CDK1 in Breast Cancer: Implications for Theranostic Potential

Page: [758 - 767] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Breast cancer has been identified as one of the main cancer-related deaths among women during some last decades. Recent advances in the introduction of novel potent anti-cancer therapeutics in association with early detection methods led to a decrease in the mortality rate of breast cancer. However, the scenario of breast cancer is yet going on and further improvements in the current anti-cancer therapeutic approaches are needed. Several factors are present in the tumor microenvironment which help to cancer progression and suppression of anti-tumor responses. Targeting these cancer-promoting factors in the tumor microenvironment has been suggested as a potent immunotherapeutic approach for cancer therapy. Among the various tumorsupporting factors, Cyclin-Dependent Kinases (CDKs) are proposed as a novel promising target for cancer therapy. These factors in association with cyclins play a key role in cell cycle progression. Dysregulation of CDKs which leads to increased cell proliferation has been identified in various cancers, such as breast cancer. Accordingly, the development and use of CDK-inhibitors have been associated with encouraging results in the treatment of breast cancer. However, it is unknown that the inhibition of which CDK is the most effective strategy for breast cancer therapy. Since the selective blockage of CDK1 alone or in combination with other therapeutics has been associated with potent anti-cancer outcomes, it is suggested that CDK1 may be considered as the best CDK target for breast cancer therapy. In this review, we will discuss the role of CDK1 in breast cancer progression and treatment.

Keywords: Cyclin-dependent kinase, CDK1, breast cancer, CDK inhibitors, treatment, thernostics.

Graphical Abstract

[1]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[2]
Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Tse, C.K.; Edmiston, S.; Deming, S.L.; Geradts, J.; Cheang, M.C.; Nielsen, T.O.; Moorman, P.G.; Earp, H.S.; Millikan, R.C. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA, 2006, 295(21), 2492-2502.
[http://dx.doi.org/10.1001/jama.295.21.2492] [PMID: 16757721]
[3]
Frisby, C.M. Messages of hope: Health communication strategies that address barriers preventing black women from screening for breast cancer. J. Black Stud., 2002, 32(5), 489-505.
[http://dx.doi.org/10.1177/002193470203200501]
[4]
Schreer, I.; Lüttges, J. Breast cancer: Early detection.InRadiologic-Pathologic Correlations from Head to Toe; Springer, 2005, pp. 767-784.
[http://dx.doi.org/10.1007/3-540-26664-X_35]
[5]
Gøtzsche, P.C.; Nielsen, M. Screening for breast cancer with mammography. Cochrane Database Syst. Rev., 2009, 4(4) ,CD001877.
[PMID: 19821284]
[6]
Kazemi, T.; Younesi, V.; Jadidi-Niaragh, F.; Yousefi, M. Immunotherapeutic approaches for cancer therapy: An updated review. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 769-779.
[PMID: 25801036]
[7]
Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[8]
Haji-Fatahaliha, M.; Hosseini, M.; Akbarian, A.; Sadreddini, S.; Jadidi-Niaragh, F.; Yousefi, M. CAR-modified T-cell therapy for cancer: an updated review. Artif. Cells Nanomed. Biotechnol., 2016, 44(6), 1339-1349.
[PMID: 26068778]
[9]
Ghalamfarsa, G.; Hadinia, A.; Yousefi, M.; Jadidi-Niaragh, F. The role of natural killer T cells in B cell malignancies. Tumour Biol., 2013, 34(3), 1349-1360.
[http://dx.doi.org/10.1007/s13277-013-0743-x] [PMID: 23504588]
[10]
Jadidi-Niaragh, F.; Ghalamfarsa, G.; Yousefi, M.; Tabrizi, M.H.; Shokri, F. Regulatory T cells in chronic lymphocytic leukemia: implication for immunotherapeutic interventions. Tumour Biol., 2013, 34(4), 2031-2039.
[http://dx.doi.org/10.1007/s13277-013-0832-x] [PMID: 23681798]
[11]
Yazdani, Y.; Mohammadnia-Afrouzi, M.; Yousefi, M.; Anvari, E.; Ghalamfarsa, G.; Hasannia, H.; Sadreddini, S.; Jadidi-Niaragh, F. Myeloid-derived suppressor cells in B cell malignancies. Tumour Biol., 2015, 36(10), 7339-7353.
[http://dx.doi.org/10.1007/s13277-015-4004-z] [PMID: 26330296]
[12]
Ghalamfarsa, G.; Kazemi, M.H.; Raoofi Mohseni, S.; Masjedi, A.; Hojjat-Farsangi, M.; Azizi, G.; Yousefi, M.; Jadidi-Niaragh, F. CD73 as a potential opportunity for cancer immunotherapy. Expert Opin. Ther. Targets, 2019, 23(2), 127-142.
[http://dx.doi.org/10.1080/14728222.2019.1559829] [PMID: 30556751]
[13]
Kheshtchin, N.; Arab, S.; Ajami, M.; Mirzaei, R.; Ashourpour, M.; Mousavi, N.; Khosravianfar, N.; Jadidi-Niaragh, F.; Namdar, A.; Noorbakhsh, F.; Hadjati, J. Inhibition of HIF-1α enhances anti-tumor effects of dendritic cell-based vaccination in a mouse model of breast cancer. Cancer Immunol. Immunother., 2016, 65(10), 1159-1167.
[http://dx.doi.org/10.1007/s00262-016-1879-5] [PMID: 27497816]
[14]
Hajizadeh, F.; Okoye, I.; Esmaily, M.; Ghasemi Chaleshtari, M.; Masjedi, A.; Azizi, G.; Irandoust, M.; Ghalamfarsa, G.; Jadidi-Niaragh, F. Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells. Life Sci., 2019, 237, 116952.
[http://dx.doi.org/10.1016/j.lfs.2019.116952] [PMID: 31622608]
[15]
Nurse, P.; Masui, Y.; Hartwell, L.J.N.M Understanding the cell cycle. Nat. Med., 1998, 4, 1103-1106.
[http://dx.doi.org/10.1038/2594]
[16]
Santamaría, D.; Barrière, C.; Cerqueira, A.; Hunt, S.; Tardy, C.; Newton, K.; Cáceres, J.F.; Dubus, P.; Malumbres, M.; Barbacid, M. Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 2007, 448(7155), 811-815.
[http://dx.doi.org/10.1038/nature06046] [PMID: 17700700]
[17]
Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development, 2013, 140(15), 3079-3093.
[http://dx.doi.org/10.1242/dev.091744] [PMID: 23861057]
[18]
Dunphy, W.G. The decision to enter mitosis. Trends Cell Biol., 1994, 4(6), 202-207.
[http://dx.doi.org/10.1016/0962-8924(94)90142-2] [PMID: 14731678]
[19]
Hochegger, H.; Takeda, S.; Hunt, T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat. Rev. Mol. Cell Biol., 2008, 9(11), 910-916.
[http://dx.doi.org/10.1038/nrm2510] [PMID: 18813291]
[20]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[21]
Kourea, H.P.; Koutras, A.K.; Scopa, C.D.; Marangos, M.N.; Tzoracoeleftherakis, E.; Koukouras, D.; Kalofonos, H.P. Expression of the cell cycle regulatory proteins p34cdc2, p21waf1, and p53 in node negative invasive ductal breast carcinoma. MP, Mol. Pathol., 2003, 56(6), 328-335.
[http://dx.doi.org/10.1136/mp.56.6.328] [PMID: 14645695]
[22]
Morgan, D.O. The cell cycle: principles of control. Yale J. Biol. Med., 2007, 80(3), 141-142.
[23]
Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122.
[http://dx.doi.org/10.1186/gb4184]
[24]
De Vivo, M.; Bottegoni, G.; Berteotti, A.; Recanatini, M.; Gervasio, F.L.; Cavalli, A. Cyclin-dependent kinases: bridging their structure and function through computations. Future Med. Chem., 2011, 3(11), 1551-1559.
[http://dx.doi.org/10.4155/fmc.11.113]
[25]
Matsushime, H.; Ewen, M.E.; Strom, D.K.; Kato, J-Y.; Hanks, S.K.; Roussel, M.F.; Sherr, C.J. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell, 1992, 71(2), 323-334.
[26]
Meyerson, M.; Harlow, E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol. Cell. Biol., 1994, 14(3), 2077-2086.
[27]
Endicott, J.A.; Noble, M.E.; Tucker, J. Cyclin-dependent kinases: inhibition and substrate recognition. Curr. Opin. Struct. Biol., 1999, 9(6), 738-744.
[http://dx.doi.org/10.1016/S0959-440X(99)00038-X]
[28]
Draetta, G.; Beach, D. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell, 1988, 54(1), 17-26.
[http://dx.doi.org/10.1016/0092-8674(88)90175-4]
[29]
Ren, S.; Rollins, B.J. Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell, 2004, 117(2), 239-251.
[30]
Zheng, D.; Cho, Y-Y.; Lau, A.T.; Zhang, J.; Ma, W-Y.; Bode, A.M.; Dong, Z.J.C.r Cyclin-dependent kinase 3-mediated activating transcription factor 1 phosphorylation enhances cell transformation. Cancer Res., 2008, 68(18), 7650-7660.
[31]
Fisher, R.P. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell Sci., 2005, 118(22), 5171-5180.
[32]
Kaldis, P. The cdk-activating kinase (CAK): from yeast to mammals. Cell. Mol. Life Sci., 1999, 55(2), 284-296.
[33]
Szilagyi, Z.; Gustafsson, C.M. Emerging roles of Cdk8 in cell cycle control. Biochem. Biophys. Acta, 2013, 1829(9), 916-920.
[http://dx.doi.org/10.1016/j.bbagrm.2013.04.010]
[34]
Loyer, P.; Trembley, J.H.; Katona, R.; Kidd, V.J.; Lahti, J.M. Role of CDK/cyclin complexes in transcription and RNA splicing. Cell. Signal., 2005, 17(9), 1033-1051.
[35]
Romano, G.; Giordano, A. Role of the cyclin-dependent kinase 9-related pathway in mammalian gene expression and human diseases. Cell Cycle, 2008, 7(23), 3664-3668.
[36]
Yu, D.S.; Cortez, D. A role for CDK9-cyclin K in maintaining genome integrity. Cell Cycle, 2011, 10(1), 28-32.
[http://dx.doi.org/10.4161/cc.10.1.14364]
[37]
Guen, V.J.; Gamble, C.; Flajolet, M.; Unger, S.; Thollet, A.; Ferandin, Y.; Superti-Furga, A.; Cohen, P.A.; Meijer, L.; Colas, P. CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19525-19530.
[38]
Li, S.; MacLachlan, T.K.; De Luca, A.; Claudio, P.P.; Condorelli, G.; Giordano, A. The cdc-2-related kinase, PISSLRE, is essential for cell growth and acts in G2 phase of the cell cycle. Cancer Res., 1995, 55(18), 3992-3995.
[39]
Liu, X.; Cheng, C.; Shao, B.; Wu, X.; Ji, Y.; Lu, X.; Shen, A. LPS-stimulating astrocyte-conditioned medium causes neuronal apoptosis via increasing CDK11(p58) expression in PC12 cells through downregulating AKT pathway. Cell. Mol. Neurobiol., 2013, 33(6), 779-787.
[40]
Wilkinson, S.; Croft, D.R.; O’Prey, J.; Meedendorp, A.; O’Prey, M.; Dufès, C.; Ryan, K.M. The cyclin-dependent kinase PITSLRE/CDK11 is required for successful autophagy. Autophagy, 2011, 7(11), 1295-1301.
[41]
Blazek, D.; Kohoutek, J.; Bartholomeeusen, K.; Johansen, E.; Hulinkova, P.; Luo, Z.; Cimermancic, P.; Ule, J.; Peterlin, B.M. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev., 2011, 25(20), 2158-2172.
[42]
Li, X.; Chatterjee, N.; Spirohn, K.; Boutros, M.; Bohmann, D. Cdk12 is a gene-selective RNA polymerase II kinase that regulates a subset of the transcriptome, including Nrf2 target genes. Sci. Rep., 2016, 6, 21455.
[43]
Draetta, G.; Brizuela, L.; Potashkin, J.; Beach, D. Identification of p34 and p13, human homologs of the cell cycle regulators of fission yeast encoded by cdc2+ and suc1+. Cell, 1987, 50(2), 319-325.
[http://dx.doi.org/10.1016/0092-8674(87)90227-3] [PMID: 3297353]
[44]
Mueller, P.R.; Coleman, T.R.; Kumagai, A.; Dunphy, W.G. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science, 1995, 270(5233), 86-90.
[http://dx.doi.org/10.1126/science.270.5233.86] [PMID: 7569953]
[45]
Markey, M.P.; Angus, S.P.; Strobeck, M.W.; Williams, S.L.; Gunawardena, R.W.; Aronow, B.J.; Knudsen, E.S. Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Cancer Res., 2002, 62(22), 6587-6597.
[PMID: 12438254]
[46]
Ren, B.; Cam, H.; Takahashi, Y.; Volkert, T.; Terragni, J.; Young, R.A.; Dynlacht, B.D. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev., 2002, 16(2), 245-256.
[http://dx.doi.org/10.1101/gad.949802] [PMID: 11799067]
[47]
Gavet, O.; Pines, J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev. Cell, 2010, 18(4), 533-543.
[http://dx.doi.org/10.1016/j.devcel.2010.02.013] [PMID: 20412769]
[48]
Gavet, O.; Pines, J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J. Cell Biol., 2010, 189(2), 247-259.
[http://dx.doi.org/10.1083/jcb.200909144] [PMID: 20404109]
[49]
Nigg, E.A. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol., 2001, 2(1), 21-32.
[http://dx.doi.org/10.1038/35048096] [PMID: 11413462]
[50]
Gould, K.L.; Nurse, P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature, 1989, 342(6245), 39-45.
[http://dx.doi.org/10.1038/342039a0] [PMID: 2682257]
[51]
Li, S.; MacLachlan, T.K.; De Luca, A.; Claudio, P.P.; Condorelli, G.; Giordano, A. The cdc-2-related kinase, PISSLRE, is essential for cell growth and acts in G2 phase of the cell cycle. Cancer Res., 1995, 55(18), 3992-3995.
[PMID: 7664269]
[52]
Heald, R.; McLoughlin, M.; McKeon, F. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell, 1993, 74(3), 463-474.
[http://dx.doi.org/10.1016/0092-8674(93)80048-J] [PMID: 8348613]
[53]
Kaur, G.; Stetler-Stevenson, M.; Sebers, S.; Worland, P.; Sedlacek, H.; Myers, C.; Czech, J.; Naik, R.; Sausville, E. Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86-8275. J. Natl. Cancer Inst., 1992, 84(22), 1736-1740.
[http://dx.doi.org/10.1093/jnci/84.22.1736] [PMID: 1279187]
[54]
Sedlacek, H.; Czech, J.; Naik, R.; Kaur, G.; Worland, P.; Losiewicz, M.; Parker, B.; Carlson, B.; Smith, A.; Senderowicz, A.; Sausville, E. Flavopiridol (L86 8275; NSC 649890), a new kinase inhibitor for tumor therapy. Int. J. Oncol., 1996, 9(6), 1143-1168.
[http://dx.doi.org/10.3892/ijo.9.6.1143] [PMID: 21541623]
[55]
Lin, T.S.; Blum, K.A.; Fischer, D.B.; Mitchell, S.M.; Ruppert, A.S.; Porcu, P.; Kraut, E.H.; Baiocchi, R.A.; Moran, M.E.; Johnson, A.J.; Schaaf, L.J.; Grever, M.R.; Byrd, J.C. Flavopiridol, fludarabine, and rituximab in mantle cell lymphoma and indolent B-cell lymphoproliferative disorders. J. Clin. Oncol., 2010, 28(3), 418-423.
[http://dx.doi.org/10.1200/JCO.2009.24.1570] [PMID: 20008633]
[56]
Paruch, K.; Dwyer, M.P.; Alvarez, C.; Brown, C.; Chan, T-Y.; Doll, R.J.; Keertikar, K.; Knutson, C.; McKittrick, B.; Rivera, J.; Rossman, R.; Tucker, G.; Fischmann, T.; Hruza, A.; Madison, V.; Nomeir, A.A.; Wang, Y.; Kirschmeier, P.; Lees, E.; Parry, D.; Sgambellone, N.; Seghezzi, W.; Schultz, L.; Shanahan, F.; Wiswell, D.; Xu, X.; Zhou, Q.; James, R.A.; Paradkar, V.M.; Park, H.; Rokosz, L.R.; Stauffer, T.M.; Guzi, T.J. Discovery of dinaciclib (SCH 727965): A potent and selective inhibitor of cyclin-dependent kinases. ACS Med. Chem. Lett., 2010, 1(5), 204-208.
[http://dx.doi.org/10.1021/ml100051d] [PMID: 24900195]
[57]
Howell, A.; Sims, A.H.; Ong, K.R.; Harvie, M.N.; Evans, D.G.R.; Clarke, R.B. Mechanisms of Disease: prediction and prevention of breast cancer--cellular and molecular interactions. Nat. Clin. Pract. Oncol., 2005, 2(12), 635-646.
[http://dx.doi.org/10.1038/ncponc0361] [PMID: 16341119]
[58]
Varangot, M.; Barrios, E.; Sóñora, C.; Aizen, B.; Pressa, C.; Estrugo, R.; Lavigna, R.; Musé, I.; Osinaga, E.; Berois, N. Clinical evaluation of a panel of mRNA markers in the detection of disseminated tumor cells in patients with operable breast cancer. Oncol. Rep., 2005, 14(2), 537-545.
[http://dx.doi.org/10.3892/or.14.2.537] [PMID: 16012742]
[59]
Ghalamfarsa, G.; Rastegari, A.; Atyabi, F.; Hassannia, H.; Hojjat-Farsangi, M.; Ghanbari, A.; Anvari, E.; Mohammadi, J.; Azizi, G.; Masjedi, A.; Yousefi, M.; Yousefi, B.; Hadjati, J.; Jadidi-Niaragh, F. Anti-angiogenic effects of CD73-specific siRNA-loaded nanoparticles in breast cancer-bearing mice. J. Cell. Physiol., 2018, 233(10), 7165-7177.
[http://dx.doi.org/10.1002/jcp.26743] [PMID: 29741783]
[60]
Reeder, J.G.; Vogel, V.G. Breast cancer prevention.InAdvances in Breast Cancer Management, 2nd ed; Springer, 2008, pp. 149-164.
[61]
Warner, E. Clinical practice. Breast-cancer screening. N. Engl. J. Med., 2011, 365(11), 1025-1032.
[http://dx.doi.org/10.1056/NEJMcp1101540] [PMID: 21916640]
[62]
Jadidi-Niaragh, F.; Atyabi, F.; Rastegari, A.; Kheshtchin, N.; Arab, S.; Hassannia, H.; Ajami, M.; Mirsanei, Z.; Habibi, S.; Masoumi, F.; Noorbakhsh, F.; Shokri, F.; Hadjati, J. CD73 specific siRNA loaded chitosan lactate nanoparticles potentiate the antitumor effect of a dendritic cell vaccine in 4T1 breast cancer bearing mice. J. Control. Release, 2017, 246, 46-59.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.012] [PMID: 27993599]
[63]
Lønning, P. Breast cancer prognostication and prediction: Are we making progress? Annals Oncol., 2007, 18(suppl_8), viii3-viii7.
[http://dx.doi.org/10.1093/annonc/mdm260]
[64]
Moghimi, S.M.; Rahbarizadeh, F.; Ahmadvand, D.; Parhamifar, L. Heavy chain only antibodies: A new paradigm in personalized HER2+ breast cancer therapy. Bioimpacts, 2013, 3(1), 1-4.
[PMID: 23678463]
[65]
Parsa, Y.; Mirmalek, S.A.; Kani, F.E.; Aidun, A.; Salimi-Tabatabaee, S.A.; Yadollah-Damavandi, S.; Jangholi, E.; Parsa, T.; Shahverdi, E. A review of the clinical implications of breast cancer biology. Electron. Phys.,, 2016, 8(5), 2415.
[http://dx.doi.org/10.19082/2416]
[66]
Oláh, E. [The first 20 years of the Department of Molecular Genetics of the National Institute of Oncology (NIO)]. Magy. Onkol., 2007, 51(2), 89-94.
[PMID: 17660864]
[67]
Gerger, A.; Langsenlehner, U.; Renner, W.; Weitzer, W.; Eder, T.; Yazdani-Biuki, B.; Hofmann, G.; Samonigg, H.; Krippl, P. A multigenic approach to predict breast cancer risk. Breast Cancer Res. Treat., 2007, 104(2), 159-164.
[68]
Rahman, N.; Stratton, M.R. The genetics of breast cancer susceptibility. Annu. Rev. Genet., 1998, 32(1), 95-121.
[http://dx.doi.org/10.1146/annurev.genet.32.1.95] [PMID: 9928476]
[69]
Hashemi, V.; Masjedi, A.; Hazhir-Karzar, B.; Tanomand, A.; Shotorbani, S.S.; Hojjat-Farsangi, M.; Ghalamfarsa, G.; Azizi, G.; Anvari, E.; Baradaran, B. The role of DEAD-box RNA helicase p68 (DDX5) in the development and treatment of breast cancer. J. Cell. Physiol., 2019, 234(5), 5478-5487.
[PMID: 30417346]
[70]
Nikkhoo, A.; Rostami, N.; Hojjat-Farsangi, M.; Azizi, G.; Yousefi, B.; Ghalamfarsa, G.; Jadidi-Niaragh, F. Smac mimetics as novel promising modulators of apoptosis in the treatment of breast cancer. J. Cell. Biochem., 2019, 120(6), 9300-9314.
[PMID: 30506843]
[71]
Webster, L.; Bilous, A.; Willis, L.; Byth, K.; Burgemeister, F.; Salisbury, E.L.; Clarke, C.L.; Balleine, R.L. Histopathologic indicators of breast cancer biology: insights from population mammographic screening. Br. J. Cancer, 2005, 92(8), 1366.
[http://dx.doi.org/10.1038/sj.bjc.6602501]
[72]
Polyak, K.; Hu, M. Do myoepithelial cells hold the key for breast tumor progression? J. Mammary Gland Biol. Neoplasia, 2005, 10(3), 231-247.
[http://dx.doi.org/10.1007/s10911-005-9584-6] [PMID: 16807803]
[73]
Esteva, F.J.; Hortobagyi, G.N. Prognostic molecular markers in early breast cancer. Breast Cancer Res., 2004, 6(3), 109-118.
[http://dx.doi.org/10.1186/bcr777] [PMID: 15084231]
[74]
Shao, W.; Brown, M. Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res., 2004, 6(1), 39-52.
[http://dx.doi.org/10.1186/bcr742] [PMID: 14680484]
[75]
Fuqua, S.A.; Schiff, R.; Parra, I.; Friedrichs, W.E.; Su, J-L.; McKee, D.D.; Slentz-Kesler, K.; Moore, L.B.; Willson, T.M.; Moore, J.T. Expression of wild-type estrogen receptor β and variant isoforms in human breast cancer. Cancer Res., 1999, 59(21), 5425-5428.
[PMID: 10554010]
[76]
Su, J-L.; McKee, D.D.; Ellis, B.; Kadwell, S.H.; Wisely, G.B.; Moore, L.B.; Triantafillou, J.A.; Kost, T.A.; Fuqua, S.; Moore, J.T. Production and characterization of an estrogen receptor β subtype-specific mouse monoclonal antibody. Hybridoma, 2000, 19(6), 481-487.
[http://dx.doi.org/10.1089/027245700750053977] [PMID: 11152400]
[77]
Colditz, G.A. Relationship between estrogen levels, use of hormone replacement therapy, and breast cancer. J. Natl. Cancer Inst., 1998, 90(11), 814-823.
[http://dx.doi.org/10.1093/jnci/90.11.814] [PMID: 9625169]
[78]
Foidart, J-M.; Colin, C.; Denoo, X.; Desreux, J.; Béliard, A.; Fournier, S.; de Lignières, B. Estradiol and progesterone regulate the proliferation of human breast epithelial cells. Fertil. Steril., 1998, 69(5), 963-969.
[http://dx.doi.org/10.1016/S0015-0282(98)00042-9] [PMID: 9591509]
[79]
Barrett, K.L.; Demiranda, D.; Katula, K.S. Cyclin b1 promoter activity and functional cdk1 complex formation in G1 phase of human breast cancer cells. Cell Biol. Int., 2002, 26(1), 19-28.
[http://dx.doi.org/10.1006/cbir.2001.0817] [PMID: 11779217]
[80]
Barascu, A.; Besson, P.; Le Floch, O.; Bougnoux, P.; Jourdan, M-L. CDK1-cyclin B1 mediates the inhibition of proliferation induced by omega-3 fatty acids in MDA-MB-231 breast cancer cells. Int. J. Biochem. Cell Biol., 2006, 38(2), 196-208.
[http://dx.doi.org/10.1016/j.biocel.2005.08.015] [PMID: 16194618]
[81]
Li, Y.; Chen, Y-L.; Xie, Y-T.; Zheng, L-Y.; Han, J-Y.; Wang, H.; Tian, X-X.; Fang, W-G. Association study of germline variants in CCNB1 and CDK1 with breast cancer susceptibility, progression, and survival among Chinese Han women. PLoS One, 2013, 8(12), e84489.
[http://dx.doi.org/10.1371/journal.pone.0084489] [PMID: 24386390]
[82]
Kim, S.J.; Nakayama, S.; Shimazu, K.; Tamaki, Y.; Akazawa, K.; Tsukamoto, F.; Torikoshi, Y.; Matsushima, T.; Shibayama, M.; Ishihara, H.; Noguchi, S. Recurrence risk score based on the specific activity of CDK1 and CDK2 predicts response to neoadjuvant paclitaxel followed by 5-fluorouracil, epirubicin and cyclophosphamide in breast cancers. Ann. Oncol., 2012, 23(4), 891-897.
[http://dx.doi.org/10.1093/annonc/mdr340] [PMID: 21821547]
[83]
Kim, S.J.; Nakayama, S.; Miyoshi, Y.; Taguchi, T.; Tamaki, Y.; Matsushima, T.; Torikoshi, Y.; Tanaka, S.; Yoshida, T.; Ishihara, H.; Noguchi, S. Determination of the specific activity of CDK1 and CDK2 as a novel prognostic indicator for early breast cancer. Ann. Oncol., 2008, 19(1), 68-72.
[http://dx.doi.org/10.1093/annonc/mdm358] [PMID: 17956886]
[84]
Nakayama, S.; Torikoshi, Y.; Takahashi, T.; Yoshida, T.; Sudo, T.; Matsushima, T.; Kawasaki, Y.; Katayama, A.; Gohda, K.; Hortobagyi, G.N.; Noguchi, S.; Sakai, T.; Ishihara, H.; Ueno, N.T. Prediction of paclitaxel sensitivity by CDK1 and CDK2 activity in human breast cancer cells. Breast Cancer Res., 2009, 11(1), R12.
[http://dx.doi.org/10.1186/bcr2231] [PMID: 19239702]
[85]
Johnson, N.; Bentley, J.; Wang, L.Z.; Newell, D.R.; Robson, C.N.; Shapiro, G.I.; Curtin, N.J. Pre-clinical evaluation of cyclin-dependent kinase 2 and 1 inhibition in anti-estrogen-sensitive and resistant breast cancer cells. Br. J. Cancer, 2010, 102(2), 342-350.
[http://dx.doi.org/10.1038/sj.bjc.6605479] [PMID: 20010939]
[86]
Kim, S.J.; Masuda, N.; Tsukamoto, F.; Inaji, H.; Akiyama, F.; Sonoo, H.; Kurebayashi, J.; Yoshidome, K.; Tsujimoto, M.; Takei, H.; Masuda, S.; Nakamura, S.; Noguchi, S. The cell cycle profiling-risk score based on CDK1 and 2 predicts early recurrence in node-negative, hormone receptor-positive breast cancer treated with endocrine therapy. Cancer Lett., 2014, 355(2), 217-223.
[http://dx.doi.org/10.1016/j.canlet.2014.08.042] [PMID: 25218592]
[87]
Ding, Z-H.; Qi, J.; Shang, A-Q.; Zhang, Y-J.; Wei, J.; Hu, L-Q.; Wang, W-W.; Yang, M. Docking of CDK1 with antibiotic drugs revealed novel therapeutic value in breast ductal cancer in situ. Oncotarget, 2017, 8(37), 61998-62010.
[http://dx.doi.org/10.18632/oncotarget.18779] [PMID: 28977921]
[88]
Galindo-Moreno, M.; Giráldez, S.; Sáez, C.; Japón, M.Á.; Tortolero, M.; Romero, F. Both p62/SQSTM1-HDAC6-dependent autophagy and the aggresome pathway mediate CDK1 degradation in human breast cancer. Sci. Rep., 2017, 7(1), 10078.
[http://dx.doi.org/10.1038/s41598-017-10506-8] [PMID: 28855742]
[89]
Xia, Q.; Cai, Y.; Peng, R.; Wu, G.; Shi, Y.; Jiang, W. The CDK1 inhibitor RO3306 improves the response of BRCA-proficient breast cancer cells to PARP inhibition. Int. J. Oncol., 2014, 44(3), 735-744.
[http://dx.doi.org/10.3892/ijo.2013.2240] [PMID: 24378347]
[90]
Kang, J.; Sergio, C.M.; Sutherland, R.L.; Musgrove, E.A. Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells. BMC Cancer, 2014, 14(1), 32.
[http://dx.doi.org/10.1186/1471-2407-14-32] [PMID: 24444383]
[91]
Liu, Y.; Zhu, Y-H.; Mao, C-Q.; Dou, S.; Shen, S.; Tan, Z-B.; Wang, J. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. J. Control. Release, 2014, 192, 114-121.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.001] [PMID: 25016158]
[92]
Xie, D.; Song, H.; Wu, T.; Li, D.; Hua, K.; Xu, H.; Zhao, B.; Wu, C.; Hu, J.; Ji, C.; Deng, Y.; Fang, L. MicroRNA‑424 serves an anti‑oncogenic role by targeting cyclin‑dependent kinase 1 in breast cancer cells. Oncol. Rep., 2018, 40(6), 3416-3426.
[http://dx.doi.org/10.3892/or.2018.6741] [PMID: 30272324]
[93]
Reese, J.M.; Bruinsma, E.S.; Monroe, D.G.; Negron, V.; Suman, V.J.; Ingle, J.N.; Goetz, M.P.; Hawse, J.R. ERβ inhibits cyclin dependent kinases 1 and 7 in triple negative breast cancer. Oncotarget, 2017, 8(57), 96506-96521.
[http://dx.doi.org/10.18632/oncotarget.21787] [PMID: 29228549]
[94]
Parvizpour, S.; Razmara, J.; Omidi, Y. Breast cancer vaccination comes to age: impacts of bioinformatics. Bioimpacts, 2018, 8(3), 223-235.
[http://dx.doi.org/10.15171/bi.2018.25] [PMID: 30211082]
[95]
Barar, J. Targeting tumor microenvironment: the key role of immune system. Bioimpacts, 2012, 2(1), 1-3.
[PMID: 23678436]
[96]
Rahaei, Z.; Ghofranipour, F.; Morowatisharifabad, M.A.; Mohammadi, E. Determinants of cancer early detection behaviors: Application of protection motivation theory. Health Promot. Perspect., 2015, 5(2), 138-146.
[http://dx.doi.org/10.15171/hpp.2015.016] [PMID: 26290829]