay and non-clay minerals in the pharmaceutical industry Part I. Excipients and medical applications. Appl Clay Sci 2009; 46: 73-80.
[http://dx.doi.org/10.1016/j.clay.2009.07.017]
[13]
Pesciaroli C, Viseras C, Aguzzi C, Rodelasa B, González-Lópeza J. Study of bacterial community structure and diversity during the maturation process of a therapeutic peloid. Appl Clay Sci 2016; 132–133: 59-67.
[http://dx.doi.org/10.1016/j.clay.2016.05.015]
[14]
Pozo M, Armijo F, Maraver F, Manuel Ejeda J, Corvillo I. Texture profile analysis (TPA) of clay/seawater mixtures useful for peloid preparation: Effects of clay concentration, pH and salinity. Appl Clay Sci 2018; 165: 40-51.
[http://dx.doi.org/10.1016/j.clay.2018.08.001]
[15]
Suárez M, Rodríguez MCM, Gelen A, et al. Physicochemical characterization, elemental speciation and hydrogeochemical modeling of river and peloid sediments used for therapeutic uses. Appl Clay Sci 2015; 104: 36-47.
[http://dx.doi.org/10.1016/j.clay.2014.11.029]
[16]
Khalil N, Charef A, Khiari N, Gomez Pérez CP, Hjiri B. Influence of thermal and marine water and time of interaction processes on the Cu, Zn, Mn, Pb, Cd and Ni adsorption and mobility of silty-clay peloid. Appl Clay Sci 2018; 162: 403-8.
[http://dx.doi.org/10.1016/j.clay.2018.06.026]
[17]
Pozo M, Carretero MI, Maraver F, Pozo E, Juan R. Composition and physico-chemical properties of peloids used in Spanish spas: a comparative study. Appl Clay Sci 2013; 83-4: 270-9.
[http://dx.doi.org/10.1016/j.clay.2013.08.034]
[18]
Gerencsér G, Murányi E, Szendi K, Varga C. Ecotoxicological studies on Hungarian peloids (medicinal muds). Appl Clay Sci 2010; 50: 47-50.
[http://dx.doi.org/10.1016/j.clay.2010.06.022]
[19]
Fernández-González M, Martín-García J, Delgado G. A study of the chemical, mineralogical and physicochemical properties of peloids prepared with two medicinal mineral waters from Lanjarón Spa (Granada, Spain). Appl Clay Sci 2013; 80–81: 107-16.
[http://dx.doi.org/10.1016/j.clay.2013.06.011]
[20]
Gámiz E, Martín-García JM, Fernández-González MV, Delgado G, Delgado R. Influence of water type and maturation time on the properties of kaolinite-saponite peloids. Appl Clay Sci 2009; 46: 117-23.
[http://dx.doi.org/10.1016/j.clay.2009.07.016]
[21]
Fernández-González MV, Martín-García JM, Delgado G, Párraga J, Delgado R. Physical properties of peloids prepared with medicinal mineral waters from Lanjarón Spa. Appl Clay Sci 2017; 135: 465-74.
[http://dx.doi.org/10.1016/j.clay.2016.10.034]
[22]
Barhoumi T, Bekri-Abbes I, Srasra E. Physicochemical characteristics and suitability of curative pastes made of Tunisian clay minerals and thermal waters for use in pelotherapy. C R Chim 2019; 22: 126-31.
[http://dx.doi.org/10.1016/j.crci.2018.11.006]
[23]
Armijo F, Maraver F, Pozo M, Carretero MI, Corvillo I. Thermal behaviour of clays and clay-water mixtures for pelotherapy. Appl Clay Sci 2016; 126: 50-6.
[http://dx.doi.org/10.1016/j.clay.2016.02.020]
[24]
Glavaš N, Lourdes MM, Gómez CP, Legido JL, Kovač N. The mineralogical, geochemical, and thermophysical characterization of healing saline mud for use in pelotherapy. Appl Clay Sci 2017; 135: 119-28.
[http://dx.doi.org/10.1016/j.clay.2016.09.013]
[25]
Veniale F, Barberis E, Carcangiu G, Morandi N, Tessier D. Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl Clay Sci 2004; 25: 135-48.
[http://dx.doi.org/10.1016/j.clay.2003.10.002]
[26]
Aguzzi C, Cerezo P, Viseras C, Caramella C. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 2007; 36: 22-36.
[http://dx.doi.org/10.1016/j.clay.2006.06.015]
[27]
Moraes JDD, Bertolino SRA, Cuffini SL, Ducart DF, Bretzke PE, Leonardi GR. Clay minerals: properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-A review. Int J Pharm 2017; 534(1-2): 213-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.031] [PMID: 29038067 ]
[28]
Moraes JDD, Bertolino SRA, Cuffini SL, Ducart DF, Bretzke PE, Leonardi GR. Clay minerals: properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes-A review. Int J Pharm 2017; 20534(1-2): 213-9.
[29]
Guggenheim S, Martin R. Definition of clay and clay mineral: joint report of the AIPEA nomenclature and CMS nomenclature committees. Clay Miner 1995; 43: 255-6.
[http://dx.doi.org/10.1346/CCMN.1995.0430213]
[30]
Parker. McGraw-Hill encyclopedia of the geological sciences. 2nd ed. New York, McGraw-Hill 1988. 32–33: 69-72, 400-1.
[31]
Brigatti MF, Galán E, Theng BKG. Developments in clay science developments in clay science. structure and mineralogy of clay minerals 2013. 5: 21-81
[32]
Velde B. Introduction to clay minerals chemistry, origins, uses and environmental significance Springer-Science. Chapman & Hall in 1992.
[http://dx.doi.org/ 10.1007/978-94-011-2368-6]
[33]
Williams LB, Haydel SE. Evaluation of the medicinal use of clay minerals as antibacterial agents. Int Geol Rev 2010; 52(7/8): 745-70.
[http://dx.doi.org/10.1080/00206811003679737] [PMID: 20640226]
[34]
Bergaya F, Theng BKG, Lagaly G. Handbook of Clay Science. Elsevier Science 2006; p. 1.
[35]
Grim RE. Applied Clay Mineralogy Published by McGraw-Hill Inc. US 1962.
[36]
Williams LB, Metge DW, Eberl DD, et al. What makes a natural clay antibacterial? Environ Sci Technol 2011; 45(8): 3768-73.
[http://dx.doi.org/10.1021/es1040688] [PMID: 21413758]
[37]
Xi Wang, Dong WH, Zeng OQ, Xia Q, Zhang L, Zhou Z. Reduced iron-containing clay minerals as antibacterial agents. Environ Sci Technol 2017; 51: 7639-47.
[http://dx.doi.org/10.1021/acs.est.7b00726]
[38]
Schoonen MA, Cohn CA, Roemer E, Laffers R, Simon SR, O’Riordan T. Mineral-induced formation of reactive oxygen species. Rev Mineral Geochem 2006; 64: 179-221.
[http://dx.doi.org/10.2138/rmg.2006.64.7]
[39]
Jones GC, van Hille RP, Harrison STL. Reactive oxygen species generated in the presence of fine pyrite particles and its implication in thermophilic mineral bioleaching. Appl Microbiol Biotechnol 2013; 97(6): 2735-42.
[http://dx.doi.org/10.1007/s00253-012-4116-y] [PMID: 22584431]
[40]
Cohn CA, Laffers R, Simon SR, O’Riordan T, Schoonen MA. Role of pyrite in formation of hydroxyl radicals in coal: possible implications for human health. Part Fibre Toxicol 2006; 3: 16.
[http://dx.doi.org/10.1186/1743-8977-3-16] [PMID: 17177987 ]
[41]
Schoonen MAA, Harrington AD, Laffers R, Strongin DR. Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen. Geochim Cosmochim Acta 2010; 74: 4971-87.
[http://dx.doi.org/10.1016/j.gca.2010.05.028]
[42]
Park S, Imlay JA. High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol 2003; 185(6): 1942-50.
[http://dx.doi.org/10.1128/JB.185.6.1942-1950.2003] [PMID: 12618458]
[43]
Hagensee ME, Moses RE. Multiple pathways for repair of hydrogen peroxide-induced DNA damage in Escherichia coli. J Bacteriol 1989; 171(2): 991-5.
[http://dx.doi.org/10.1128/JB.171.2.991-995.1989] [PMID: 2644241]
[44]
Hutchinson F. Chemical changes induced in DNA by ionizing radiation. Prog Nucleic Acid Res Mol Biol 1985; 32: 115-54.
[http://dx.doi.org/10.1016/S0079-6603(08)60347-5] [PMID: 3003798 ]
[45]
Imlay JA, Fridovich I. Assay of metabolic superoxide production in Escherichia coli. J Biol Chem 1991; 266(11): 6957-65.
[PMID: 1849898]
[46]
Williams L, Geomimicry B. Harnessing the antibacterial action of clays. Clay Miner 2017; 52(1): 1-24.
[http://dx.doi.org/10.1180/claymin.2017.052.1.01]
[47]
Williams RJP. What is wrong with aluminum? J Inorg Biochem 1999; 76: 81-8.
[http://dx.doi.org/10.1016/S0162-0134(99)00118-X] [PMID: 10612060]
[48]
Borrok D, Fein JB, Tischler M, et al. The effect of acidic solutions and growth conditions on the adsorptive properties of bacterial surfaces. Chem Geol 2004; 209: 107-19.
[http://dx.doi.org/10.1016/j.chemgeo.2004.04.025]
[49]
Alfenas CS, Ricci GP, Fariaa EH, et al. Antibacterial activity of Nb-aluminum oxide prepared by the non-hydrolytic sol-gel route. J Mol Catal Chem 2011; 338: 65-70.
[http://dx.doi.org/10.1016/j.molcata.2011.01.026]
[50]
Wesolowski DJ. Aluminum speciation and equilibria in aqueous solution: I. The solubility of gibbsite in the system Na-K-ClOH-Al-A1(OH)4 from 0 to 100°C. Geochim Cosmochim Acta 1992; 56: 1065-91.
[http://dx.doi.org/10.1016/0016-7037(92)90047-M]
[51]
Zarate-Reyes L, Lopez-Pacheco C. Nieto-Camacho Ao, et al. Antibacterial clay against gram-negative antibiotic resistant bacteria.Journal of Hazardous 15: 342:625-32.
[52]
Mosser C, Michot LJ, Villierns F, Romeo M. Migration of cations in Cu(II)-exchanged montmorillonite and laponite upon heating. Clays Clay Miner 1997; 45: 789-802.
[http://dx.doi.org/10.1346/CCMN.1997.0450603]
[53]
He HP, Guo JG, Xie XD, Peng JL. Location and migration of cations in Cu(2+)-adsorbed montmorillonite. Environ Int 2001; 26(5-6): 347-52.
[http://dx.doi.org/10.1016/S0160-4120(01)00011-3] [PMID: 11392750]
[54]
Zhou YH, Xia MS, Ye Y, Hu CH. Antimicrobial ability of Cu2+ montmorillonite. Appl Clay Sci 2004; 27: 215-8.
[http://dx.doi.org/10.1016/j.clay.2004.06.002]
[55]
Malachová K, Praus P, Pavlíčková Z, Turicová M. Activity of antibacterial compounds immobilised on montmorillonite. Applied Clay Science 2009. 43: 443 364-8.
[http://dx.doi.org/10.1016/j.clay.2008.11.003]
[56]
Malachová K, Praus P, Rybková Z, Kozák O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl Clay Sci 2011; 53: 642-5.
[http://dx.doi.org/10.1016/j.clay.2011.05.016]
[57]
Hu C-H, Xu Z-R, Xia M-S. Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism. Vet Microbiol 2005; 109(1-2): 83-8.
[http://dx.doi.org/10.1016/j.vetmic.2005.04.021] [PMID: 15939555]
[58]
Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J 2013; 228: 596-613.
[http://dx.doi.org/10.1016/j.cej.2013.05.046]
[59]
Kadiyala U, Kotov NA, VanEpps JS. Antibacterial metal oxide nanoparticles: challenges in interpreting the literature. Curr Pharm Des 2018; 24(8): 896-903.
[http://dx.doi.org/10.2174/1381612824666180219130659] [PMID: 29468956 ]
[60]
Wheatley RA. Some recent trends in the analytical chemistry of lipid peroxidation. Trends Analyt Chem 2000; 19: 617-28.
[http://dx.doi.org/10.1016/S0165-9936(00)00010-8]
[61]
Sohrabnezhad Sh, Pourahmad A. Mehdipour Moghaddam MJ, Sadeghi A. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite. Spectrochim Acta A Mol Biomol Spectrosc 2015; 136(Pt C): 1728-33.
[http://dx.doi.org/10.1016/j.saa.2014.10.074] [PMID: 25467663]
[62]
Wu T-S, Wang K-X, Li G-D, Sun S-Y, Sun J, Chen J-S. Montmorillonite-supported Ag/TiO(2) nanoparticles: an efficient visible-light bacteria photodegradation material. ACS Appl Mater Interfaces 2010; 2(2): 544-50.
[http://dx.doi.org/10.1021/am900743d] [PMID: 20356203]
[63]
Roy A, Butola BS, Joshi M. Synthesis, characterization and antibacterial properties of novel nano-silver loaded acid activated montmorillonite. Appl Clay Sci 2017; 146: 278-85.
[http://dx.doi.org/10.1016/j.clay.2017.05.043]
[64]
Dhas TS, Kumar VG, Karthick V, Angel KJ, Govindaraju K. Facile synthesis of silver chloride nanoparticles using marine alga and its antibacterial efficacy. Spectrochim Acta A Mol Biomol Spectrosc 2014; 120: 416-20.
[http://dx.doi.org/10.1016/j.saa.2013.10.044] [PMID: 24211624 ]
[65]
Sohrabnezhad Sh, Rassa M. Mohammadi Dahanesari E. Spectroscopic study of silver halides in montmorillonite and their antibacterial activity. J Photochem Photobiol B 2016; 163: 150-5.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.08.018] [PMID: 27569578 ]
[66]
Coppo E, Marchese A. Antibacterial activity of polyphenols. Curr Pharm Biotechnol 2014; 15(4): 380-90.
[http://dx.doi.org/10.2174/138920101504140825121142] [PMID: 25312620]
[67]
Shahid M, Shahzad A, Sobia F, Sahai A, Tripathi T, Singh A. Plant natural products as a potential source for antibacterial agents: recent trends. Antiinfect Agents Med Chem 2009; 8: 211-25.
[http://dx.doi.org/10.2174/187152109788680199]
[68]
Belmehdi DB, Bouyahya A, Laghmouchi Y, Senhaji SN, Abrini J. Phenolic content, antibacterial and antioxidant activities of moroccan propolis. Curr Bioact Compd 2019; 15: 399-407.
[69]
Majiene D, Trumbeckaite S, Pavilonis A, Savickas A, Martirosyan DM. Antifungal and antibacterial activity of propolis. Curr Nutr Food Sci 2007; 3: 304-8.
[http://dx.doi.org/10.2174/1573401310703040304]
[70]
Yiannakopoulou ECh. Recent patents on antibacterial, antifungal and antiviral properties of tea. Recent Pat Antiinfect Drug Discov 2012; 7(1): 60-5.
[http://dx.doi.org/10.2174/157489112799829738] [PMID: 22353001]
[71]
Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem 2003; 10(10): 813-29.
[http://dx.doi.org/10.2174/0929867033457719] [PMID: 12678685]
[72]
Subathradevi C, Nirmala Devi P, Jemimahnaine S, Mohanasrinivasan V. Antibacterial and antioxidant property of Streptomyces cinnamonensis VITNS1 Isolated from Serkadu Region, Vellore, Tamil Nadu, India Journal. Antiinfect Agents 2014; 12: 206-12.
[http://dx.doi.org/10.2174/2211352512666140714175749]
[73]
Hyoung-Jun K, Tae-Hyun K, Hyoung-Mi K, et al. Nano-biohybrids of engineered nanoclays and natural extract for antibacterial agents. Appl Clay Sci 2016; 134: 19-25.
[http://dx.doi.org/10.1016/j.clay.2016.05.003]
[74]
Rautureau M, Figueiredo Gomes CS, Liewig N, Katouzian-Safadi M. Clays and Health Properties and Therapeutic Uses. Springer International Publishing AG 2017.
[75]
Çelik M, Konya K. Thermal properties of some Turkish peloids and clay minerals for their use in pelotherapy. Geomaterials 2016; 06: 79-90.
[http://dx.doi.org/10.4236/gm.2016.64007]
[76]
Çelik Karakaya M, Karakaya N. Chemical composition and suitability of some Turkish thermal muds as peloids. Turk J Earth Sci 2018; 27: 191-204.
[77]
Beer AM, Grozeva A, Sagorchev P, Lukanov J. Comparative study of the thermal properties of mud and peat solutions applied in clinical practice. Biomed Tech (Berl) 2003; 48(11): 301-5.
[http://dx.doi.org/10.1515/bmte.2003.48.11.301] [PMID: 14661533 ]
[78]
Ferrand T, Yvon J. Thermal properties of clay pastes for pelotherapy. Appl Clay Sci 1991; 6: 21-38.
[http://dx.doi.org/10.1016/0169-1317(91)90008-W]
[79]
Cara S, Carcangiu G, Padalino G, Palomba M, Tamanini M. The bentonites in pelotherapy: thermal properties of clay pastes from Sardinia (Italy). Appl Clay Sci 2000; 16: 125-32.
[http://dx.doi.org/10.1016/S0169-1317(99)00050-2]
[80]
Droy-Lefaix MT. Smectite et barrière muqueuse intestinale. Revue MedVet. M.T. Droy-Lefaix, B. Schatz, Y. Drouet, Altération de labarrière muqueuse digestive par les sels biliaires : effet de la smectite.8ème Congrès Mondial de Gastroentérologie, Sao Paulo,Brésil, . 1987. 1987; 138: 411-21.
[81]
Guarino A, Bisceglia M, Castellucci G, et al. Italian Society of Pediatric Gastroenterology and Hepatology Study Group for Smectite in Acute Diarrhea; SIGEP Study Group for Smectite in Acute Diarrhea. Smectite in the treatment of acute diarrhea: a nationwide randomized controlled study of the Italian Society of Pediatric Gastroenterology and Hepatology (SIGEP) in collaboration with primary care pediatricians. J Pediatr Gastroenterol Nutr 2001; 32(1): 71-5.
[http://dx.doi.org/10.1097/00005176-200101000-00019] [PMID: 11176329]
[82]
Droy-Lefaix MT, Drouet Y, Geraud G, Schatz B. Cytoprotection intestinale. Gastroenterol Clin Biol 1985; 9: 37-44.
[83]
Williams LB, Haydel SE, Ferrell RE. Bentonite, bandaids, and borborygmi. Elements (Quebec) 2009; 5(2): 99-104.
[http://dx.doi.org/10.2113/gselements.5.2.99] [PMID: 20607126 ]
[84]
Phillips TD, Afriyie-Gyawu E, Williams J, et al. Reducing human exposure to aflatoxin through the use of clay: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25(2): 134-45.
[http://dx.doi.org/10.1080/02652030701567467] [PMID: 18286403 ]
[85]
Fowler J, Li W, Bailey C. Effects of a calcium bentonite clay in diets containing aflatoxin when measuring liver residues of aflatoxin b1 in starter broiler chicks. Toxins (Basel) 2015; 7(9): 3455-64.
[http://dx.doi.org/10.3390/toxins7093455] [PMID: 26343723]
[86]
Phillips TD, Sarr AB, Grant PG. Selective chemisorption and detoxification of aflatoxins by phyllosilicate clay. Nat Toxins 1995; 3(4): 204-13.
[http://dx.doi.org/10.1002/nt.2620030407] [PMID: 7582618]
[87]
Dvorák M. [Ability of bentonite and natural zeolite to adsorb aflatoxin from liquid media]. Vet Med (Praha) 1989; 34(5): 307-16.
[PMID: 2547262]
[88]
Dos Anjos FR, Ledoux DR, Rottinghaus GE, Chimonyo M. Efficacy of adsorbents (bentonite and diatomaceous earth) and turmeric (Curcuma longa) in alleviating the toxic effects of aflatoxin in chicks. Br Poult Sci 2015; 56: 459-69.
[89]
Neeff DV, Ledoux DR, Rottinghaus GE, et al. In vitro and in vivo efficacy of a hydrated sodium calcium aluminosilicate to bind and reduce aflatoxin residues in tissues of broiler chicks fed aflatoxin B1. Poult Sci 2013; 92(1): 131-7.
[http://dx.doi.org/10.3382/ps.2012-02510] [PMID: 23243239 ]
[90]
Eckhardt JC, Santurio JM, Zanette RA. Efficacy of a Brazilian calcium montmorillonite against toxic effects of dietary aflatoxins on broilers reared to market weight. Br Poult Sci 2014; 55: 215-0.
[http://dx.doi.org/10.1080/00071668.2014.883065]
[91]
Rebitski EP, Souza GP, Santana SAA, Pergher SBC, Alcântara S. Bionanocomposites based on cationic and anionic layered clays as controlled release devices of amoxicillin. Appl Clay Sci 2019; 173: 35-45.
[http://dx.doi.org/10.1016/j.clay.2019.02.024]
[92]
El Bourakadi K, El Mehdi M. Mekhzoum Abou el kacem Qaiss,Rachid Bouhfid. Chapter 20 - Processing and Biomedical.Applications of Polymer/Organo-modified Clay Bionanocomposites.Nanostructured Polymer Composites for Biomedical Applications,Micro and Nano Technologies In: 2019. 405-28
[93]
Oliveira AS, Alcântara ACS, Pergher SBC. Bionanocomposite systems based on montmorillonite and biopolymers for the controlled release of olanzapine. Mater Sci Eng C 2017; 75: 1250-8.
[http://dx.doi.org/10.1016/j.msec.2017.03.044] [PMID: 28415414]
[94]
Bounabi L, Mokhnachi NB. Nabila Haddadine, Farid Ouazib, Regis Barille Development of poly(2-hydroxyethyl methacrylate)/clay composites as drug delivery systems of paracetamol. J Drug Deliv Sci Technol 2016; 33: 58-65.
[http://dx.doi.org/10.1016/j.jddst.2016.03.010]
[95]
Onnainty R, Onida B, Páez P, Longhi M, Barresi A, Granero G. Targeted chitosan-based bionanocomposites for controlled oral mucosal delivery of chlorhexidine. Int J Pharm 2016; 509(1-2): 408-18.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.011] [PMID: 27282538 ]
[96]
Xi W, Chang J, Wu C. Bioactive inorganic/organic nanocomposites for wound healing. Applied Materials Today 2018; 11: 308-19.
[http://dx.doi.org/10.1016/j.apmt.2018.03.001]
[97]
Zhanhu J, Song K, Liu C. Polymer-Based multifunctional nanocomposites and their applications. Elsevier Science Publishing Co Inc. 2018.
[98]
Dollery C. Therapeutic Drugs Mesalazine. Churchill Livingstone: London 1991; p. 1.
[99]
Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Chitosan and its role in ocular therapeutics. Mini Rev Med Chem 2009; 9(14): 1639-47.
[http://dx.doi.org/10.2174/138955709791012292] [PMID: 20105127 ]
[100]
Chourasia MK, Jain SK. Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci 2003; 6(1): 33-66.
[PMID: 12753729 ]
[101]
Vaz JM, Pezzoli D, Chevallier P, Campelo CS, Candiani G, Mantovani D. Antibacterial coatings based on chitosan for pharmaceutical and biomedical applications. Curr Pharm Des 2018; 24(8): 866-85.
[http://dx.doi.org/10.2174/1381612824666180219143900] [PMID: 29468957]
[102]
Wang QS, Wang GF, Zhou J, Gao LN, Cui YL. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm 2016; 515(1-2): 176-85.
[http://dx.doi.org/10.1016/j.ijpharm.2016.10.002] [PMID: 27713029]
[103]
Duttagupta DS, Jadhav VM, Kadam VJ. Chitosan: a propitious biopolymer for drug delivery. Curr Drug Deliv 2015; 12(4): 369-81.
[http://dx.doi.org/10.2174/1567201812666150310151657] [PMID: 25761010 ]
[104]
Aguzzi C, Capra P, Bonferonib C, et al. Chitosan–silicate biocomposites to be used in modified drug release of 5-aminosalicylic acid (5-ASA). Appl Clay Sci 2010; 50: 106-11.
[http://dx.doi.org/10.1016/j.clay.2010.07.011]
[105]
Xu W, Dong S, Han Y, Li S, Liu Y. Hydrogels as antibacterial biomaterials. Curr Pharm Des 2018; 24(8): 843-54.
[http://dx.doi.org/10.2174/1381612824666180213122953] [PMID: 29436994 ]
[106]
Zhang L, Cao Z, Li Y, Ella-Menye J-R, Bai T, Jiang S. Softer zwitterionic nanogels for longer circulation and lower splenic accumulation. ACS Nano 2012; 6(8): 6681-6.
[http://dx.doi.org/10.1021/nn301159a] [PMID: 22830983]