Experimental Models for the Discovery of Novel Anticonvulsant Drugs: Focus on Pentylenetetrazole-Induced Seizures and Associated Memory Deficits

Page: [1693 - 1711] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Epilepsy is a chronic neurological disorder characterized by irregular, excessive neuronal excitability, and recurrent seizures that affect millions of patients worldwide. Currently, accessible antiepileptic drugs (AEDs) do not adequately support all epilepsy patients, with around 30% patients not responding to the existing therapies. As lifelong epilepsy treatment is essential, the search for new and more effective AEDs with an enhanced safety profile is a significant therapeutic goal. Seizures are a combination of electrical and behavioral events that can induce biochemical, molecular, and anatomic changes. Therefore, appropriate animal models are required to evaluate novel potential AEDs. Among the large number of available animal models of seizures, the acute pentylenetetrazole (PTZ)-induced myoclonic seizure model is the most widely used model assessing the anticonvulsant effect of prospective AEDs, whereas chronic PTZ-kindled seizure models represent chronic models in which the repeated administration of PTZ at subconvulsive doses leads to the intensification of seizure activity or enhanced seizure susceptibility similar to that in human epilepsy. In this review, we summarized the memory deficits accompanying acute or chronic PTZ seizure models and how these deficits were evaluated applying several behavioral animal models. Furthermore, major advantages and limitations of the PTZ seizure models in the discovery of new AEDs were highlighted. With a focus on PTZ seizures, the major biochemicals, as well as morphological alterations and the modulated brain neurotransmitter levels associated with memory deficits have been illustrated. Moreover, numerous medicinal compounds with concurrent anticonvulsant, procognitive, antioxidant effects, modulating effects on several brain neurotransmitters in rodents, and several newly developed classes of compounds applying computer-aided drug design (CADD) have been under development as potential AEDs. The article details the in-silico approach following CADD, which can be utilized for generating libraries of novel compounds for AED discovery. Additionally, in vivo studies could be useful in demonstrating efficacy, safety, and novel mode of action of AEDs for further clinical development.

Keywords: Pentylenetetrazole, acute, chronic, seizure, memory deficits, oxidative stress, neurotransmitters, rodent, anticonvulsant agents, computer-aided drug design.

[1]
Hermann B, Seidenberg M. Epilepsy and cognition. Epilepsy Curr 2007; 7(1): 1-6.
[http://dx.doi.org/10.1111/j.1535-7511.2007.00151.x] [PMID: 17304341]
[2]
Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 2010; 51(4): 676-85.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02522.x] [PMID: 20196795]
[3]
Rowley NM, Madsen KK, Schousboe A, Steve White H. Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 2012; 61(4): 546-58.
[http://dx.doi.org/10.1016/j.neuint.2012.02.013] [PMID: 22365921]
[4]
Elger CE, Helmstaedter C, Kurthen M. Chronic epilepsy and cognition. Lancet Neurol 2004; 3(11): 663-72.
[http://dx.doi.org/10.1016/S1474-4422(04)00906-8] [PMID: 15488459]
[5]
Fisher RS, Vickrey BG, Gibson P, et al. The impact of epilepsy from the patient’s perspective I. Descriptions and subjective perceptions. Epilepsy Res 2000; 41(1): 39-51.
[http://dx.doi.org/10.1016/S0920-1211(00)00126-1] [PMID: 10924867]
[6]
Alachkar A, Azimullah S, Ojha SK, et al. The neuroprotective effects of histamine H3 receptor antagonist E177 on pilocarpine-induced status epilepticus in rats. Molecules 2019; 24(22): 24.
[http://dx.doi.org/10.3390/molecules24224106] [PMID: 31739417]
[7]
Alachkar A, Łażewska D, Latacz G, et al. Studies on anticonvulsant effects of novel histamine H3R antagonists in electrically and chemically induced seizures in rats. Int J Mol Sci 2018; 19(11): 19.
[http://dx.doi.org/10.3390/ijms19113386] [PMID: 30380674]
[8]
Brigo F, Ausserer H, Tezzon F, Nardone R. When one plus one makes three: the quest for rational antiepileptic polytherapy with supraadditive anticonvulsant efficacy. Epilepsy Behav 2013; 27(3): 439-42.
[http://dx.doi.org/10.1016/j.yebeh.2013.03.010] [PMID: 23591263]
[9]
Mazarati AM. Chapter 13 - behavioral and cognitive testing procedures in animal models of epilepsy A2 - pitkänen, Asla. 2nd ed. Models of Seizures and Epilepsy. Academic Press. 2017; 181-96.
[10]
Helmstaedter C, Witt JA. Epilepsy and cognition - A bidirectional relationship? Seizure 2017; 49: 83-9.
[http://dx.doi.org/10.1016/j.seizure.2017.02.017] [PMID: 28284559]
[11]
Sadek B, Saad A, Latacz G, et al. Non-imidazole-based histamine H3 receptor antagonists with anticonvulsant activity in different seizure models in male adult rats. Drug Des Devel Ther 2016; 10: 3879-98.
[http://dx.doi.org/10.2147/DDDT.S116192] [PMID: 27932863]
[12]
Emamghoreishi M, Shahpari M, Keshavarz M. Interaction of sigma-1 receptor modulators with seizure development in pentylenetetrazole-induced kindled mice. Epilepsy Res 2019; 154: 74-6.
[http://dx.doi.org/10.1016/j.eplepsyres.2019.05.001] [PMID: 31078073]
[13]
Agarwal NB, Agarwal NK, Mediratta PK, Sharma KK. Effect of lamotrigine, oxcarbazepine and topiramate on cognitive functions and oxidative stress in PTZ-kindled mice. Seizure 2011; 20(3): 257-62.
[http://dx.doi.org/10.1016/j.seizure.2010.12.006] [PMID: 21247777]
[14]
Kumar S, Sarangi SC, Tripathi M, Ramanujam B, Gupta YK. Seizure recurrence risk in persons with epilepsy undergoing antiepileptic drug tapering. Acta Neurol Scand 2020; 141(1): 65-76.
[http://dx.doi.org/10.1111/ane.13183] [PMID: 31618439]
[15]
Sarangi SC, Kaur N, Tripathi M. Assessment of psychiatric and behavioral adverse effects of antiepileptic drugs monotherapy:Could they have a neuroendocrine correlation in persons with epilepsy? Epilepsy Behav 2019; 100(Pt. A): 106439.
[http://dx.doi.org/10.1016/j.yebeh.2019.07.040] [PMID: 31574428]
[16]
Sarangi SC, Pattnaik SS, Katyal J, Kaleekal T, Dinda AK. An interaction study of Ocimum sanctum L. and levetiracetam in pentylenetetrazole kindling model of epilepsy. J Ethnopharmacol 2020; 249112389
[http://dx.doi.org/10.1016/j.jep.2019.112389] [PMID: 31739106]
[17]
Talari HR, Bahrami M, Ardestani AT, Bahmani F, Famili P, Asemi Z. Effects of folate supplementation on carotid intima-media thickness, biomarkers of inflammation, and oxidative stress in carbamazepine-treated epileptic children. Int J Prev Med 2019; 10: 4.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_152_18] [PMID: 30774838]
[18]
Witt JA, Werhahn KJ, Krämer G, Ruckes C, Trinka E, Helmstaedter C. Cognitive-behavioral screening in elderly patients with new-onset epilepsy before treatment. Acta Neurol Scand 2014; 130(3): 172-7.
[http://dx.doi.org/10.1111/ane.12260] [PMID: 24796793]
[19]
Mula M. Epilepsy: Bidirectional link between epilepsy and psychiatric disorders. Nat Rev Neurol 2012; 8(5): 252-3.
[http://dx.doi.org/10.1038/nrneurol.2012.69] [PMID: 22508232]
[20]
Almane DN, Jones JE, McMillan T, et al. The timing, nature, and range of neurobehavioral comorbidities in juvenile myoclonic epilepsy. Pediatr Neurol 2019; 101: 47-52.
[http://dx.doi.org/10.1016/j.pediatrneurol.2019.03.011] [PMID: 31122836]
[21]
Hwang G, Dabbs K, Conant L, et al. Cognitive slowing and its underlying neurobiology in temporal lobe epilepsy. Cortex 2019; 117: 41-52.
[http://dx.doi.org/10.1016/j.cortex.2019.02.022] [PMID: 30927560]
[22]
Cook CJ, Hwang G, Mathis J, et al. Effective connectivity within the default mode network in left temporal lobe epilepsy: findings from the epilepsy connectome project. Brain Connect 2019; 9(2): 174-83.
[http://dx.doi.org/10.1089/brain.2018.0600] [PMID: 30398367]
[23]
Reilly CJ. Attention deficit hyperactivity disorder (ADHD) in childhood epilepsy. Res Dev Disabil 2011; 32(3): 883-93.
[http://dx.doi.org/10.1016/j.ridd.2011.01.019] [PMID: 21310586]
[24]
Helmstaedter C, Aldenkamp AP, Baker GA, Mazarati A, Ryvlin P, Sankar R. Disentangling the relationship between epilepsy and its behavioral comorbidities - the need for prospective studies in new-onset epilepsies. Epilepsy Behav 2014; 31: 43-7.
[http://dx.doi.org/10.1016/j.yebeh.2013.11.010] [PMID: 24333577]
[25]
Curatolo P, Nabbout R, Lagae L, et al. Management of epilepsy associated with tuberous sclerosis complex: Updated clinical recommendations. Eur J Paediatr Neurol 2018; 22(5): 738-48.
[http://dx.doi.org/10.1016/j.ejpn.2018.05.006] [PMID: 29880258]
[26]
Ahmadi M, Dufour JP, Seifritz E, Mirnajafi-Zadeh J, Saab BJ. The PTZ kindling mouse model of epilepsy exhibits exploratory drive deficits and aberrant activity amongst VTA dopamine neurons in both familiar and novel space. Behav Brain Res 2017; 330: 1-7.
[http://dx.doi.org/10.1016/j.bbr.2017.05.025] [PMID: 28506618]
[27]
Kandratavicius L, Balista PA, Lopes-Aguiar C, et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat 2014; 10: 1693-705.
[http://dx.doi.org/10.2147/NDT.S50371] [PMID: 25228809]
[28]
Nasir SA, Sharma A, Khanam R, Vohora D. Effect of medroxyprogesterone on development of pentylenetetrazole-induced kindling in mice. Neuroscience 2012; 207: 283-7.
[http://dx.doi.org/10.1016/j.neuroscience.2012.01.031] [PMID: 22314318]
[29]
Löscher W. Animal models of seizures and epilepsy: past, present, and future role for the discovery of antiseizure drugs. Neurochem Res 2017; 42(7): 1873-88.
[http://dx.doi.org/10.1007/s11064-017-2222-z] [PMID: 28290134]
[30]
Yuen ES, Trocóniz IF. Can pentylenetetrazole and maximal electroshock rodent seizure models quantitatively predict antiepileptic efficacy in humans? Seizure 2015; 24: 21-7.
[http://dx.doi.org/10.1016/j.seizure.2014.11.006] [PMID: 25564315]
[31]
Samokhina E, Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci 2018; 128(11): 1086-96.
[http://dx.doi.org/10.1080/00207454.2018.1481064] [PMID: 29792126]
[32]
Mason CR, Cooper RM. A permanent change in convulsive threshold in normal and brain-damaged rats with repeated small doses of pentylenetetrazol. Epilepsia 1972; 13(5): 663-74.
[http://dx.doi.org/10.1111/j.1528-1157.1972.tb04401.x] [PMID: 4563784]
[33]
Shimada T, Yamagata K. Pentylenetetrazole-induced kindling mouse model. J Vis Exp 2018; (136):
[http://dx.doi.org/10.3791/56573] [PMID: 29985308]
[34]
Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011; 20(5): 359-68.
[http://dx.doi.org/10.1016/j.seizure.2011.01.003] [PMID: 21292505]
[35]
Sato M, Racine RJ, McIntyre DC. Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol 1990; 76(5): 459-72.
[http://dx.doi.org/10.1016/0013-4694(90)90099-6] [PMID: 1699739]
[36]
Löscher W. Current status and future directions in the pharmacotherapy of epilepsy. Trends Pharmacol Sci 2002; 23(3): 113-8.
[http://dx.doi.org/10.1016/S0165-6147(00)01974-X] [PMID: 11879677]
[37]
Löscher W, Fassbender CP, Nolting B. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res 1991; 8(2): 79-94.
[http://dx.doi.org/10.1016/0920-1211(91)90075-Q] [PMID: 2065646]
[38]
Noebels JL. Single-gene models of epilepsy. Adv Neurol 1999; 79: 227-38.
[PMID: 10514817]
[39]
Prasad AN, Prasad C, Stafstrom CE. Recent advances in the genetics of epilepsy: insights from human and animal studies. Epilepsia 1999; 40(10): 1329-52.
[http://dx.doi.org/10.1111/j.1528-1157.1999.tb02004.x] [PMID: 10528928]
[40]
Stone WE. Convulsant actions of tetrazole derivatives. Pharmacology 1970; 3(6): 367-70.
[http://dx.doi.org/10.1159/000136093] [PMID: 5431769]
[41]
Szyndler J, Maciejak P, Turzyńska D, et al. Mapping of c-Fos expression in the rat brain during the evolution of pentylenetetrazol-kindled seizures. Epilepsy Behav 2009; 16(2): 216-24.
[http://dx.doi.org/10.1016/j.yebeh.2009.07.030] [PMID: 19713157]
[42]
CHAPTER 11 - Models of chemically-induced acute seizures A2 -Pitkänen, Asla. In: models of seizures and epilepsy. Burlington:Academic Press 2006; 127-52.
[43]
Chen G, Portman R, Ensor CR, Bratton AC Jr. The anticonvulsant activity of o-phenyl succinimides. J Pharmacol Exp Ther 1951; 103(1): 54-61.
[PMID: 14881068]
[44]
Kupferberg H. Animal models used in the screening of antiepileptic drugs. Epilepsia 2001; 42(Suppl. 4): 7-12.
[http://dx.doi.org/10.1046/j.1528-1157.2001.0420s4007.x] [PMID: 11564118]
[45]
Kehne JH, Klein BD, Raeissi S, Sharma S. The national institute of neurological disorders and stroke (NINDS) epilepsy therapy screening program (ETSP). Neurochem Res 2017; 42(7): 1894-903.
[http://dx.doi.org/10.1007/s11064-017-2275-z] [PMID: 28462454]
[46]
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 2002; 213: 1-47.
[http://dx.doi.org/10.1016/S0074-7696(02)13011-7] [PMID: 11837891]
[47]
Huang RQ, Bell-Horner CL, Dibas MI, Covey DF, Drewe JA, Dillon GH. Pentylenetetrazole-induced inhibition of recombinant gamma-aminobutyric acid type A (GABA(A)) receptors: mechanism and site of action. J Pharmacol Exp Ther 2001; 298(3): 986-95.
[PMID: 11504794]
[48]
Ramanjaneyulu R, Ticku MK. Interactions of pentamethylenetetrazole and tetrazole analogues with the picrotoxinin site of the benzodiazepine-GABA receptor-ionophore complex. Eur J Pharmacol 1984; 98(3-4): 337-45.
[http://dx.doi.org/10.1016/0014-2999(84)90282-6] [PMID: 6327331]
[49]
Rebrov IG, Karpova MN, Andreev AA, Kalinina MV, Klishina NY, Kuznetsova LV. Effect of classic convulsants on Cl- conductance of the GABA(A) receptor complex in membranes of cerebral cortex cells at the early stage of kindling. Bull Exp Biol Med 2007; 143(1): 12-4.
[http://dx.doi.org/10.1007/s10517-007-0004-3] [PMID: 18019001]
[50]
Rebrov IG, Karpova MN, Andreev AA, Klishina NY, Kalinina MV, Kusnetzova LVCl. Cl(-) conduction of GABAA receptor complex of synaptic membranes in the cortex of rats at the middle stage of chronic cerebral epileptization (pharmacological kindling). Bull Exp Biol Med 2007; 144(5): 667-9.
[http://dx.doi.org/10.1007/s10517-007-0400-8] [PMID: 18683491]
[51]
Dhediya RM, Joshi SS, Gajbhiye SV, Jalgaonkar SV, Biswas M. Evaluation of antiepileptic effect of S-adenosyl methionine and its role in memory impairment in pentylenetetrazole-induced kindling model in rats. Epilepsy Behav 2016; 61: 153-7.
[http://dx.doi.org/10.1016/j.yebeh.2016.05.024] [PMID: 27344504]
[52]
Angelatou F, Pagonopoulou O, Kostopoulos G. Alterations of A1 adenosine receptors in different mouse brain areas after pentylentetrazol-induced seizures, but not in the epileptic mutant mouse ‘tottering’. Brain Res 1990; 534(1-2): 251-6.
[http://dx.doi.org/10.1016/0006-8993(90)90136-Y] [PMID: 2073586]
[53]
Hawkins M, Pravica M, Radulovacki M. Chronic administration of diazepam downregulates adenosine receptors in the rat brain. Pharmacol Biochem Behav 1988; 30(2): 303-8.
[http://dx.doi.org/10.1016/0091-3057(88)90459-5] [PMID: 2845443]
[54]
Boison D, Chen JF, Fredholm BB. Adenosine signaling and function in glial cells. Cell Death Differ 2010; 17(7): 1071-82.
[http://dx.doi.org/10.1038/cdd.2009.131] [PMID: 19763139]
[55]
Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 2009; (193): 535-87.
[http://dx.doi.org/10.1007/978-3-540-89615-9_17] [PMID: 19639293]
[56]
Cortez MA, Snead Iii OC. Chapter 10 - pharmacologic models of generalized absence seizures in rodents A2 - Pitkänen, Asla. In: Schwartzkroin PA, Moshé SL, Eds. Models of Seizures and Epilepsy. Burlington: Academic Press. 2006; 111-26.
[57]
André V, Pineau N, Motte JE, Marescaux C, Nehlig A. Mapping of neuronal networks underlying generalized seizures induced by increasing doses of pentylenetetrazol in the immature and adult rat: a c-Fos immunohistochemical study. Eur J Neurosci 1998; 10(6): 2094-106.
[http://dx.doi.org/10.1046/j.1460-9568.1998.00223.x] [PMID: 9753096]
[58]
Sadek B, Saad A, Subramanian D, Shafiullah M, Łażewska D, Kieć-Kononowiczc K. Anticonvulsant and procognitive properties of the non-imidazole histamine H3 receptor antagonist DL77 in male adult rats. Neuropharmacology 2016; 106: 46-55.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.023] [PMID: 26525191]
[59]
Vafaee F, Hosseini M, Hassanzadeh Z, et al. The effects of nigella sativa hydro-alcoholic extract on memory and brain tissues oxidative damage after repeated seizures in rats. Iran J Pharm Res 2015; 14(2): 547-57.
[PMID: 25901163]
[60]
Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res 2016; 8(10): 4499-509.
[PMID: 27830035]
[61]
Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. In:Curr Protoc Neurosci. 2012. Chapter 9: 9.
[62]
Nehlig A, Pereira de Vasconcelos A. The model of pentylenetetrazol-induced status epilepticus in the immature rat: short- and long-term effects. Epilepsy Res 1996; 26(1): 93-103.
[http://dx.doi.org/10.1016/S0920-1211(96)00045-9] [PMID: 8985691]
[63]
Gilbert ME, Goodman JH. Chapter 31 - chemical kindling A2 - Pitkänen, Asla. In: Schwartzkroin PA, Moshé SL, Eds. Models of Seizures and Epilepsy. Burlington: Academic Press. 2006; 379-93.
[64]
Faridkia Z, Yaghmaei P, Nassiri-Asl M. Protective effect of quinine on chemical kindling and passive avoidance test in rats. Iran Red Crescent Med J 2016; 18(9)e25490
[http://dx.doi.org/10.5812/ircmj.25490] [PMID: 28144451]
[65]
Ali A, Ahmad FJ, Pillai KK, Vohora D. Amiloride protects against pentylenetetrazole-induced kindling in mice. Br J Pharmacol 2005; 145(7): 880-4.
[http://dx.doi.org/10.1038/sj.bjp.0706291] [PMID: 15951829]
[66]
Leritz EC, Grande LJ, Bauer RM. Temporal lobe epilepsy as a model to understand human memory: the distinction between explicit and implicit memory. Epilepsy Behav 2006; 9(1): 1-13.
[http://dx.doi.org/10.1016/j.yebeh.2006.04.012] [PMID: 16759913]
[67]
Liu X, Wu Y, Huang Q, Zou D, Qin W, Chen Z. Grouping pentylenetetrazol-induced epileptic rats according to memory impairment and MicroRNA expression profiles in the hippocampus. PLoS One 2015; 10(5)e0126123
[http://dx.doi.org/10.1371/journal.pone.0126123] [PMID: 25962166]
[68]
Huang Q, Liu X, Wu Y, et al. P38 MAPK pathway mediates cognitive damage in pentylenetetrazole-induced epilepsy via apoptosis cascade. Epilepsy Res 2017; 133: 89-92.
[http://dx.doi.org/10.1016/j.eplepsyres.2017.04.012] [PMID: 28472735]
[69]
Liao Y, Huang Y, Liu X, et al. MicroRNA-328a regulates water maze performance in PTZ-kindled rats. Brain Res Bull 2016; 125: 205-10.
[http://dx.doi.org/10.1016/j.brainresbull.2016.07.008] [PMID: 27444122]
[70]
Rajabzadeh A, Bideskan AE, Fazel A, Sankian M, Rafatpanah H, Haghir H. The effect of PTZ-induced epileptic seizures on hippocampal expression of PSA-NCAM in offspring born to kindled rats. J Biomed Sci 2012; 19: 56.
[http://dx.doi.org/10.1186/1423-0127-19-56] [PMID: 22651102]
[71]
Seghatoleslam M, Alipour F, Shafieian R, et al. The effects of Nigella sativa on neural damage after pentylenetetrazole induced seizures in rats. J Tradit Complement Med 2015; 6(3): 262-8.
[http://dx.doi.org/10.1016/j.jtcme.2015.06.003] [PMID: 27419091]
[72]
Jia LJ, Wang WP, Li ZP, Zhen JL, An LW, Duan RS. Memantine attenuates the impairment of spatial learning and memory of pentylenetetrazol-kindled rats. Neurol Sci 2011; 32(4): 609-13.
[http://dx.doi.org/10.1007/s10072-011-0561-0] [PMID: 21479611]
[73]
Wang P, Wang WP, Sun-Zhang , Wang HX, Yan-Lou , Fan YH. Impaired spatial learning related with decreased expression of calcium/calmodulin-dependent protein kinase IIalpha and cAMP-response element binding protein in the pentylenetetrazol-kindled rats. Brain Res 2008; 1238: 108-17.
[http://dx.doi.org/10.1016/j.brainres.2008.07.103] [PMID: 18710651]
[74]
Huang LT, Yang SN, Liou CW, et al. Pentylenetetrazol-induced recurrent seizures in rat pups: time course on spatial learning and long-term effects. Epilepsia 2002; 43(6): 567-73.
[http://dx.doi.org/10.1046/j.1528-1157.2002.29101.x] [PMID: 12060014]
[75]
Cherian A, Thomas SV. Status epilepticus. Ann Indian Acad Neurol 2009; 12(3): 140-53.
[http://dx.doi.org/10.4103/0972-2327.56312] [PMID: 20174493]
[76]
Erdoğan F, Gölgeli A, Küçük A, Arman F, Karaman Y, Ersoy A. Effects of pentylenetetrazole-induced status epilepticus on behavior, emotional memory and learning in immature rats. Epilepsy Behav 2005; 6(4): 537-42.
[http://dx.doi.org/10.1016/j.yebeh.2005.03.002] [PMID: 15907747]
[77]
Liu SH, Chang CD, Chen PH, Su JR, Chen CC, Chaung HC. Docosahexaenoic acid and phosphatidylserine supplementations improve antioxidant activities and cognitive functions of the developing brain on pentylenetetrazol-induced seizure model. Brain Res 2012; 1451: 19-26.
[http://dx.doi.org/10.1016/j.brainres.2012.02.060] [PMID: 22440676]
[78]
Pourmotabbed A, Nedaei SE, Cheraghi M, et al. Effect of prenatal pentylenetetrazol-induced kindling on learning and memory of male offspring. Neuroscience 2011; 172: 205-11.
[http://dx.doi.org/10.1016/j.neuroscience.2010.11.001] [PMID: 21070837]
[79]
Pourmotabbed A, Mahmoodi G, Mahmoodi S, et al. Effect of central muscarinic receptors on passive-avoidance learning deficits induced by prenatal pentylenetetrazol kindling in male offspring. Neuroscience 2014; 279: 232-7.
[http://dx.doi.org/10.1016/j.neuroscience.2014.08.028] [PMID: 25168725]
[80]
Reeta Kh, Prabhakar P, Gupta YK. Anticonvulsant activity of the antidepressant drug, tianeptine, against pentylenetetrazole-induced seizures mitigates cognitive impairment in rats. Behav Pharmacol 2016; 27(7): 623-32.
[http://dx.doi.org/10.1097/FBP.0000000000000257] [PMID: 27561095]
[81]
Koyuncuoğlu T, Vızdıklar C, Üren D, et al. Obestatin improves oxidative brain damage and memory dysfunction in rats induced with an epileptic seizure. Peptides 2017; 90: 37-47.
[http://dx.doi.org/10.1016/j.peptides.2017.02.005] [PMID: 28223092]
[82]
Jiang Y, Lu Y, Jia M, et al. Ketogenic diet attenuates spatial and item memory impairment in pentylenetetrazol-kindled rats. Brain Res 2016; 1646: 451-8.
[http://dx.doi.org/10.1016/j.brainres.2016.06.029] [PMID: 27343950]
[83]
Jalili C, Salahshoor MR, Pourmotabbed A, et al. The effects of aqueous extract of Boswellia Serrata on hippocampal region CA1 and learning deficit in kindled rats. Res Pharm Sci 2014; 9(5): 351-8.
[PMID: 25657807]
[84]
Mishra A, Goel RK. Chronic 5-HT3 receptor antagonism ameliorates seizures and associated memory deficit in pentylenetetrazole-kindled mice. Neuroscience 2016; 339: 319-28.
[http://dx.doi.org/10.1016/j.neuroscience.2016.10.010] [PMID: 27746348]
[85]
Ohkawa N, Kokura K, Matsu-Ura T, Obinata T, Konishi Y, Tamura TA. Molecular cloning and characterization of neural activity-related RING finger protein (NARF): a new member of the RBCC family is a candidate for the partner of myosin V. J Neurochem 2001; 78(1): 75-87.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00373.x] [PMID: 11432975]
[86]
Xie T, Wang WP, Jia LJ, et al. Environmental enrichment restores cognitive deficits induced by prenatal maternal seizure. Brain Res 2012; 1470: 80-8.
[http://dx.doi.org/10.1016/j.brainres.2012.06.034] [PMID: 22781140]
[87]
Chen CC, Chaung HC, Chung MY, Huang LT. Menhaden fish oil improves spatial memory in rat pups following recurrent pentylenetetrazole-induced seizures. Epilepsy Behav 2006; 8(3): 516-21.
[http://dx.doi.org/10.1016/j.yebeh.2006.01.004] [PMID: 16473555]
[88]
Genkova-Papazova MG, Lazarova-Bakarova MB. Piracetam and fipexide prevent PTZ-kindling-provoked amnesia in rats. Eur Neuropsychopharmacol 1996; 6(4): 285-90.
[http://dx.doi.org/10.1016/S0924-977X(96)00032-6] [PMID: 8985711]
[89]
Genkova-Papazova MG, Lazarova-Bakarova MB. Pentylenetetrazole kindling impairs long-term memory in rats. Eur Neuropsychopharmacol 1995; 5(1): 53-6.
[http://dx.doi.org/10.1016/0924-977X(94)00134-W] [PMID: 7613103]
[90]
Genkova-Papazova MG, Petkova B, Shishkova N, Lazarova-Bakarova M. The GABA-B antagonist CGP 36742 prevent PTZ-kindling-provoked amnesia in rats. Eur Neuropsychopharmacol 2000; 10(4): 273-8.
[http://dx.doi.org/10.1016/S0924-977X(00)00082-1] [PMID: 10871709]
[91]
Zhao X, Zhang Rx, Tang S, et al. Orexin-A-induced ERK1/2 activation reverses impaired spatial learning and memory in pentylenetetrazol-kindled rats via OX1R-mediated hippocampal neurogenesis. Peptides 2014; 54: 140-7.
[http://dx.doi.org/10.1016/j.peptides.2013.11.019] [PMID: 24321199]
[92]
Zhao RR, Xu XC, Xu F, et al. Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice. Biochem Biophys Res Commun 2014; 448(4): 414-7.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.130] [PMID: 24802403]
[93]
Mao RR, Tian M, Yang YX, Zhou QX, Xu L, Cao J. Effects of pentylenetetrazol-induced brief convulsive seizures on spatial memory and fear memory. Epilepsy Behav 2009; 15(4): 441-4.
[http://dx.doi.org/10.1016/j.yebeh.2009.05.015] [PMID: 19570727]
[94]
Babri S, Amani M, Mohaddes G, Mirzaei F, Mahmoudi F. Effects of intrahippocampal injection of ghrelin on spatial memory in PTZ-induced seizures in male rats. Neuropeptides 2013; 47(5): 355-60.
[http://dx.doi.org/10.1016/j.npep.2013.05.005] [PMID: 23790400]
[95]
Zhang LS, Chen JF, Chen GF, Hu XY, Ding MP. Effects of thioperamide on seizure development and memory impairment induced by pentylenetetrazole-kindling epilepsy in rats. Chin Med J (Engl) 2013; 126(1): 95-100.
[http://dx.doi.org/10.3901/JME.2013.03.095] [PMID: 23286485]
[96]
Omrani A, Ghadami MR, Fathi N, Tahmasian M, Fathollahi Y, Touhidi A. Naloxone improves impairment of spatial performance induced by pentylenetetrazol kindling in rats. Neuroscience 2007; 145(3): 824-31.
[http://dx.doi.org/10.1016/j.neuroscience.2006.12.049] [PMID: 17289274]
[97]
Inostroza M, Cid E, Brotons-Mas J, et al. Hippocampal-dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats. PLoS One 2011; 6(7)e22372
[http://dx.doi.org/10.1371/journal.pone.0022372] [PMID: 21829459]
[98]
Taiwe GS, Moto FC, Ayissi ER, et al. Effects of a lyophilized aqueous extract of Feretia apodanthera Del. (Rubiaceae) on pentylenetetrazole-induced kindling, oxidative stress, and cognitive impairment in mice. Epilepsy Behav 2015; 43: 100-8.
[http://dx.doi.org/10.1016/j.yebeh.2014.11.022] [PMID: 25601583]
[99]
Pahuja M, Mehla J, Kumar Gupta Y. Anticonvulsant and antioxidative activity of hydroalcoholic extract of tuber of Orchis mascula in pentylenetetrazole and maximal electroshock induced seizures in rats. J Ethnopharmacol 2012; 142(1): 23-7.
[http://dx.doi.org/10.1016/j.jep.2012.04.006] [PMID: 22575841]
[100]
Pahuja M, Mehla J, Reeta KH, Joshi S, Gupta YK. Hydroalcoholic extract of Zizyphus jujuba ameliorates seizures, oxidative stress, and cognitive impairment in experimental models of epilepsy in rats. Epilepsy Behav 2011; 21(4): 356-63.
[http://dx.doi.org/10.1016/j.yebeh.2011.05.013] [PMID: 21723789]
[101]
Reeta KH, Mehla J, Pahuja M, Gupta YK. Pharmacokinetic and pharmacodynamic interactions of valproate, phenytoin, phenobarbitone and carbamazepine with curcumin in experimental models of epilepsy in rats. Pharmacol Biochem Behav 2011; 99(3): 399-407.
[http://dx.doi.org/10.1016/j.pbb.2011.05.011] [PMID: 21641922]
[102]
Kumar A, Lalitha S, Mishra J. Possible nitric oxide mechanism in the protective effect of hesperidin against pentylenetetrazole (PTZ)-induced kindling and associated cognitive dysfunction in mice. Epilepsy Behav 2013; 29(1): 103-11.
[http://dx.doi.org/10.1016/j.yebeh.2013.06.007] [PMID: 23939034]
[103]
Abdel-Wahab BA, Al-Qahtani JM, El-Safty SA. Omega-3 polyunsaturated fatty acids in large doses attenuate seizures, cognitive impairment, and hippocampal oxidative DNA damage in young kindled rats. Neurosci Lett 2015; 584: 173-7.
[http://dx.doi.org/10.1016/j.neulet.2014.10.003] [PMID: 25316163]
[104]
Akula KK, Dhir A, Kulkarni SK. Systemic administration of adenosine ameliorates pentylenetetrazol-induced chemical kindling and secondary behavioural and biochemical changes in mice. Fundam Clin Pharmacol 2007; 21(6): 583-94.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00540.x] [PMID: 18034659]
[105]
Mehla J, Reeta KH, Gupta P, Gupta YK. Protective effect of curcumin against seizures and cognitive impairment in a pentylenetetrazole-kindled epileptic rat model. Life Sci 2010; 87(19-22): 596-603.
[http://dx.doi.org/10.1016/j.lfs.2010.09.006] [PMID: 20840851]
[106]
Hassanzadeh P, Arbabi E, Rostami F. The ameliorative effects of sesamol against seizures, cognitive impairment and oxidative stress in the experimental model of epilepsy. Iran J Basic Med Sci 2014; 17(2): 100-7.
[PMID: 24711892]
[107]
Broadbent NJ, Gaskin S, Squire LR, Clark RE. Object recognition memory and the rodent hippocampus. Learn Mem 2009; 17(1): 5-11.
[http://dx.doi.org/10.1101/lm.1650110] [PMID: 20028732]
[108]
Callahan PM, Bertrand D, Bertrand S, Plagenhoef MR, Terry AV Jr. Tropisetron sensitizes α7 containing nicotinic receptors to low levels of acetylcholine in vitro and improves memory-related task performance in young and aged animals. Neuropharmacology 2017; 117: 422-33.
[http://dx.doi.org/10.1016/j.neuropharm.2017.02.025] [PMID: 28259598]
[109]
Brown JW, Whitehead CA, Basso AM, Rueter LE, Zhang M. Preclinical evaluation of non-imidazole histamine H3 receptor antagonists in comparison to atypical antipsychotics for the treatment of cognitive deficits associated with schizophrenia. Int J Neuropsychopharmacol 2013; 16(4): 889-904.
[http://dx.doi.org/10.1017/S1461145712000739] [PMID: 22906530]
[110]
Wang Y, Fisahn A, Sinha I, et al. Hippocampal transcriptome profile of persistent memory rescue in a mouse model of THRA1 mutation-mediated resistance to thyroid hormone. Sci Rep 2016; 6: 18617.
[http://dx.doi.org/10.1038/srep18617] [PMID: 26743578]
[111]
Drapeau E, Riad M, Kajiwara Y, Buxbaum JD. Behavioral phenotyping of an improved mouse model of Phelan-McDermid syndrome with a complete deletion of the Shank3 Gene. eNeuro 2018; 5(3): 5.
[http://dx.doi.org/10.1523/ENEURO.0046-18.2018] [PMID: 30302388]
[112]
Lamberty Y, Klitgaard H. Consequences of pentylenetetrazole kindling on spatial memory and emotional responding in the rat. Epilepsy Behav 2000; 1(4): 256-61.
[http://dx.doi.org/10.1006/ebeh.2000.0085] [PMID: 12609441]
[113]
Kola PK, Akula A, NissankaraRao LS, Danduga RCSR. Protective effect of naringin on pentylenetetrazole (PTZ)-induced kindling; possible mechanisms of antikindling, memory improvement, and neuroprotection. Epilepsy Behav 2017; 75: 114-26.
[http://dx.doi.org/10.1016/j.yebeh.2017.07.011] [PMID: 28846920]
[114]
Lou Y, Wang WP, Li P, Duan RS, Pei L. [Interrelationship between change of cAMP responsive element binding protein (CREB) or N-methyl-D-aspartate receptor (NR1) expressing in hippocampus and impairment of learning and memory after epilepsy]. Sichuan Da Xue Xue Bao Yi Xue Ban 2007; 38(6): 949-53.
[PMID: 18095593]
[115]
Duan FR, Yuan BQ. [Effect of extracts of Ginkgo biloba leaf on learning-memory ability and NMDA receptor 1 expression in the hippocampus in rats with kindling-induced epilepsy]. Zhongguo Dang Dai Er Ke Za Zhi 2008; 10(3): 367-70.
[PMID: 18554470]
[116]
Nagaraja RY, Becker A, Reymann KG, Balschun D. Repeated administration of group I mGluR antagonists prevents seizure-induced long-term aberrations in hippocampal synaptic plasticity. Neuropharmacology 2005; 49(Suppl. 1): 179-87.
[http://dx.doi.org/10.1016/j.neuropharm.2005.05.016] [PMID: 16009386]
[117]
Franke H, Kittner H. Morphological alterations of neurons and astrocytes and changes in emotional behavior in pentylenetetrazol-kindled rats. Pharmacol Biochem Behav 2001; 70(2-3): 291-303.
[http://dx.doi.org/10.1016/S0091-3057(01)00612-8] [PMID: 11701200]
[118]
Mathern GW, Babb TL, Leite JP, Pretorius K, Yeoman KM, Kuhlman PA. The pathogenic and progressive features of chronic human hippocampal epilepsy. Epilepsy Res 1996; 26(1): 151-61.
[http://dx.doi.org/10.1016/S0920-1211(96)00052-6] [PMID: 8985697]
[119]
Engel J Jr. Introduction to temporal lobe epilepsy. Epilepsy Res 1996; 26(1): 141-50.
[http://dx.doi.org/10.1016/S0920-1211(96)00043-5] [PMID: 8985696]
[120]
Muramatsu R, Ikegaya Y, Matsuki N, Koyama R. Early-life status epilepticus induces ectopic granule cells in adult mice dentate gyrus. Exp Neurol 2008; 211(2): 503-10.
[http://dx.doi.org/10.1016/j.expneurol.2008.02.026] [PMID: 18420198]
[121]
Yin J, Ma Y, Yin Q, et al. Involvement of over-expressed BMP4 in pentylenetetrazol kindling-induced cell proliferation in the dentate gyrus of adult rats. Biochem Biophys Res Commun 2007; 355(1): 54-60.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.107] [PMID: 17286956]
[122]
Martinez-Hernandez A, Bell KP, Norenberg MD. Glutamine synthetase: glial localization in brainScience 1977; 195(4284): 1356-8.
[http://dx.doi.org/10.1126/science.14400] [PMID: 14400]
[123]
Schousboe A, Waagepetersen HS. Glial modulation of GABAergic and glutamat ergic neurotransmission. Curr Top Med Chem 2006; 6(10): 929-34.
[http://dx.doi.org/10.2174/156802606777323719] [PMID: 16787266]
[124]
Perry G, Nunomura A, Hirai K, et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Med 2002; 33(11): 1475-9.
[http://dx.doi.org/10.1016/S0891-5849(02)01113-9] [PMID: 12446204]
[125]
Ashrafi MR, Shams S, Nouri M, et al. A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia 2007; 48(9): 1750-5.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01143.x] [PMID: 17555528]
[126]
Patsoukis N, Papapostolou I, Zervoudakis G, Georgiou CD, Matsokis NA, Panagopoulos NT. Thiol redox state and oxidative stress in midbrain and striatum of weaver mutant mice, a genetic model of nigrostriatal dopamine deficiency. Neurosci Lett 2005; 376(1): 24-8.
[http://dx.doi.org/10.1016/j.neulet.2004.11.019] [PMID: 15694268]
[127]
Stadtman ER. Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 2001; 928: 22-38.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb05632.x] [PMID: 11795513]
[128]
Van Den Pol AN, Obrietan K, Belousov A. Glutamate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in culture. Neuroscience 1996; 74(3): 653-74.
[http://dx.doi.org/10.1016/0306-4522(96)00153-4] [PMID: 8884763]
[129]
Fujikawa DG, Itabashi HH, Wu A, Shinmei SS. Status epilepticus-induced neuronal loss in humans without systemic complications or epilepsy. Epilepsia 2000; 41(8): 981-91.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb00283.x] [PMID: 10961625]
[130]
Ferriero DM. Protecting neurons. Epilepsia 2005; 46(Suppl. 7): 45-51.
[http://dx.doi.org/10.1111/j.1528-1167.2005.00302.x] [PMID: 16201995]
[131]
Pearson-Smith JN, Patel M. Metabolic dysfunction and oxidative stress in epilepsy. Int J Mol Sci 2017; 18(11): 18.
[http://dx.doi.org/10.3390/ijms18112365] [PMID: 29117123]
[132]
Gaweł S, Wardas M, Niedworok E, Wardas P. [Malondialdehyde (MDA) as a lipid peroxidation marker]. Wiad Lek 2004; 57(9-10): 453-5.
[PMID: 15765761]
[133]
Singh D, Mishra A, Goel RK. Effect of saponin fraction from Ficus religiosa on memory deficit, and behavioral and biochemical impairments in pentylenetetrazol kindled mice. Epilepsy Behav 2013; 27(1): 206-11.
[http://dx.doi.org/10.1016/j.yebeh.2012.11.004] [PMID: 23332444]
[134]
Koshal P, Kumar P. Neurochemical modulation involved in the beneficial effect of liraglutide, GLP-1 agonist on PTZ kindling epilepsy-induced comorbidities in mice. Mol Cell Biochem 2016; 415(1-2): 77-87.
[http://dx.doi.org/10.1007/s11010-016-2678-1] [PMID: 26965494]
[135]
Szyndler J, Maciejak P, Turzyńska D, Sobolewska A, Bidziński A, Płaźnik A. Time course of changes in the concentrations of monoamines in the brain structures of pentylenetetrazole-kindled rats. J Neural Transm (Vienna) 2010; 117(6): 707-18.
[http://dx.doi.org/10.1007/s00702-010-0414-7] [PMID: 20449617]
[136]
Pasini A, Tortorella A, Gale K. The anticonvulsant action of fluoxetine in substantia nigra is dependent upon endogenous serotonin. Brain Res 1996; 724(1): 84-8.
[http://dx.doi.org/10.1016/0006-8993(96)00291-0] [PMID: 8816259]
[137]
Sadek B, Saad A, Schwed JS, Weizel L, Walter M, Stark H. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists. Drug Des Devel Ther 2016; 10: 3633-51.
[http://dx.doi.org/10.2147/DDDT.S114147] [PMID: 27853355]
[138]
Haam J, Yakel JL. Cholinergic modulation of the hippocampal region and memory function. J Neurochem 2017; 142(Suppl. 2): 111-21.
[http://dx.doi.org/10.1111/jnc.14052] [PMID: 28791706]
[139]
Teles-Grilo Ruivo LM, Mellor JR. Cholinergic modulation of hippocampal network function. Front Synaptic Neurosci 2013; 5: 2.
[http://dx.doi.org/10.3389/fnsyn.2013.00002] [PMID: 23908628]
[140]
Pahwa P, Goel RK. Ameliorative effect of Asparagus racemosus root extract against pentylenetetrazol-induced kindling and associated depression and memory deficit. Epilepsy Behav 2016; 57(Pt.A): 196-201.
[http://dx.doi.org/10.1016/j.yebeh.2016.01.025] [PMID: 26970996]
[141]
Kaur D, Pahwa P, Goel RK. Protective effect of nerolidol against pentylenetetrazol-induced kindling, oxidative stress and associated behavioral comorbidities in mice. Neurochem Res 2016; 41(11): 2859-67.
[http://dx.doi.org/10.1007/s11064-016-2001-2] [PMID: 27418279]
[142]
Zhang LS, Ma YY, Li Q. [Effects of endogenous histamine on memory impairment induced by pentylenetetrazole-kindled epilepsy in rats]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2006; 35(6): 630-4.
[PMID: 17177335]
[143]
Serra M, Dazzi L, Cagetti E, et al. Effect of pentylenetetrazole-induced kindling on acetylcholine release in the hippocampus of freely moving rats. J Neurochem 1997; 68(1): 313-8.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68010313.x] [PMID: 8978740]
[144]
Grecksch G, Becker A, Gadau C, Matthies H. Gangliosides improve a memory deficit in pentylenetetrazol-kindled rats. Pharmacol Biochem Behav 1991; 39(3): 825-8.
[http://dx.doi.org/10.1016/0091-3057(91)90174-Z] [PMID: 1784612]
[145]
Jalili C, Salahshoor MR, Moradi S, Pourmotabbed A, Motaghi M. The therapeutic effect of the aqueous extract of boswellia serrata on the learning deficit in kindled rats. Int J Prev Med 2014; 5(5): 563-8.
[PMID: 24932387]
[146]
Pahuja M, Mehla J, Reeta KH, Tripathi M, Gupta YK. Effect of Anacyclus pyrethrum on pentylenetetrazole-induced kindling, spatial memory, oxidative stress and rho-kinase II expression in mice. Neurochem Res 2013; 38(3): 547-56.
[http://dx.doi.org/10.1007/s11064-012-0947-2] [PMID: 23242789]
[147]
Hao F, Jia LH, Li XW, Zhang YR, Liu XW. Garcinol upregulates GABAA and GAD65 expression, modulates BDNF-TrkB pathway to reduce seizures in pentylenetetrazole (PTZ)-induced epilepsy. Med Sci Monit 2016; 22: 4415-25.
[http://dx.doi.org/10.12659/MSM.897579] [PMID: 27855137]
[148]
Abdel-Zaher AO, Farghaly HSM, Farrag MMY, Abdel-Rahman MS, Abdel-Wahab BA. A potential mechanism for the ameliorative effect of thymoquinone on pentylenetetrazole-induced kindling and cognitive impairments in mice. Biomed Pharmacother 2017; 88: 553-61.
[http://dx.doi.org/10.1016/j.biopha.2017.01.009] [PMID: 28131095]
[149]
Hashemian M, Anissian D, Ghasemi-Kasman M, et al. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy Prog Neuropsychopharmacol Biol Psychiatry 2017; 79(Pt. B): 462-71.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.025] [PMID: 28778407]
[150]
Nassiri-Asl M, Moghbelinejad S, Abbasi E, et al. Effects of quercetin on oxidative stress and memory retrieval in kindled rats. Epilepsy Behav 2013; 28(2): 151-5.
[http://dx.doi.org/10.1016/j.yebeh.2013.04.019] [PMID: 23747498]
[151]
Nassiri-Asl M, Mortazavi SR, Samiee-Rad F, et al. The effects of rutin on the development of pentylenetetrazole kindling and memory retrieval in rats. Epilepsy Behav 2010; 18(1-2): 50-3.
[http://dx.doi.org/10.1016/j.yebeh.2010.03.005] [PMID: 20452834]
[152]
Getova D, Froestl W, Bowery NG. Effects of GABAB receptor antagonism on the development of pentylenetetrazol-induced kindling in mice. Brain Res 1998; 809(2): 182-8.
[http://dx.doi.org/10.1016/S0006-8993(98)00864-6] [PMID: 9853109]
[153]
Jia F, Kato M, Dai H, et al. Effects of histamine H(3) antagonists and donepezil on learning and mnemonic deficits induced by pentylenetetrazol kindling in weanling mice. Neuropharmacology 2006; 50(4): 404-11.
[http://dx.doi.org/10.1016/j.neuropharm.2005.09.017] [PMID: 16310812]
[154]
Chen Z, Li WD, Zhu LJ, Shen YJ, Wei EQ. Effects of histidine, a precursor of histamine, on pentylenetetrazole-induced seizures in rats. Acta Pharmacol Sin 2002; 23(4): 361-6.
[PMID: 11931695]
[155]
Zhang LS, Jin CL, Li Q, Sun YC, Chen Z. [Influence of chronic epilepsy on spatial memory retrieval in rats]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2004; 33(3): 205-8.
[PMID: 15179678]
[156]
Genkova-Papazova MG, Petkova B, Shishkova N, Lazarova-Bakarova M. Effect of the calcium channel blockers nifedipine and diltiazem on pentylenetetrazole kindling-provoked amnesia in rats. Eur Neuropsychopharmacol 2001; 11(2): 91-6.
[http://dx.doi.org/10.1016/S0924-977X(00)00120-6] [PMID: 11313152]
[157]
Lazarova M, Petkova B, Petkov VD. Effect of dotarizine on electroconvulsive shock or pentylenetetrazol-induced amnesia and on seizure reactivity in rats. Methods Find Exp Clin Pharmacol 1995; 17(1): 53-8.
[PMID: 7623521]
[158]
Azim MS, Agarwal NB, Vohora D. Effects of agomelatine on pentylenetetrazole-induced kindling, kindling-associated oxidative stress, and behavioral despair in mice and modulation of its actions by luzindole and 1-(m-chlorophenyl) piperazine. Epilepsy Behav 2017; 72: 140-4.
[http://dx.doi.org/10.1016/j.yebeh.2017.03.019] [PMID: 28578215]
[159]
Uzüm G, Akgün-Dar K, Aksu U. The effects of atorvastatin on memory deficit and seizure susceptibility in pentylentetrazole-kindled rats. Epilepsy Behav 2010; 19(3): 284-9.
[http://dx.doi.org/10.1016/j.yebeh.2010.07.024] [PMID: 20888302]
[160]
Singh T, Bagga N, Kaur A, Kaur N, Gawande DY, Goel RK. Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomed Pharmacother 2017; 92: 720-5.
[http://dx.doi.org/10.1016/j.biopha.2017.05.085] [PMID: 28586743]
[161]
Ahmad A, Vohora D. Proconvulsant effects of estriol, the third estrogen, in the mouse PTZ-kindling model. Neurol Sci 2014; 35(10): 1561-6.
[http://dx.doi.org/10.1007/s10072-014-1795-4] [PMID: 24748480]
[162]
Katyal J, Kumar H, Gupta YK. Anticonvulsant activity of the cyclooxygenase-2 (COX-2) inhibitor etoricoxib in pentylenetetrazole-kindled rats is associated with memory impairment. Epilepsy Behav 2015; 44: 98-103.
[http://dx.doi.org/10.1016/j.yebeh.2014.12.032] [PMID: 25660085]
[163]
Carter AN, Born HA, Levine AT, et al. Wortmannin attenuates seizure-induced hyperactive PI3K/Akt/mTOR signaling, impaired memory, and spine dysmorphology in rats. eNeuro 2017; 4(3): 4.
[http://dx.doi.org/10.1523/ENEURO.0354-16.2017] [PMID: 28612047]
[164]
Assaf F, Fishbein M, Gafni M, Keren O, Sarne Y. Pre- and post-conditioning treatment with an ultra-low dose of Δ9-tetrahydrocannabinol (THC) protects against pentylenetetrazole (PTZ)-induced cognitive damage. Behav Brain Res 2011; 220(1): 194-201.
[http://dx.doi.org/10.1016/j.bbr.2011.02.005] [PMID: 21315768]
[165]
Pohle W, Becker A, Grecksch G, Juhre A, Willenberg A. Piracetam prevents pentylenetetrazol kindling-induced neuronal loss and learning deficits. Seizure 1997; 6(6): 467-74.
[http://dx.doi.org/10.1016/S1059-1311(97)80022-2] [PMID: 9530943]
[166]
Mishra A, Goel RK. Comparative behavioral and neurochemical analysis of phenytoin and valproate treatment on epilepsy induced learning and memory deficit: Search for add on therapy. Metab Brain Dis 2015; 30(4): 951-8.
[http://dx.doi.org/10.1007/s11011-015-9650-8] [PMID: 25613529]
[167]
Kundap UP, Paudel YN, Kumari Y, Othman I, Shaikh MF. Embelin prevents seizure and associated cognitive impairments in a pentylenetetrazole-induced kindling zebrafish model. Front Pharmacol 2019; 10: 315.
[http://dx.doi.org/10.3389/fphar.2019.00315] [PMID: 31057394]
[168]
Todorov P, Rangelov M, Peneva P, Todorova N, Tchekalarova J. Anticonvulsant evaluation and docking analysis of VV-Hemorphin-5 analogues. Drug Dev Res 2019; 80(4): 425-37.
[http://dx.doi.org/10.1002/ddr.21514] [PMID: 30681179]
[169]
Paronikyan EG, Petrou A, Fesatidou M, et al. Derivatives of a new heterocyclic system - pyrano[3,4-c][1,2,4]triazolo[4,3-a]pyridines: synthesis, docking analysis and neurotropic activity. MedChemComm 2019; 10(8): 1399-411.
[http://dx.doi.org/10.1039/C9MD00187E] [PMID: 31534657]
[170]
Mohammadi-Khanaposhtani M, Ahangar N, Sobhani S, et al. Design, synthesis, in vivo, and in silico evaluation of new coumarin-1,2,4-oxadiazole hybrids as anticonvulsant agents. Bioorg Chem 2019; 89102989
[http://dx.doi.org/10.1016/j.bioorg.2019.102989] [PMID: 31158578]
[171]
Wang S, Liu H, Wang X, et al. Synthesis and evaluation of anticonvulsant activities of 7-phenyl-4,5,6,7-tetrahydrothieno[3,2-b ]pyridine derivatives. Arch Pharm (Weinheim) 2019; 352(10)e1900106
[http://dx.doi.org/10.1002/ardp.201900106] [PMID: 31364202]
[172]
Song MX, Huang Y, Wang S, Wang ZT, Deng XQ. Design, synthesis, and evaluation of anticonvulsant activities of benzoxazole derivatives containing the 1,2,4-triazolone moiety. Arch Pharm (Weinheim) 2019; 352(8)e1800313
[http://dx.doi.org/10.1002/ardp.201800313] [PMID: 31330092]
[173]
Choudhary N, Singh V. Insights about multi-targeting and synergistic neuromodulators in Ayurvedic herbs against epilepsy: integrated computational studies on drug-target and protein-protein interaction networks. Sci Rep 2019; 9(1): 10565.
[http://dx.doi.org/10.1038/s41598-019-46715-6] [PMID: 31332210]
[174]
Al-Harrasi A, Khan A, Rehman NU, et al. Evidence for the involvement of a GABAergic mechanism in the effectiveness of natural and synthetically modified incensole derivatives in neuropharmacological disorders: A computational and pharmacological approach. Phytochemistry 2019; 163: 58-74.
[http://dx.doi.org/10.1016/j.phytochem.2019.04.007] [PMID: 31015070]
[175]
Kothayer H, Ibrahim SM, Soltan MK, Rezq S, Mahmoud SS. Synthesis, in vivo and in silico evaluation of novel 2,3-dihydroquinazolin-4(1H)-one derivatives as potential anticonvulsant agents. Drug Dev Res 2019; 80(3): 343-52.
[http://dx.doi.org/10.1002/ddr.21506] [PMID: 30565722]
[176]
Cavalcante TMB, De Melo JMA, Lopes LB, et al. Ivabradine possesses anticonvulsant and neuroprotective action in mice. Biomed Pharmacother 2019; 109: 2499-512.
[http://dx.doi.org/10.1016/j.biopha.2018.11.096] [PMID: 30551511]
[177]
Adil S, Khan AU, Badshah H, et al. In silico and in vivo investigation of ferrocene-incorporated acyl ureas and homoleptic cadmium carboxylate derivatives for anticonvulsant, anxiolytic, and sedative potential. Drug Dev Res 2018; 79(4): 184-97.
[http://dx.doi.org/10.1002/ddr.21435] [PMID: 29989221]
[178]
Sahu M, Siddiqui N, Sharma V, Wakode S. 5,6-Dihydropyrimidine-1(2H)-carbothioamides: Synthesis, in vitro GABA-AT screening, anticonvulsant activity and molecular modelling study. Bioorg Chem 2018; 77: 56-67.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.031] [PMID: 29331765]
[179]
Saadabadi A, Kohen B, Irandoust M, et al. 2, 5-Disubstituted phthalimides: design, synthesis and anticonvulsant activity in scPTZ and MES models. Curr Comput Aided Drug Des 2018; 14(4): 310-21.
[http://dx.doi.org/10.2174/1573409914666180516115450] [PMID: 29766822]
[180]
Seth A, Sharma PA, Tripathi A, et al. Design, Synthesis, evaluation and computational studies of nipecotic acid-acetonaphthone hybrids as potential antiepileptic agents. Med Chem 2018; 14(4): 409-26.
[http://dx.doi.org/10.2174/1573406414666180116104225] [PMID: 29336266]
[181]
Mahendran G, Vijayan R. Neuropharmacological and molecular docking studies of xanthones from Swertia corymbosa. J Recept Signal Transduct Res 2018; 38(2): 166-77.
[http://dx.doi.org/10.1080/10799893.2018.1458875] [PMID: 29658840]
[182]
Sahu M, Siddiqui N, Iqbal R, Sharma V, Wakode S. Design, synthesis and evaluation of newer 5,6-dihydropyrimidine-2(1H)-thiones as GABA-AT inhibitors for anticonvulsant potential. Bioorg Chem 2017; 74: 166-78.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.017] [PMID: 28806600]
[183]
Ahmad G, Rasool N, Rizwan K, et al. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs. Bioorg Chem 2019; 92103216
[http://dx.doi.org/10.1016/j.bioorg.2019.103216] [PMID: 31491567]
[184]
Hoeller AA, de Carvalho CR, Franco PLC, et al. Behavioral and neurochemical consequences of pentylenetetrazol-induced kindling in young and middle-aged rats. Pharmaceuticals (Basel) 2017; 10(3): 10.
[http://dx.doi.org/10.3390/ph10030075] [PMID: 28902172]
[185]
Tchekalarova J, Pechlivanova D, Kambourova T, Matsoukas J, Georgiev V. The effects of sarmesin, an Angiotensin II analogue on seizure susceptibility, memory retention and nociception. Regul Pept 2003; 111(1-3): 191-7.
[http://dx.doi.org/10.1016/S0167-0115(02)00285-9] [PMID: 12609768]
[186]
Huang Y, Liu X, Liao Y, et al. MiR-181a influences the cognitive function of epileptic rats induced by pentylenetetrazol. Int J Clin Exp Pathol 2015; 8(10): 12861-8.
[PMID: 26722477]
[187]
Naseer MI, Shupeng L, Kim MO. Maternal epileptic seizure induced by pentylenetetrazol: apoptotic neurodegeneration and decreased GABAB1 receptor expression in prenatal rat brain. Mol Brain 2009; 2: 20.
[http://dx.doi.org/10.1186/1756-6606-2-20] [PMID: 19545402]
[188]
Postnikova TY, Zubareva OE, Kovalenko AA, Kim KK, Magazanik LG, Zaitsev AV. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochemistry (Mosc) 2017; 82(3): 282-90.
[http://dx.doi.org/10.1134/S0006297917030063] [PMID: 28320269]
[189]
Ramos SF, Mendonça BP, Leffa DD, et al. Effects of neuropeptide S on seizures and oxidative damage induced by pentylenetetrazole in mice. Pharmacol Biochem Behav 2012; 103(2): 197-203.
[http://dx.doi.org/10.1016/j.pbb.2012.09.001] [PMID: 22960046]